diff options
Diffstat (limited to 'lib/Transforms/Scalar/ABCD.cpp')
-rw-r--r-- | lib/Transforms/Scalar/ABCD.cpp | 1108 |
1 files changed, 1108 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/ABCD.cpp b/lib/Transforms/Scalar/ABCD.cpp new file mode 100644 index 0000000..a644973 --- /dev/null +++ b/lib/Transforms/Scalar/ABCD.cpp @@ -0,0 +1,1108 @@ +//===------- ABCD.cpp - Removes redundant conditional branches ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass removes redundant branch instructions. This algorithm was +// described by Rastislav Bodik, Rajiv Gupta and Vivek Sarkar in their paper +// "ABCD: Eliminating Array Bounds Checks on Demand (2000)". The original +// Algorithm was created to remove array bound checks for strongly typed +// languages. This implementation expands the idea and removes any conditional +// branches that can be proved redundant, not only those used in array bound +// checks. With the SSI representation, each variable has a +// constraint. By analyzing these constraints we can proof that a branch is +// redundant. When a branch is proved redundant it means that +// one direction will always be taken; thus, we can change this branch into an +// unconditional jump. +// It is advisable to run SimplifyCFG and Aggressive Dead Code Elimination +// after ABCD to clean up the code. +// This implementation was created based on the implementation of the ABCD +// algorithm implemented for the compiler Jitrino. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "abcd" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Pass.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/SSI.h" + +using namespace llvm; + +STATISTIC(NumBranchTested, "Number of conditional branches analyzed"); +STATISTIC(NumBranchRemoved, "Number of conditional branches removed"); + +//namespace { + +class ABCD : public FunctionPass { + public: + static char ID; // Pass identification, replacement for typeid. + ABCD() : FunctionPass(&ID) {} + + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<SSI>(); + } + + bool runOnFunction(Function &F); + + private: + bool modified; + + enum ProveResult { + False = 0, + Reduced = 1, + True = 2 + }; + + typedef ProveResult (*meet_function)(ProveResult, ProveResult); + static ProveResult max(ProveResult res1, ProveResult res2) { + return (ProveResult) std::max(res1, res2); + } + static ProveResult min(ProveResult res1, ProveResult res2) { + return (ProveResult) std::min(res1, res2); + } + + class Bound { + public: + Bound(APInt v, bool upper) : value(v), upper_bound(upper) {} + Bound(const Bound *b, int cnst) + : value(b->value - cnst), upper_bound(b->upper_bound) {} + Bound(const Bound *b, const APInt &cnst) + : value(b->value - cnst), upper_bound(b->upper_bound) {} + + /// Test if Bound is an upper bound + bool isUpperBound() const { return upper_bound; } + + /// Get the bitwidth of this bound + int32_t getBitWidth() const { return value.getBitWidth(); } + + /// Creates a Bound incrementing the one received + static Bound *createIncrement(const Bound *b) { + return new Bound(b->isUpperBound() ? b->value+1 : b->value-1, + b->upper_bound); + } + + /// Creates a Bound decrementing the one received + static Bound *createDecrement(const Bound *b) { + return new Bound(b->isUpperBound() ? b->value-1 : b->value+1, + b->upper_bound); + } + + /// Test if two bounds are equal + static bool eq(const Bound *a, const Bound *b) { + if (!a || !b) return false; + + assert(a->isUpperBound() == b->isUpperBound()); + return a->value == b->value; + } + + /// Test if val is less than or equal to Bound b + static bool leq(APInt val, const Bound *b) { + if (!b) return false; + return b->isUpperBound() ? val.sle(b->value) : val.sge(b->value); + } + + /// Test if Bound a is less then or equal to Bound + static bool leq(const Bound *a, const Bound *b) { + if (!a || !b) return false; + + assert(a->isUpperBound() == b->isUpperBound()); + return a->isUpperBound() ? a->value.sle(b->value) : + a->value.sge(b->value); + } + + /// Test if Bound a is less then Bound b + static bool lt(const Bound *a, const Bound *b) { + if (!a || !b) return false; + + assert(a->isUpperBound() == b->isUpperBound()); + return a->isUpperBound() ? a->value.slt(b->value) : + a->value.sgt(b->value); + } + + /// Test if Bound b is greater then or equal val + static bool geq(const Bound *b, APInt val) { + return leq(val, b); + } + + /// Test if Bound a is greater then or equal Bound b + static bool geq(const Bound *a, const Bound *b) { + return leq(b, a); + } + + private: + APInt value; + bool upper_bound; + }; + + /// This class is used to store results some parts of the graph, + /// so information does not need to be recalculated. The maximum false, + /// minimum true and minimum reduced results are stored + class MemoizedResultChart { + public: + MemoizedResultChart() : max_false(NULL), min_true(NULL), + min_reduced(NULL) {} + + /// Returns the max false + Bound *getFalse() const { return max_false; } + + /// Returns the min true + Bound *getTrue() const { return min_true; } + + /// Returns the min reduced + Bound *getReduced() const { return min_reduced; } + + /// Return the stored result for this bound + ProveResult getResult(const Bound *bound) const; + + /// Stores a false found + void addFalse(Bound *bound); + + /// Stores a true found + void addTrue(Bound *bound); + + /// Stores a Reduced found + void addReduced(Bound *bound); + + /// Clears redundant reduced + /// If a min_true is smaller than a min_reduced then the min_reduced + /// is unnecessary and then removed. It also works for min_reduced + /// begin smaller than max_false. + void clearRedundantReduced(); + + void clear() { + delete max_false; + delete min_true; + delete min_reduced; + } + + private: + Bound *max_false, *min_true, *min_reduced; + }; + + /// This class stores the result found for a node of the graph, + /// so these results do not need to be recalculate and only searched for. + class MemoizedResult { + public: + /// Test if there is true result stored from b to a + /// that is less then the bound + bool hasTrue(Value *b, const Bound *bound) const { + Bound *trueBound = map.lookup(b).getTrue(); + return trueBound && Bound::leq(trueBound, bound); + } + + /// Test if there is false result stored from b to a + /// that is less then the bound + bool hasFalse(Value *b, const Bound *bound) const { + Bound *falseBound = map.lookup(b).getFalse(); + return falseBound && Bound::leq(falseBound, bound); + } + + /// Test if there is reduced result stored from b to a + /// that is less then the bound + bool hasReduced(Value *b, const Bound *bound) const { + Bound *reducedBound = map.lookup(b).getReduced(); + return reducedBound && Bound::leq(reducedBound, bound); + } + + /// Returns the stored bound for b + ProveResult getBoundResult(Value *b, Bound *bound) { + return map[b].getResult(bound); + } + + /// Clears the map + void clear() { + DenseMapIterator<Value*, MemoizedResultChart> begin = map.begin(); + DenseMapIterator<Value*, MemoizedResultChart> end = map.end(); + for (; begin != end; ++begin) { + begin->second.clear(); + } + map.clear(); + } + + /// Stores the bound found + void updateBound(Value *b, Bound *bound, const ProveResult res); + + private: + // Maps a nod in the graph with its results found. + DenseMap<Value*, MemoizedResultChart> map; + }; + + /// This class represents an edge in the inequality graph used by the + /// ABCD algorithm. An edge connects node v to node u with a value c if + /// we could infer a constraint v <= u + c in the source program. + class Edge { + public: + Edge(Value *V, APInt val, bool upper) : vertex(V), value(val), + upper_bound(upper) + {} + + Value *getVertex() const { return vertex; } + const APInt &getValue() const { return value; } + bool isUpperBound() const { return upper_bound; } + + private: + Value *vertex; + APInt value; + bool upper_bound; + }; + + /// Weighted and Directed graph to represent constraints. + /// There is one type of constraint, a <= b + X, which will generate an + /// edge from b to a with weight X. + class InequalityGraph { + public: + + /// Adds an edge from V_from to V_to with weight value + void addEdge(Value *V_from, Value *V_to, APInt value, bool upper); + + /// Test if there is a node V + bool hasNode(Value *V) const { return graph.count(V); } + + /// Test if there is any edge from V in the upper direction + bool hasEdge(Value *V, bool upper) const; + + /// Returns all edges pointed by vertex V + SmallPtrSet<Edge *, 16> getEdges(Value *V) const { + return graph.lookup(V); + } + + /// Prints the graph in dot format. + /// Blue edges represent upper bound and Red lower bound. + void printGraph(raw_ostream &OS, Function &F) const { + printHeader(OS, F); + printBody(OS); + printFooter(OS); + } + + /// Clear the graph + void clear() { + graph.clear(); + } + + private: + DenseMap<Value *, SmallPtrSet<Edge *, 16> > graph; + + /// Adds a Node to the graph. + DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator addNode(Value *V) { + SmallPtrSet<Edge *, 16> p; + return graph.insert(std::make_pair(V, p)).first; + } + + /// Prints the header of the dot file + void printHeader(raw_ostream &OS, Function &F) const; + + /// Prints the footer of the dot file + void printFooter(raw_ostream &OS) const { + OS << "}\n"; + } + + /// Prints the body of the dot file + void printBody(raw_ostream &OS) const; + + /// Prints vertex source to the dot file + void printVertex(raw_ostream &OS, Value *source) const; + + /// Prints the edge to the dot file + void printEdge(raw_ostream &OS, Value *source, Edge *edge) const; + + void printName(raw_ostream &OS, Value *info) const; + }; + + /// Iterates through all BasicBlocks, if the Terminator Instruction + /// uses an Comparator Instruction, all operands of this comparator + /// are sent to be transformed to SSI. Only Instruction operands are + /// transformed. + void createSSI(Function &F); + + /// Creates the graphs for this function. + /// It will look for all comparators used in branches, and create them. + /// These comparators will create constraints for any instruction as an + /// operand. + void executeABCD(Function &F); + + /// Seeks redundancies in the comparator instruction CI. + /// If the ABCD algorithm can prove that the comparator CI always + /// takes one way, then the Terminator Instruction TI is substituted from + /// a conditional branch to a unconditional one. + /// This code basically receives a comparator, and verifies which kind of + /// instruction it is. Depending on the kind of instruction, we use different + /// strategies to prove its redundancy. + void seekRedundancy(ICmpInst *ICI, TerminatorInst *TI); + + /// Substitutes Terminator Instruction TI, that is a conditional branch, + /// with one unconditional branch. Succ_edge determines if the new + /// unconditional edge will be the first or second edge of the former TI + /// instruction. + void removeRedundancy(TerminatorInst *TI, bool Succ_edge); + + /// When an conditional branch is removed, the BasicBlock that is no longer + /// reachable will have problems in phi functions. This method fixes these + /// phis removing the former BasicBlock from the list of incoming BasicBlocks + /// of all phis. In case the phi remains with no predecessor it will be + /// marked to be removed later. + void fixPhi(BasicBlock *BB, BasicBlock *Succ); + + /// Removes phis that have no predecessor + void removePhis(); + + /// Creates constraints for Instructions. + /// If the constraint for this instruction has already been created + /// nothing is done. + void createConstraintInstruction(Instruction *I); + + /// Creates constraints for Binary Operators. + /// It will create constraints only for addition and subtraction, + /// the other binary operations are not treated by ABCD. + /// For additions in the form a = b + X and a = X + b, where X is a constant, + /// the constraint a <= b + X can be obtained. For this constraint, an edge + /// a->b with weight X is added to the lower bound graph, and an edge + /// b->a with weight -X is added to the upper bound graph. + /// Only subtractions in the format a = b - X is used by ABCD. + /// Edges are created using the same semantic as addition. + void createConstraintBinaryOperator(BinaryOperator *BO); + + /// Creates constraints for Comparator Instructions. + /// Only comparators that have any of the following operators + /// are used to create constraints: >=, >, <=, <. And only if + /// at least one operand is an Instruction. In a Comparator Instruction + /// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where + /// t and f represent sigma for operands in true and false branches. The + /// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and + /// b_f <= b. There are two more constraints that depend on the operator. + /// For the operator <= : a_t <= b_t and b_f <= a_f-1 + /// For the operator < : a_t <= b_t-1 and b_f <= a_f + /// For the operator >= : b_t <= a_t and a_f <= b_f-1 + /// For the operator > : b_t <= a_t-1 and a_f <= b_f + void createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI); + + /// Creates constraints for PHI nodes. + /// In a PHI node a = phi(b,c) we can create the constraint + /// a<= max(b,c). With this constraint there will be the edges, + /// b->a and c->a with weight 0 in the lower bound graph, and the edges + /// a->b and a->c with weight 0 in the upper bound graph. + void createConstraintPHINode(PHINode *PN); + + /// Given a binary operator, we are only interest in the case + /// that one operand is an Instruction and the other is a ConstantInt. In + /// this case the method returns true, otherwise false. It also obtains the + /// Instruction and ConstantInt from the BinaryOperator and returns it. + bool createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1, + Instruction **I2, ConstantInt **C1, + ConstantInt **C2); + + /// This method creates a constraint between a Sigma and an Instruction. + /// These constraints are created as soon as we find a comparator that uses a + /// SSI variable. + void createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t, + BasicBlock *BB_succ_f, PHINode **SIG_op_t, + PHINode **SIG_op_f); + + /// If PN_op1 and PN_o2 are different from NULL, create a constraint + /// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace + /// with the respective V_op#, if V_op# is a ConstantInt. + void createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2, APInt value); + + /// Returns the sigma representing the Instruction I in BasicBlock BB. + /// Returns NULL in case there is no sigma for this Instruction in this + /// Basic Block. This methods assume that sigmas are the first instructions + /// in a block, and that there can be only two sigmas in a block. So it will + /// only look on the first two instructions of BasicBlock BB. + PHINode *findSigma(BasicBlock *BB, Instruction *I); + + /// Original ABCD algorithm to prove redundant checks. + /// This implementation works on any kind of inequality branch. + bool demandProve(Value *a, Value *b, int c, bool upper_bound); + + /// Prove that distance between b and a is <= bound + ProveResult prove(Value *a, Value *b, Bound *bound, unsigned level); + + /// Updates the distance value for a and b + void updateMemDistance(Value *a, Value *b, Bound *bound, unsigned level, + meet_function meet); + + InequalityGraph inequality_graph; + MemoizedResult mem_result; + DenseMap<Value*, Bound*> active; + SmallPtrSet<Value*, 16> created; + SmallVector<PHINode *, 16> phis_to_remove; +}; + +//} // end anonymous namespace. + +char ABCD::ID = 0; +static RegisterPass<ABCD> X("abcd", "ABCD: Eliminating Array Bounds Checks on Demand"); + + +bool ABCD::runOnFunction(Function &F) { + modified = false; + createSSI(F); + executeABCD(F); + DEBUG(inequality_graph.printGraph(errs(), F)); + removePhis(); + + inequality_graph.clear(); + mem_result.clear(); + active.clear(); + created.clear(); + phis_to_remove.clear(); + return modified; +} + +/// Iterates through all BasicBlocks, if the Terminator Instruction +/// uses an Comparator Instruction, all operands of this comparator +/// are sent to be transformed to SSI. Only Instruction operands are +/// transformed. +void ABCD::createSSI(Function &F) { + SSI *ssi = &getAnalysis<SSI>(); + + SmallVector<Instruction *, 16> Insts; + + for (Function::iterator begin = F.begin(), end = F.end(); + begin != end; ++begin) { + BasicBlock *BB = begin; + TerminatorInst *TI = BB->getTerminator(); + if (TI->getNumOperands() == 0) + continue; + + if (ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0))) { + if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(0))) { + modified = true; // XXX: but yet createSSI might do nothing + Insts.push_back(I); + } + if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(1))) { + modified = true; + Insts.push_back(I); + } + } + } + ssi->createSSI(Insts); +} + +/// Creates the graphs for this function. +/// It will look for all comparators used in branches, and create them. +/// These comparators will create constraints for any instruction as an +/// operand. +void ABCD::executeABCD(Function &F) { + for (Function::iterator begin = F.begin(), end = F.end(); + begin != end; ++begin) { + BasicBlock *BB = begin; + TerminatorInst *TI = BB->getTerminator(); + if (TI->getNumOperands() == 0) + continue; + + ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0)); + if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) + continue; + + createConstraintCmpInst(ICI, TI); + seekRedundancy(ICI, TI); + } +} + +/// Seeks redundancies in the comparator instruction CI. +/// If the ABCD algorithm can prove that the comparator CI always +/// takes one way, then the Terminator Instruction TI is substituted from +/// a conditional branch to a unconditional one. +/// This code basically receives a comparator, and verifies which kind of +/// instruction it is. Depending on the kind of instruction, we use different +/// strategies to prove its redundancy. +void ABCD::seekRedundancy(ICmpInst *ICI, TerminatorInst *TI) { + CmpInst::Predicate Pred = ICI->getPredicate(); + + Value *source, *dest; + int distance1, distance2; + bool upper; + + switch(Pred) { + case CmpInst::ICMP_SGT: // signed greater than + upper = false; + distance1 = 1; + distance2 = 0; + break; + + case CmpInst::ICMP_SGE: // signed greater or equal + upper = false; + distance1 = 0; + distance2 = -1; + break; + + case CmpInst::ICMP_SLT: // signed less than + upper = true; + distance1 = -1; + distance2 = 0; + break; + + case CmpInst::ICMP_SLE: // signed less or equal + upper = true; + distance1 = 0; + distance2 = 1; + break; + + default: + return; + } + + ++NumBranchTested; + source = ICI->getOperand(0); + dest = ICI->getOperand(1); + if (demandProve(dest, source, distance1, upper)) { + removeRedundancy(TI, true); + } else if (demandProve(dest, source, distance2, !upper)) { + removeRedundancy(TI, false); + } +} + +/// Substitutes Terminator Instruction TI, that is a conditional branch, +/// with one unconditional branch. Succ_edge determines if the new +/// unconditional edge will be the first or second edge of the former TI +/// instruction. +void ABCD::removeRedundancy(TerminatorInst *TI, bool Succ_edge) { + BasicBlock *Succ; + if (Succ_edge) { + Succ = TI->getSuccessor(0); + fixPhi(TI->getParent(), TI->getSuccessor(1)); + } else { + Succ = TI->getSuccessor(1); + fixPhi(TI->getParent(), TI->getSuccessor(0)); + } + + BranchInst::Create(Succ, TI); + TI->eraseFromParent(); // XXX: invoke + ++NumBranchRemoved; + modified = true; +} + +/// When an conditional branch is removed, the BasicBlock that is no longer +/// reachable will have problems in phi functions. This method fixes these +/// phis removing the former BasicBlock from the list of incoming BasicBlocks +/// of all phis. In case the phi remains with no predecessor it will be +/// marked to be removed later. +void ABCD::fixPhi(BasicBlock *BB, BasicBlock *Succ) { + BasicBlock::iterator begin = Succ->begin(); + while (PHINode *PN = dyn_cast<PHINode>(begin++)) { + PN->removeIncomingValue(BB, false); + if (PN->getNumIncomingValues() == 0) + phis_to_remove.push_back(PN); + } +} + +/// Removes phis that have no predecessor +void ABCD::removePhis() { + for (unsigned i = 0, end = phis_to_remove.size(); i < end; ++i) { + PHINode *PN = phis_to_remove[i]; + PN->replaceAllUsesWith(UndefValue::get(PN->getType())); + PN->eraseFromParent(); + } +} + +/// Creates constraints for Instructions. +/// If the constraint for this instruction has already been created +/// nothing is done. +void ABCD::createConstraintInstruction(Instruction *I) { + // Test if this instruction has not been created before + if (created.insert(I)) { + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { + createConstraintBinaryOperator(BO); + } else if (PHINode *PN = dyn_cast<PHINode>(I)) { + createConstraintPHINode(PN); + } + } +} + +/// Creates constraints for Binary Operators. +/// It will create constraints only for addition and subtraction, +/// the other binary operations are not treated by ABCD. +/// For additions in the form a = b + X and a = X + b, where X is a constant, +/// the constraint a <= b + X can be obtained. For this constraint, an edge +/// a->b with weight X is added to the lower bound graph, and an edge +/// b->a with weight -X is added to the upper bound graph. +/// Only subtractions in the format a = b - X is used by ABCD. +/// Edges are created using the same semantic as addition. +void ABCD::createConstraintBinaryOperator(BinaryOperator *BO) { + Instruction *I1 = NULL, *I2 = NULL; + ConstantInt *CI1 = NULL, *CI2 = NULL; + + // Test if an operand is an Instruction and the other is a Constant + if (!createBinaryOperatorInfo(BO, &I1, &I2, &CI1, &CI2)) + return; + + Instruction *I = 0; + APInt value; + + switch (BO->getOpcode()) { + case Instruction::Add: + if (I1) { + I = I1; + value = CI2->getValue(); + } else if (I2) { + I = I2; + value = CI1->getValue(); + } + break; + + case Instruction::Sub: + // Instructions like a = X-b, where X is a constant are not represented + // in the graph. + if (!I1) + return; + + I = I1; + value = -CI2->getValue(); + break; + + default: + return; + } + + APInt MinusOne = APInt::getAllOnesValue(value.getBitWidth()); + inequality_graph.addEdge(I, BO, value, true); + inequality_graph.addEdge(BO, I, value * MinusOne, false); + createConstraintInstruction(I); +} + +/// Given a binary operator, we are only interest in the case +/// that one operand is an Instruction and the other is a ConstantInt. In +/// this case the method returns true, otherwise false. It also obtains the +/// Instruction and ConstantInt from the BinaryOperator and returns it. +bool ABCD::createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1, + Instruction **I2, ConstantInt **C1, + ConstantInt **C2) { + Value *op1 = BO->getOperand(0); + Value *op2 = BO->getOperand(1); + + if ((*I1 = dyn_cast<Instruction>(op1))) { + if ((*C2 = dyn_cast<ConstantInt>(op2))) + return true; // First is Instruction and second ConstantInt + + return false; // Both are Instruction + } else { + if ((*C1 = dyn_cast<ConstantInt>(op1)) && + (*I2 = dyn_cast<Instruction>(op2))) + return true; // First is ConstantInt and second Instruction + + return false; // Both are not Instruction + } +} + +/// Creates constraints for Comparator Instructions. +/// Only comparators that have any of the following operators +/// are used to create constraints: >=, >, <=, <. And only if +/// at least one operand is an Instruction. In a Comparator Instruction +/// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where +/// t and f represent sigma for operands in true and false branches. The +/// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and +/// b_f <= b. There are two more constraints that depend on the operator. +/// For the operator <= : a_t <= b_t and b_f <= a_f-1 +/// For the operator < : a_t <= b_t-1 and b_f <= a_f +/// For the operator >= : b_t <= a_t and a_f <= b_f-1 +/// For the operator > : b_t <= a_t-1 and a_f <= b_f +void ABCD::createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI) { + Value *V_op1 = ICI->getOperand(0); + Value *V_op2 = ICI->getOperand(1); + + if (!isa<IntegerType>(V_op1->getType())) + return; + + Instruction *I_op1 = dyn_cast<Instruction>(V_op1); + Instruction *I_op2 = dyn_cast<Instruction>(V_op2); + + // Test if at least one operand is an Instruction + if (!I_op1 && !I_op2) + return; + + BasicBlock *BB_succ_t = TI->getSuccessor(0); + BasicBlock *BB_succ_f = TI->getSuccessor(1); + + PHINode *SIG_op1_t = NULL, *SIG_op1_f = NULL, + *SIG_op2_t = NULL, *SIG_op2_f = NULL; + + createConstraintSigInst(I_op1, BB_succ_t, BB_succ_f, + &SIG_op1_t, &SIG_op1_f); + createConstraintSigInst(I_op2, BB_succ_t, BB_succ_f, + &SIG_op2_t, &SIG_op2_f); + + int32_t width = cast<IntegerType>(V_op1->getType())->getBitWidth(); + APInt MinusOne = APInt::getAllOnesValue(width); + APInt Zero = APInt::getNullValue(width); + + CmpInst::Predicate Pred = ICI->getPredicate(); + switch (Pred) { + case CmpInst::ICMP_SGT: // signed greater than + createConstraintSigSig(SIG_op2_t, SIG_op1_t, MinusOne); + createConstraintSigSig(SIG_op1_f, SIG_op2_f, Zero); + break; + + case CmpInst::ICMP_SGE: // signed greater or equal + createConstraintSigSig(SIG_op2_t, SIG_op1_t, Zero); + createConstraintSigSig(SIG_op1_f, SIG_op2_f, MinusOne); + break; + + case CmpInst::ICMP_SLT: // signed less than + createConstraintSigSig(SIG_op1_t, SIG_op2_t, MinusOne); + createConstraintSigSig(SIG_op2_f, SIG_op1_f, Zero); + break; + + case CmpInst::ICMP_SLE: // signed less or equal + createConstraintSigSig(SIG_op1_t, SIG_op2_t, Zero); + createConstraintSigSig(SIG_op2_f, SIG_op1_f, MinusOne); + break; + + default: + break; + } + + if (I_op1) + createConstraintInstruction(I_op1); + if (I_op2) + createConstraintInstruction(I_op2); +} + +/// Creates constraints for PHI nodes. +/// In a PHI node a = phi(b,c) we can create the constraint +/// a<= max(b,c). With this constraint there will be the edges, +/// b->a and c->a with weight 0 in the lower bound graph, and the edges +/// a->b and a->c with weight 0 in the upper bound graph. +void ABCD::createConstraintPHINode(PHINode *PN) { + int32_t width = cast<IntegerType>(PN->getType())->getBitWidth(); + for (unsigned i = 0, end = PN->getNumIncomingValues(); i < end; ++i) { + Value *V = PN->getIncomingValue(i); + if (Instruction *I = dyn_cast<Instruction>(V)) { + createConstraintInstruction(I); + } + inequality_graph.addEdge(V, PN, APInt(width, 0), true); + inequality_graph.addEdge(V, PN, APInt(width, 0), false); + } +} + +/// This method creates a constraint between a Sigma and an Instruction. +/// These constraints are created as soon as we find a comparator that uses a +/// SSI variable. +void ABCD::createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t, + BasicBlock *BB_succ_f, PHINode **SIG_op_t, + PHINode **SIG_op_f) { + *SIG_op_t = findSigma(BB_succ_t, I_op); + *SIG_op_f = findSigma(BB_succ_f, I_op); + + if (*SIG_op_t) { + int32_t width = cast<IntegerType>((*SIG_op_t)->getType())->getBitWidth(); + inequality_graph.addEdge(I_op, *SIG_op_t, APInt(width, 0), true); + inequality_graph.addEdge(*SIG_op_t, I_op, APInt(width, 0), false); + created.insert(*SIG_op_t); + } + if (*SIG_op_f) { + int32_t width = cast<IntegerType>((*SIG_op_f)->getType())->getBitWidth(); + inequality_graph.addEdge(I_op, *SIG_op_f, APInt(width, 0), true); + inequality_graph.addEdge(*SIG_op_f, I_op, APInt(width, 0), false); + created.insert(*SIG_op_f); + } +} + +/// If PN_op1 and PN_o2 are different from NULL, create a constraint +/// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace +/// with the respective V_op#, if V_op# is a ConstantInt. +void ABCD::createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2, + APInt value) { + if (SIG_op1 && SIG_op2) { + APInt MinusOne = APInt::getAllOnesValue(value.getBitWidth()); + inequality_graph.addEdge(SIG_op2, SIG_op1, value, true); + inequality_graph.addEdge(SIG_op1, SIG_op2, value * MinusOne, false); + } +} + +/// Returns the sigma representing the Instruction I in BasicBlock BB. +/// Returns NULL in case there is no sigma for this Instruction in this +/// Basic Block. This methods assume that sigmas are the first instructions +/// in a block, and that there can be only two sigmas in a block. So it will +/// only look on the first two instructions of BasicBlock BB. +PHINode *ABCD::findSigma(BasicBlock *BB, Instruction *I) { + // BB has more than one predecessor, BB cannot have sigmas. + if (I == NULL || BB->getSinglePredecessor() == NULL) + return NULL; + + BasicBlock::iterator begin = BB->begin(); + BasicBlock::iterator end = BB->end(); + + for (unsigned i = 0; i < 2 && begin != end; ++i, ++begin) { + Instruction *I_succ = begin; + if (PHINode *PN = dyn_cast<PHINode>(I_succ)) + if (PN->getIncomingValue(0) == I) + return PN; + } + + return NULL; +} + +/// Original ABCD algorithm to prove redundant checks. +/// This implementation works on any kind of inequality branch. +bool ABCD::demandProve(Value *a, Value *b, int c, bool upper_bound) { + int32_t width = cast<IntegerType>(a->getType())->getBitWidth(); + Bound *bound = new Bound(APInt(width, c), upper_bound); + + mem_result.clear(); + active.clear(); + + ProveResult res = prove(a, b, bound, 0); + return res != False; +} + +/// Prove that distance between b and a is <= bound +ABCD::ProveResult ABCD::prove(Value *a, Value *b, Bound *bound, + unsigned level) { + // if (C[b-a<=e] == True for some e <= bound + // Same or stronger difference was already proven + if (mem_result.hasTrue(b, bound)) + return True; + + // if (C[b-a<=e] == False for some e >= bound + // Same or weaker difference was already disproved + if (mem_result.hasFalse(b, bound)) + return False; + + // if (C[b-a<=e] == Reduced for some e <= bound + // b is on a cycle that was reduced for same or stronger difference + if (mem_result.hasReduced(b, bound)) + return Reduced; + + // traversal reached the source vertex + if (a == b && Bound::geq(bound, APInt(bound->getBitWidth(), 0, true))) + return True; + + // if b has no predecessor then fail + if (!inequality_graph.hasEdge(b, bound->isUpperBound())) + return False; + + // a cycle was encountered + if (active.count(b)) { + if (Bound::leq(active.lookup(b), bound)) + return Reduced; // a "harmless" cycle + + return False; // an amplifying cycle + } + + active[b] = bound; + PHINode *PN = dyn_cast<PHINode>(b); + + // Test if a Value is a Phi. If it is a PHINode with more than 1 incoming + // value, then it is a phi, if it has 1 incoming value it is a sigma. + if (PN && PN->getNumIncomingValues() > 1) + updateMemDistance(a, b, bound, level, min); + else + updateMemDistance(a, b, bound, level, max); + + active.erase(b); + + ABCD::ProveResult res = mem_result.getBoundResult(b, bound); + return res; +} + +/// Updates the distance value for a and b +void ABCD::updateMemDistance(Value *a, Value *b, Bound *bound, unsigned level, + meet_function meet) { + ABCD::ProveResult res = (meet == max) ? False : True; + + SmallPtrSet<Edge *, 16> Edges = inequality_graph.getEdges(b); + SmallPtrSet<Edge *, 16>::iterator begin = Edges.begin(), end = Edges.end(); + + for (; begin != end ; ++begin) { + if (((res >= Reduced) && (meet == max)) || + ((res == False) && (meet == min))) { + break; + } + Edge *in = *begin; + if (in->isUpperBound() == bound->isUpperBound()) { + Value *succ = in->getVertex(); + res = meet(res, prove(a, succ, new Bound(bound, in->getValue()), + level+1)); + } + } + + mem_result.updateBound(b, bound, res); +} + +/// Return the stored result for this bound +ABCD::ProveResult ABCD::MemoizedResultChart::getResult(const Bound *bound)const{ + if (max_false && Bound::leq(bound, max_false)) + return False; + if (min_true && Bound::leq(min_true, bound)) + return True; + if (min_reduced && Bound::leq(min_reduced, bound)) + return Reduced; + return False; +} + +/// Stores a false found +void ABCD::MemoizedResultChart::addFalse(Bound *bound) { + if (!max_false || Bound::leq(max_false, bound)) + max_false = bound; + + if (Bound::eq(max_false, min_reduced)) + min_reduced = Bound::createIncrement(min_reduced); + if (Bound::eq(max_false, min_true)) + min_true = Bound::createIncrement(min_true); + if (Bound::eq(min_reduced, min_true)) + min_reduced = NULL; + clearRedundantReduced(); +} + +/// Stores a true found +void ABCD::MemoizedResultChart::addTrue(Bound *bound) { + if (!min_true || Bound::leq(bound, min_true)) + min_true = bound; + + if (Bound::eq(min_true, min_reduced)) + min_reduced = Bound::createDecrement(min_reduced); + if (Bound::eq(min_true, max_false)) + max_false = Bound::createDecrement(max_false); + if (Bound::eq(max_false, min_reduced)) + min_reduced = NULL; + clearRedundantReduced(); +} + +/// Stores a Reduced found +void ABCD::MemoizedResultChart::addReduced(Bound *bound) { + if (!min_reduced || Bound::leq(bound, min_reduced)) + min_reduced = bound; + + if (Bound::eq(min_reduced, min_true)) + min_true = Bound::createIncrement(min_true); + if (Bound::eq(min_reduced, max_false)) + max_false = Bound::createDecrement(max_false); +} + +/// Clears redundant reduced +/// If a min_true is smaller than a min_reduced then the min_reduced +/// is unnecessary and then removed. It also works for min_reduced +/// begin smaller than max_false. +void ABCD::MemoizedResultChart::clearRedundantReduced() { + if (min_true && min_reduced && Bound::lt(min_true, min_reduced)) + min_reduced = NULL; + if (max_false && min_reduced && Bound::lt(min_reduced, max_false)) + min_reduced = NULL; +} + +/// Stores the bound found +void ABCD::MemoizedResult::updateBound(Value *b, Bound *bound, + const ProveResult res) { + if (res == False) { + map[b].addFalse(bound); + } else if (res == True) { + map[b].addTrue(bound); + } else { + map[b].addReduced(bound); + } +} + +/// Adds an edge from V_from to V_to with weight value +void ABCD::InequalityGraph::addEdge(Value *V_to, Value *V_from, + APInt value, bool upper) { + assert(V_from->getType() == V_to->getType()); + assert(cast<IntegerType>(V_from->getType())->getBitWidth() == + value.getBitWidth()); + + DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator from; + from = addNode(V_from); + from->second.insert(new Edge(V_to, value, upper)); +} + +/// Test if there is any edge from V in the upper direction +bool ABCD::InequalityGraph::hasEdge(Value *V, bool upper) const { + SmallPtrSet<Edge *, 16> it = graph.lookup(V); + + SmallPtrSet<Edge *, 16>::iterator begin = it.begin(); + SmallPtrSet<Edge *, 16>::iterator end = it.end(); + for (; begin != end; ++begin) { + if ((*begin)->isUpperBound() == upper) { + return true; + } + } + return false; +} + +/// Prints the header of the dot file +void ABCD::InequalityGraph::printHeader(raw_ostream &OS, Function &F) const { + OS << "digraph dotgraph {\n"; + OS << "label=\"Inequality Graph for \'"; + OS << F.getNameStr() << "\' function\";\n"; + OS << "node [shape=record,fontname=\"Times-Roman\",fontsize=14];\n"; +} + +/// Prints the body of the dot file +void ABCD::InequalityGraph::printBody(raw_ostream &OS) const { + DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator begin = + graph.begin(), end = graph.end(); + + for (; begin != end ; ++begin) { + SmallPtrSet<Edge *, 16>::iterator begin_par = + begin->second.begin(), end_par = begin->second.end(); + Value *source = begin->first; + + printVertex(OS, source); + + for (; begin_par != end_par ; ++begin_par) { + Edge *edge = *begin_par; + printEdge(OS, source, edge); + } + } +} + +/// Prints vertex source to the dot file +/// +void ABCD::InequalityGraph::printVertex(raw_ostream &OS, Value *source) const { + OS << "\""; + printName(OS, source); + OS << "\""; + OS << " [label=\"{"; + printName(OS, source); + OS << "}\"];\n"; +} + +/// Prints the edge to the dot file +void ABCD::InequalityGraph::printEdge(raw_ostream &OS, Value *source, + Edge *edge) const { + Value *dest = edge->getVertex(); + APInt value = edge->getValue(); + bool upper = edge->isUpperBound(); + + OS << "\""; + printName(OS, source); + OS << "\""; + OS << " -> "; + OS << "\""; + printName(OS, dest); + OS << "\""; + OS << " [label=\"" << value << "\""; + if (upper) { + OS << "color=\"blue\""; + } else { + OS << "color=\"red\""; + } + OS << "];\n"; +} + +void ABCD::InequalityGraph::printName(raw_ostream &OS, Value *info) const { + if (ConstantInt *CI = dyn_cast<ConstantInt>(info)) { + OS << *CI->getValue().getRawData(); + } else { + if (info->getName() == "") { + info->setName("V"); + } + OS << info->getNameStr(); + } +} + +/// createABCDPass - The public interface to this file... +FunctionPass *llvm::createABCDPass() { + return new ABCD(); +} |