aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/CorrelatedExprs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/CorrelatedExprs.cpp')
-rw-r--r--lib/Transforms/Scalar/CorrelatedExprs.cpp1487
1 files changed, 1487 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/CorrelatedExprs.cpp b/lib/Transforms/Scalar/CorrelatedExprs.cpp
new file mode 100644
index 0000000..655f9eb
--- /dev/null
+++ b/lib/Transforms/Scalar/CorrelatedExprs.cpp
@@ -0,0 +1,1487 @@
+//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Correlated Expression Elimination propagates information from conditional
+// branches to blocks dominated by destinations of the branch. It propagates
+// information from the condition check itself into the body of the branch,
+// allowing transformations like these for example:
+//
+// if (i == 7)
+// ... 4*i; // constant propagation
+//
+// M = i+1; N = j+1;
+// if (i == j)
+// X = M-N; // = M-M == 0;
+//
+// This is called Correlated Expression Elimination because we eliminate or
+// simplify expressions that are correlated with the direction of a branch. In
+// this way we use static information to give us some information about the
+// dynamic value of a variable.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "cee"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/Pass.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumCmpRemoved, "Number of cmp instruction eliminated");
+STATISTIC(NumOperandsCann, "Number of operands canonicalized");
+STATISTIC(BranchRevectors, "Number of branches revectored");
+
+namespace {
+ class ValueInfo;
+ class VISIBILITY_HIDDEN Relation {
+ Value *Val; // Relation to what value?
+ unsigned Rel; // SetCC or ICmp relation, or Add if no information
+ public:
+ Relation(Value *V) : Val(V), Rel(Instruction::Add) {}
+ bool operator<(const Relation &R) const { return Val < R.Val; }
+ Value *getValue() const { return Val; }
+ unsigned getRelation() const { return Rel; }
+
+ // contradicts - Return true if the relationship specified by the operand
+ // contradicts already known information.
+ //
+ bool contradicts(unsigned Rel, const ValueInfo &VI) const;
+
+ // incorporate - Incorporate information in the argument into this relation
+ // entry. This assumes that the information doesn't contradict itself. If
+ // any new information is gained, true is returned, otherwise false is
+ // returned to indicate that nothing was updated.
+ //
+ bool incorporate(unsigned Rel, ValueInfo &VI);
+
+ // KnownResult - Whether or not this condition determines the result of a
+ // setcc or icmp in the program. False & True are intentionally 0 & 1
+ // so we can convert to bool by casting after checking for unknown.
+ //
+ enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 };
+
+ // getImpliedResult - If this relationship between two values implies that
+ // the specified relationship is true or false, return that. If we cannot
+ // determine the result required, return Unknown.
+ //
+ KnownResult getImpliedResult(unsigned Rel) const;
+
+ // print - Output this relation to the specified stream
+ void print(std::ostream &OS) const;
+ void dump() const;
+ };
+
+
+ // ValueInfo - One instance of this record exists for every value with
+ // relationships between other values. It keeps track of all of the
+ // relationships to other values in the program (specified with Relation) that
+ // are known to be valid in a region.
+ //
+ class VISIBILITY_HIDDEN ValueInfo {
+ // RelationShips - this value is know to have the specified relationships to
+ // other values. There can only be one entry per value, and this list is
+ // kept sorted by the Val field.
+ std::vector<Relation> Relationships;
+
+ // If information about this value is known or propagated from constant
+ // expressions, this range contains the possible values this value may hold.
+ ConstantRange Bounds;
+
+ // If we find that this value is equal to another value that has a lower
+ // rank, this value is used as it's replacement.
+ //
+ Value *Replacement;
+ public:
+ ValueInfo(const Type *Ty)
+ : Bounds(Ty->isInteger() ? cast<IntegerType>(Ty)->getBitWidth() : 32),
+ Replacement(0) {}
+
+ // getBounds() - Return the constant bounds of the value...
+ const ConstantRange &getBounds() const { return Bounds; }
+ ConstantRange &getBounds() { return Bounds; }
+
+ const std::vector<Relation> &getRelationships() { return Relationships; }
+
+ // getReplacement - Return the value this value is to be replaced with if it
+ // exists, otherwise return null.
+ //
+ Value *getReplacement() const { return Replacement; }
+
+ // setReplacement - Used by the replacement calculation pass to figure out
+ // what to replace this value with, if anything.
+ //
+ void setReplacement(Value *Repl) { Replacement = Repl; }
+
+ // getRelation - return the relationship entry for the specified value.
+ // This can invalidate references to other Relations, so use it carefully.
+ //
+ Relation &getRelation(Value *V) {
+ // Binary search for V's entry...
+ std::vector<Relation>::iterator I =
+ std::lower_bound(Relationships.begin(), Relationships.end(),
+ Relation(V));
+
+ // If we found the entry, return it...
+ if (I != Relationships.end() && I->getValue() == V)
+ return *I;
+
+ // Insert and return the new relationship...
+ return *Relationships.insert(I, V);
+ }
+
+ const Relation *requestRelation(Value *V) const {
+ // Binary search for V's entry...
+ std::vector<Relation>::const_iterator I =
+ std::lower_bound(Relationships.begin(), Relationships.end(),
+ Relation(V));
+ if (I != Relationships.end() && I->getValue() == V)
+ return &*I;
+ return 0;
+ }
+
+ // print - Output information about this value relation...
+ void print(std::ostream &OS, Value *V) const;
+ void dump() const;
+ };
+
+ // RegionInfo - Keeps track of all of the value relationships for a region. A
+ // region is the are dominated by a basic block. RegionInfo's keep track of
+ // the RegionInfo for their dominator, because anything known in a dominator
+ // is known to be true in a dominated block as well.
+ //
+ class VISIBILITY_HIDDEN RegionInfo {
+ BasicBlock *BB;
+
+ // ValueMap - Tracks the ValueInformation known for this region
+ typedef std::map<Value*, ValueInfo> ValueMapTy;
+ ValueMapTy ValueMap;
+ public:
+ RegionInfo(BasicBlock *bb) : BB(bb) {}
+
+ // getEntryBlock - Return the block that dominates all of the members of
+ // this region.
+ BasicBlock *getEntryBlock() const { return BB; }
+
+ // empty - return true if this region has no information known about it.
+ bool empty() const { return ValueMap.empty(); }
+
+ const RegionInfo &operator=(const RegionInfo &RI) {
+ ValueMap = RI.ValueMap;
+ return *this;
+ }
+
+ // print - Output information about this region...
+ void print(std::ostream &OS) const;
+ void dump() const;
+
+ // Allow external access.
+ typedef ValueMapTy::iterator iterator;
+ iterator begin() { return ValueMap.begin(); }
+ iterator end() { return ValueMap.end(); }
+
+ ValueInfo &getValueInfo(Value *V) {
+ ValueMapTy::iterator I = ValueMap.lower_bound(V);
+ if (I != ValueMap.end() && I->first == V) return I->second;
+ return ValueMap.insert(I, std::make_pair(V, V->getType()))->second;
+ }
+
+ const ValueInfo *requestValueInfo(Value *V) const {
+ ValueMapTy::const_iterator I = ValueMap.find(V);
+ if (I != ValueMap.end()) return &I->second;
+ return 0;
+ }
+
+ /// removeValueInfo - Remove anything known about V from our records. This
+ /// works whether or not we know anything about V.
+ ///
+ void removeValueInfo(Value *V) {
+ ValueMap.erase(V);
+ }
+ };
+
+ /// CEE - Correlated Expression Elimination
+ class VISIBILITY_HIDDEN CEE : public FunctionPass {
+ std::map<Value*, unsigned> RankMap;
+ std::map<BasicBlock*, RegionInfo> RegionInfoMap;
+ DominatorTree *DT;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ CEE() : FunctionPass((intptr_t)&ID) {}
+
+ virtual bool runOnFunction(Function &F);
+
+ // We don't modify the program, so we preserve all analyses
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequiredID(BreakCriticalEdgesID);
+ };
+
+ // print - Implement the standard print form to print out analysis
+ // information.
+ virtual void print(std::ostream &O, const Module *M) const;
+
+ private:
+ RegionInfo &getRegionInfo(BasicBlock *BB) {
+ std::map<BasicBlock*, RegionInfo>::iterator I
+ = RegionInfoMap.lower_bound(BB);
+ if (I != RegionInfoMap.end() && I->first == BB) return I->second;
+ return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second;
+ }
+
+ void BuildRankMap(Function &F);
+ unsigned getRank(Value *V) const {
+ if (isa<Constant>(V)) return 0;
+ std::map<Value*, unsigned>::const_iterator I = RankMap.find(V);
+ if (I != RankMap.end()) return I->second;
+ return 0; // Must be some other global thing
+ }
+
+ bool TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks);
+
+ bool ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
+ RegionInfo &RI);
+
+ void ForwardSuccessorTo(TerminatorInst *TI, unsigned Succ, BasicBlock *D,
+ RegionInfo &RI);
+ void ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
+ BasicBlock *RegionDominator);
+ void CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
+ std::vector<BasicBlock*> &RegionExitBlocks);
+ void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal,
+ const std::vector<BasicBlock*> &RegionExitBlocks);
+
+ void PropagateBranchInfo(BranchInst *BI);
+ void PropagateSwitchInfo(SwitchInst *SI);
+ void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
+ void PropagateRelation(unsigned Opcode, Value *Op0,
+ Value *Op1, RegionInfo &RI);
+ void UpdateUsersOfValue(Value *V, RegionInfo &RI);
+ void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
+ void ComputeReplacements(RegionInfo &RI);
+
+ // getCmpResult - Given a icmp instruction, determine if the result is
+ // determined by facts we already know about the region under analysis.
+ // Return KnownTrue, KnownFalse, or UnKnown based on what we can determine.
+ Relation::KnownResult getCmpResult(CmpInst *ICI, const RegionInfo &RI);
+
+ bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI);
+ bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI);
+ };
+
+ char CEE::ID = 0;
+ RegisterPass<CEE> X("cee", "Correlated Expression Elimination");
+}
+
+FunctionPass *llvm::createCorrelatedExpressionEliminationPass() {
+ return new CEE();
+}
+
+
+bool CEE::runOnFunction(Function &F) {
+ // Build a rank map for the function...
+ BuildRankMap(F);
+
+ // Traverse the dominator tree, computing information for each node in the
+ // tree. Note that our traversal will not even touch unreachable basic
+ // blocks.
+ DT = &getAnalysis<DominatorTree>();
+
+ std::set<BasicBlock*> VisitedBlocks;
+ bool Changed = TransformRegion(&F.getEntryBlock(), VisitedBlocks);
+
+ RegionInfoMap.clear();
+ RankMap.clear();
+ return Changed;
+}
+
+// TransformRegion - Transform the region starting with BB according to the
+// calculated region information for the block. Transforming the region
+// involves analyzing any information this block provides to successors,
+// propagating the information to successors, and finally transforming
+// successors.
+//
+// This method processes the function in depth first order, which guarantees
+// that we process the immediate dominator of a block before the block itself.
+// Because we are passing information from immediate dominators down to
+// dominatees, we obviously have to process the information source before the
+// information consumer.
+//
+bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
+ // Prevent infinite recursion...
+ if (VisitedBlocks.count(BB)) return false;
+ VisitedBlocks.insert(BB);
+
+ // Get the computed region information for this block...
+ RegionInfo &RI = getRegionInfo(BB);
+
+ // Compute the replacement information for this block...
+ ComputeReplacements(RI);
+
+ // If debugging, print computed region information...
+ DEBUG(RI.print(*cerr.stream()));
+
+ // Simplify the contents of this block...
+ bool Changed = SimplifyBasicBlock(*BB, RI);
+
+ // Get the terminator of this basic block...
+ TerminatorInst *TI = BB->getTerminator();
+
+ // Loop over all of the blocks that this block is the immediate dominator for.
+ // Because all information known in this region is also known in all of the
+ // blocks that are dominated by this one, we can safely propagate the
+ // information down now.
+ //
+ DomTreeNode *BBDom = DT->getNode(BB);
+ if (!RI.empty()) { // Time opt: only propagate if we can change something
+ for (std::vector<DomTreeNode*>::iterator DI = BBDom->begin(),
+ E = BBDom->end(); DI != E; ++DI) {
+ BasicBlock *ChildBB = (*DI)->getBlock();
+ assert(RegionInfoMap.find(ChildBB) == RegionInfoMap.end() &&
+ "RegionInfo should be calculated in dominanace order!");
+ getRegionInfo(ChildBB) = RI;
+ }
+ }
+
+ // Now that all of our successors have information if they deserve it,
+ // propagate any information our terminator instruction finds to our
+ // successors.
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional())
+ PropagateBranchInfo(BI);
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ PropagateSwitchInfo(SI);
+ }
+
+ // If this is a branch to a block outside our region that simply performs
+ // another conditional branch, one whose outcome is known inside of this
+ // region, then vector this outgoing edge directly to the known destination.
+ //
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ while (ForwardCorrelatedEdgeDestination(TI, i, RI)) {
+ ++BranchRevectors;
+ Changed = true;
+ }
+
+ // Now that all of our successors have information, recursively process them.
+ for (std::vector<DomTreeNode*>::iterator DI = BBDom->begin(),
+ E = BBDom->end(); DI != E; ++DI) {
+ BasicBlock *ChildBB = (*DI)->getBlock();
+ Changed |= TransformRegion(ChildBB, VisitedBlocks);
+ }
+
+ return Changed;
+}
+
+// isBlockSimpleEnoughForCheck to see if the block is simple enough for us to
+// revector the conditional branch in the bottom of the block, do so now.
+//
+static bool isBlockSimpleEnough(BasicBlock *BB) {
+ assert(isa<BranchInst>(BB->getTerminator()));
+ BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+ assert(BI->isConditional());
+
+ // Check the common case first: empty block, or block with just a setcc.
+ if (BB->size() == 1 ||
+ (BB->size() == 2 && &BB->front() == BI->getCondition() &&
+ BI->getCondition()->hasOneUse()))
+ return true;
+
+ // Check the more complex case now...
+ BasicBlock::iterator I = BB->begin();
+
+ // FIXME: This should be reenabled once the regression with SIM is fixed!
+#if 0
+ // PHI Nodes are ok, just skip over them...
+ while (isa<PHINode>(*I)) ++I;
+#endif
+
+ // Accept the setcc instruction...
+ if (&*I == BI->getCondition())
+ ++I;
+
+ // Nothing else is acceptable here yet. We must not revector... unless we are
+ // at the terminator instruction.
+ if (&*I == BI)
+ return true;
+
+ return false;
+}
+
+
+bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
+ RegionInfo &RI) {
+ // If this successor is a simple block not in the current region, which
+ // contains only a conditional branch, we decide if the outcome of the branch
+ // can be determined from information inside of the region. Instead of going
+ // to this block, we can instead go to the destination we know is the right
+ // target.
+ //
+
+ // Check to see if we dominate the block. If so, this block will get the
+ // condition turned to a constant anyway.
+ //
+ //if (EF->dominates(RI.getEntryBlock(), BB))
+ // return 0;
+
+ BasicBlock *BB = TI->getParent();
+
+ // Get the destination block of this edge...
+ BasicBlock *OldSucc = TI->getSuccessor(SuccNo);
+
+ // Make sure that the block ends with a conditional branch and is simple
+ // enough for use to be able to revector over.
+ BranchInst *BI = dyn_cast<BranchInst>(OldSucc->getTerminator());
+ if (BI == 0 || !BI->isConditional() || !isBlockSimpleEnough(OldSucc))
+ return false;
+
+ // We can only forward the branch over the block if the block ends with a
+ // cmp we can determine the outcome for.
+ //
+ // FIXME: we can make this more generic. Code below already handles more
+ // generic case.
+ if (!isa<CmpInst>(BI->getCondition()))
+ return false;
+
+ // Make a new RegionInfo structure so that we can simulate the effect of the
+ // PHI nodes in the block we are skipping over...
+ //
+ RegionInfo NewRI(RI);
+
+ // Remove value information for all of the values we are simulating... to make
+ // sure we don't have any stale information.
+ for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
+ if (I->getType() != Type::VoidTy)
+ NewRI.removeValueInfo(I);
+
+ // Put the newly discovered information into the RegionInfo...
+ for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ int OpNum = PN->getBasicBlockIndex(BB);
+ assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
+ PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
+ Relation::KnownResult Res = getCmpResult(CI, NewRI);
+ if (Res == Relation::Unknown) return false;
+ PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Res), NewRI);
+ } else {
+ assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
+ }
+
+ // Compute the facts implied by what we have discovered...
+ ComputeReplacements(NewRI);
+
+ ValueInfo &PredicateVI = NewRI.getValueInfo(BI->getCondition());
+ if (PredicateVI.getReplacement() &&
+ isa<Constant>(PredicateVI.getReplacement()) &&
+ !isa<GlobalValue>(PredicateVI.getReplacement())) {
+ ConstantInt *CB = cast<ConstantInt>(PredicateVI.getReplacement());
+
+ // Forward to the successor that corresponds to the branch we will take.
+ ForwardSuccessorTo(TI, SuccNo,
+ BI->getSuccessor(!CB->getZExtValue()), NewRI);
+ return true;
+ }
+
+ return false;
+}
+
+static Value *getReplacementOrValue(Value *V, RegionInfo &RI) {
+ if (const ValueInfo *VI = RI.requestValueInfo(V))
+ if (Value *Repl = VI->getReplacement())
+ return Repl;
+ return V;
+}
+
+/// ForwardSuccessorTo - We have found that we can forward successor # 'SuccNo'
+/// of Terminator 'TI' to the 'Dest' BasicBlock. This method performs the
+/// mechanics of updating SSA information and revectoring the branch.
+///
+void CEE::ForwardSuccessorTo(TerminatorInst *TI, unsigned SuccNo,
+ BasicBlock *Dest, RegionInfo &RI) {
+ // If there are any PHI nodes in the Dest BB, we must duplicate the entry
+ // in the PHI node for the old successor to now include an entry from the
+ // current basic block.
+ //
+ BasicBlock *OldSucc = TI->getSuccessor(SuccNo);
+ BasicBlock *BB = TI->getParent();
+
+ DOUT << "Forwarding branch in basic block %" << BB->getName()
+ << " from block %" << OldSucc->getName() << " to block %"
+ << Dest->getName() << "\n"
+ << "Before forwarding: " << *BB->getParent();
+
+ // Because we know that there cannot be critical edges in the flow graph, and
+ // that OldSucc has multiple outgoing edges, this means that Dest cannot have
+ // multiple incoming edges.
+ //
+#ifndef NDEBUG
+ pred_iterator DPI = pred_begin(Dest); ++DPI;
+ assert(DPI == pred_end(Dest) && "Critical edge found!!");
+#endif
+
+ // Loop over any PHI nodes in the destination, eliminating them, because they
+ // may only have one input.
+ //
+ while (PHINode *PN = dyn_cast<PHINode>(&Dest->front())) {
+ assert(PN->getNumIncomingValues() == 1 && "Crit edge found!");
+ // Eliminate the PHI node
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ Dest->getInstList().erase(PN);
+ }
+
+ // If there are values defined in the "OldSucc" basic block, we need to insert
+ // PHI nodes in the regions we are dealing with to emulate them. This can
+ // insert dead phi nodes, but it is more trouble to see if they are used than
+ // to just blindly insert them.
+ //
+ if (DT->dominates(OldSucc, Dest)) {
+ // RegionExitBlocks - Find all of the blocks that are not dominated by Dest,
+ // but have predecessors that are. Additionally, prune down the set to only
+ // include blocks that are dominated by OldSucc as well.
+ //
+ std::vector<BasicBlock*> RegionExitBlocks;
+ CalculateRegionExitBlocks(Dest, OldSucc, RegionExitBlocks);
+
+ for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end();
+ I != E; ++I)
+ if (I->getType() != Type::VoidTy) {
+ // Create and insert the PHI node into the top of Dest.
+ PHINode *NewPN = new PHINode(I->getType(), I->getName()+".fw_merge",
+ Dest->begin());
+ // There is definitely an edge from OldSucc... add the edge now
+ NewPN->addIncoming(I, OldSucc);
+
+ // There is also an edge from BB now, add the edge with the calculated
+ // value from the RI.
+ NewPN->addIncoming(getReplacementOrValue(I, RI), BB);
+
+ // Make everything in the Dest region use the new PHI node now...
+ ReplaceUsesOfValueInRegion(I, NewPN, Dest);
+
+ // Make sure that exits out of the region dominated by NewPN get PHI
+ // nodes that merge the values as appropriate.
+ InsertRegionExitMerges(NewPN, I, RegionExitBlocks);
+ }
+ }
+
+ // If there were PHI nodes in OldSucc, we need to remove the entry for this
+ // edge from the PHI node, and we need to replace any references to the PHI
+ // node with a new value.
+ //
+ for (BasicBlock::iterator I = OldSucc->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I);
+
+ // Get the value flowing across the old edge and remove the PHI node entry
+ // for this edge: we are about to remove the edge! Don't remove the PHI
+ // node yet though if this is the last edge into it.
+ Value *EdgeValue = PN->removeIncomingValue(BB, false);
+
+ // Make sure that anything that used to use PN now refers to EdgeValue
+ ReplaceUsesOfValueInRegion(PN, EdgeValue, Dest);
+
+ // If there is only one value left coming into the PHI node, replace the PHI
+ // node itself with the one incoming value left.
+ //
+ if (PN->getNumIncomingValues() == 1) {
+ assert(PN->getNumIncomingValues() == 1);
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ PN->getParent()->getInstList().erase(PN);
+ I = OldSucc->begin();
+ } else if (PN->getNumIncomingValues() == 0) { // Nuke the PHI
+ // If we removed the last incoming value to this PHI, nuke the PHI node
+ // now.
+ PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
+ PN->getParent()->getInstList().erase(PN);
+ I = OldSucc->begin();
+ } else {
+ ++I; // Otherwise, move on to the next PHI node
+ }
+ }
+
+ // Actually revector the branch now...
+ TI->setSuccessor(SuccNo, Dest);
+
+ // If we just introduced a critical edge in the flow graph, make sure to break
+ // it right away...
+ SplitCriticalEdge(TI, SuccNo, this);
+
+ // Make sure that we don't introduce critical edges from oldsucc now!
+ for (unsigned i = 0, e = OldSucc->getTerminator()->getNumSuccessors();
+ i != e; ++i)
+ SplitCriticalEdge(OldSucc->getTerminator(), i, this);
+
+ // Since we invalidated the CFG, recalculate the dominator set so that it is
+ // useful for later processing!
+ // FIXME: This is much worse than it really should be!
+ //EF->recalculate();
+
+ DOUT << "After forwarding: " << *BB->getParent();
+}
+
+/// ReplaceUsesOfValueInRegion - This method replaces all uses of Orig with uses
+/// of New. It only affects instructions that are defined in basic blocks that
+/// are dominated by Head.
+///
+void CEE::ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
+ BasicBlock *RegionDominator) {
+ assert(Orig != New && "Cannot replace value with itself");
+ std::vector<Instruction*> InstsToChange;
+ std::vector<PHINode*> PHIsToChange;
+ InstsToChange.reserve(Orig->getNumUses());
+
+ // Loop over instructions adding them to InstsToChange vector, this allows us
+ // an easy way to avoid invalidating the use_iterator at a bad time.
+ for (Value::use_iterator I = Orig->use_begin(), E = Orig->use_end();
+ I != E; ++I)
+ if (Instruction *User = dyn_cast<Instruction>(*I))
+ if (DT->dominates(RegionDominator, User->getParent()))
+ InstsToChange.push_back(User);
+ else if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ PHIsToChange.push_back(PN);
+ }
+
+ // PHIsToChange contains PHI nodes that use Orig that do not live in blocks
+ // dominated by orig. If the block the value flows in from is dominated by
+ // RegionDominator, then we rewrite the PHI
+ for (unsigned i = 0, e = PHIsToChange.size(); i != e; ++i) {
+ PHINode *PN = PHIsToChange[i];
+ for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
+ if (PN->getIncomingValue(j) == Orig &&
+ DT->dominates(RegionDominator, PN->getIncomingBlock(j)))
+ PN->setIncomingValue(j, New);
+ }
+
+ // Loop over the InstsToChange list, replacing all uses of Orig with uses of
+ // New. This list contains all of the instructions in our region that use
+ // Orig.
+ for (unsigned i = 0, e = InstsToChange.size(); i != e; ++i)
+ if (PHINode *PN = dyn_cast<PHINode>(InstsToChange[i])) {
+ // PHINodes must be handled carefully. If the PHI node itself is in the
+ // region, we have to make sure to only do the replacement for incoming
+ // values that correspond to basic blocks in the region.
+ for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
+ if (PN->getIncomingValue(j) == Orig &&
+ DT->dominates(RegionDominator, PN->getIncomingBlock(j)))
+ PN->setIncomingValue(j, New);
+
+ } else {
+ InstsToChange[i]->replaceUsesOfWith(Orig, New);
+ }
+}
+
+static void CalcRegionExitBlocks(BasicBlock *Header, BasicBlock *BB,
+ std::set<BasicBlock*> &Visited,
+ DominatorTree &DT,
+ std::vector<BasicBlock*> &RegionExitBlocks) {
+ if (Visited.count(BB)) return;
+ Visited.insert(BB);
+
+ if (DT.dominates(Header, BB)) { // Block in the region, recursively traverse
+ for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
+ CalcRegionExitBlocks(Header, *I, Visited, DT, RegionExitBlocks);
+ } else {
+ // Header does not dominate this block, but we have a predecessor that does
+ // dominate us. Add ourself to the list.
+ RegionExitBlocks.push_back(BB);
+ }
+}
+
+/// CalculateRegionExitBlocks - Find all of the blocks that are not dominated by
+/// BB, but have predecessors that are. Additionally, prune down the set to
+/// only include blocks that are dominated by OldSucc as well.
+///
+void CEE::CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
+ std::vector<BasicBlock*> &RegionExitBlocks){
+ std::set<BasicBlock*> Visited; // Don't infinite loop
+
+ // Recursively calculate blocks we are interested in...
+ CalcRegionExitBlocks(BB, BB, Visited, *DT, RegionExitBlocks);
+
+ // Filter out blocks that are not dominated by OldSucc...
+ for (unsigned i = 0; i != RegionExitBlocks.size(); ) {
+ if (DT->dominates(OldSucc, RegionExitBlocks[i]))
+ ++i; // Block is ok, keep it.
+ else {
+ // Move to end of list...
+ std::swap(RegionExitBlocks[i], RegionExitBlocks.back());
+ RegionExitBlocks.pop_back(); // Nuke the end
+ }
+ }
+}
+
+void CEE::InsertRegionExitMerges(PHINode *BBVal, Instruction *OldVal,
+ const std::vector<BasicBlock*> &RegionExitBlocks) {
+ assert(BBVal->getType() == OldVal->getType() && "Should be derived values!");
+ BasicBlock *BB = BBVal->getParent();
+
+ // Loop over all of the blocks we have to place PHIs in, doing it.
+ for (unsigned i = 0, e = RegionExitBlocks.size(); i != e; ++i) {
+ BasicBlock *FBlock = RegionExitBlocks[i]; // Block on the frontier
+
+ // Create the new PHI node
+ PHINode *NewPN = new PHINode(BBVal->getType(),
+ OldVal->getName()+".fw_frontier",
+ FBlock->begin());
+
+ // Add an incoming value for every predecessor of the block...
+ for (pred_iterator PI = pred_begin(FBlock), PE = pred_end(FBlock);
+ PI != PE; ++PI) {
+ // If the incoming edge is from the region dominated by BB, use BBVal,
+ // otherwise use OldVal.
+ NewPN->addIncoming(DT->dominates(BB, *PI) ? BBVal : OldVal, *PI);
+ }
+
+ // Now make everyone dominated by this block use this new value!
+ ReplaceUsesOfValueInRegion(OldVal, NewPN, FBlock);
+ }
+}
+
+
+
+// BuildRankMap - This method builds the rank map data structure which gives
+// each instruction/value in the function a value based on how early it appears
+// in the function. We give constants and globals rank 0, arguments are
+// numbered starting at one, and instructions are numbered in reverse post-order
+// from where the arguments leave off. This gives instructions in loops higher
+// values than instructions not in loops.
+//
+void CEE::BuildRankMap(Function &F) {
+ unsigned Rank = 1; // Skip rank zero.
+
+ // Number the arguments...
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
+ RankMap[I] = Rank++;
+
+ // Number the instructions in reverse post order...
+ ReversePostOrderTraversal<Function*> RPOT(&F);
+ for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
+ E = RPOT.end(); I != E; ++I)
+ for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
+ BBI != E; ++BBI)
+ if (BBI->getType() != Type::VoidTy)
+ RankMap[BBI] = Rank++;
+}
+
+
+// PropagateBranchInfo - When this method is invoked, we need to propagate
+// information derived from the branch condition into the true and false
+// branches of BI. Since we know that there aren't any critical edges in the
+// flow graph, this can proceed unconditionally.
+//
+void CEE::PropagateBranchInfo(BranchInst *BI) {
+ assert(BI->isConditional() && "Must be a conditional branch!");
+
+ // Propagate information into the true block...
+ //
+ PropagateEquality(BI->getCondition(), ConstantInt::getTrue(),
+ getRegionInfo(BI->getSuccessor(0)));
+
+ // Propagate information into the false block...
+ //
+ PropagateEquality(BI->getCondition(), ConstantInt::getFalse(),
+ getRegionInfo(BI->getSuccessor(1)));
+}
+
+
+// PropagateSwitchInfo - We need to propagate the value tested by the
+// switch statement through each case block.
+//
+void CEE::PropagateSwitchInfo(SwitchInst *SI) {
+ // Propagate information down each of our non-default case labels. We
+ // don't yet propagate information down the default label, because a
+ // potentially large number of inequality constraints provide less
+ // benefit per unit work than a single equality constraint.
+ //
+ Value *cond = SI->getCondition();
+ for (unsigned i = 1; i < SI->getNumSuccessors(); ++i)
+ PropagateEquality(cond, SI->getSuccessorValue(i),
+ getRegionInfo(SI->getSuccessor(i)));
+}
+
+
+// PropagateEquality - If we discover that two values are equal to each other in
+// a specified region, propagate this knowledge recursively.
+//
+void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
+ if (Op0 == Op1) return; // Gee whiz. Are these really equal each other?
+
+ if (isa<Constant>(Op0)) // Make sure the constant is always Op1
+ std::swap(Op0, Op1);
+
+ // Make sure we don't already know these are equal, to avoid infinite loops...
+ ValueInfo &VI = RI.getValueInfo(Op0);
+
+ // Get information about the known relationship between Op0 & Op1
+ Relation &KnownRelation = VI.getRelation(Op1);
+
+ // If we already know they're equal, don't reprocess...
+ if (KnownRelation.getRelation() == FCmpInst::FCMP_OEQ ||
+ KnownRelation.getRelation() == ICmpInst::ICMP_EQ)
+ return;
+
+ // If this is boolean, check to see if one of the operands is a constant. If
+ // it's a constant, then see if the other one is one of a setcc instruction,
+ // an AND, OR, or XOR instruction.
+ //
+ ConstantInt *CB = dyn_cast<ConstantInt>(Op1);
+ if (CB && Op1->getType() == Type::Int1Ty) {
+ if (Instruction *Inst = dyn_cast<Instruction>(Op0)) {
+ // If we know that this instruction is an AND instruction, and the
+ // result is true, this means that both operands to the OR are known
+ // to be true as well.
+ //
+ if (CB->getZExtValue() && Inst->getOpcode() == Instruction::And) {
+ PropagateEquality(Inst->getOperand(0), CB, RI);
+ PropagateEquality(Inst->getOperand(1), CB, RI);
+ }
+
+ // If we know that this instruction is an OR instruction, and the result
+ // is false, this means that both operands to the OR are know to be
+ // false as well.
+ //
+ if (!CB->getZExtValue() && Inst->getOpcode() == Instruction::Or) {
+ PropagateEquality(Inst->getOperand(0), CB, RI);
+ PropagateEquality(Inst->getOperand(1), CB, RI);
+ }
+
+ // If we know that this instruction is a NOT instruction, we know that
+ // the operand is known to be the inverse of whatever the current
+ // value is.
+ //
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
+ if (BinaryOperator::isNot(BOp))
+ PropagateEquality(BinaryOperator::getNotArgument(BOp),
+ ConstantInt::get(Type::Int1Ty,
+ !CB->getZExtValue()), RI);
+
+ // If we know the value of a FCmp instruction, propagate the information
+ // about the relation into this region as well.
+ //
+ if (FCmpInst *FCI = dyn_cast<FCmpInst>(Inst)) {
+ if (CB->getZExtValue()) { // If we know the condition is true...
+ // Propagate info about the LHS to the RHS & RHS to LHS
+ PropagateRelation(FCI->getPredicate(), FCI->getOperand(0),
+ FCI->getOperand(1), RI);
+ PropagateRelation(FCI->getSwappedPredicate(),
+ FCI->getOperand(1), FCI->getOperand(0), RI);
+
+ } else { // If we know the condition is false...
+ // We know the opposite of the condition is true...
+ FCmpInst::Predicate C = FCI->getInversePredicate();
+
+ PropagateRelation(C, FCI->getOperand(0), FCI->getOperand(1), RI);
+ PropagateRelation(FCmpInst::getSwappedPredicate(C),
+ FCI->getOperand(1), FCI->getOperand(0), RI);
+ }
+ }
+
+ // If we know the value of a ICmp instruction, propagate the information
+ // about the relation into this region as well.
+ //
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
+ if (CB->getZExtValue()) { // If we know the condition is true...
+ // Propagate info about the LHS to the RHS & RHS to LHS
+ PropagateRelation(ICI->getPredicate(), ICI->getOperand(0),
+ ICI->getOperand(1), RI);
+ PropagateRelation(ICI->getSwappedPredicate(), ICI->getOperand(1),
+ ICI->getOperand(1), RI);
+
+ } else { // If we know the condition is false ...
+ // We know the opposite of the condition is true...
+ ICmpInst::Predicate C = ICI->getInversePredicate();
+
+ PropagateRelation(C, ICI->getOperand(0), ICI->getOperand(1), RI);
+ PropagateRelation(ICmpInst::getSwappedPredicate(C),
+ ICI->getOperand(1), ICI->getOperand(0), RI);
+ }
+ }
+ }
+ }
+
+ // Propagate information about Op0 to Op1 & visa versa
+ PropagateRelation(ICmpInst::ICMP_EQ, Op0, Op1, RI);
+ PropagateRelation(ICmpInst::ICMP_EQ, Op1, Op0, RI);
+ PropagateRelation(FCmpInst::FCMP_OEQ, Op0, Op1, RI);
+ PropagateRelation(FCmpInst::FCMP_OEQ, Op1, Op0, RI);
+}
+
+
+// PropagateRelation - We know that the specified relation is true in all of the
+// blocks in the specified region. Propagate the information about Op0 and
+// anything derived from it into this region.
+//
+void CEE::PropagateRelation(unsigned Opcode, Value *Op0,
+ Value *Op1, RegionInfo &RI) {
+ assert(Op0->getType() == Op1->getType() && "Equal types expected!");
+
+ // Constants are already pretty well understood. We will apply information
+ // about the constant to Op1 in another call to PropagateRelation.
+ //
+ if (isa<Constant>(Op0)) return;
+
+ // Get the region information for this block to update...
+ ValueInfo &VI = RI.getValueInfo(Op0);
+
+ // Get information about the known relationship between Op0 & Op1
+ Relation &Op1R = VI.getRelation(Op1);
+
+ // Quick bailout for common case if we are reprocessing an instruction...
+ if (Op1R.getRelation() == Opcode)
+ return;
+
+ // If we already have information that contradicts the current information we
+ // are propagating, ignore this info. Something bad must have happened!
+ //
+ if (Op1R.contradicts(Opcode, VI)) {
+ Op1R.contradicts(Opcode, VI);
+ cerr << "Contradiction found for opcode: "
+ << ((isa<ICmpInst>(Op0)||isa<ICmpInst>(Op1)) ?
+ Instruction::getOpcodeName(Instruction::ICmp) :
+ Instruction::getOpcodeName(Opcode))
+ << "\n";
+ Op1R.print(*cerr.stream());
+ return;
+ }
+
+ // If the information propagated is new, then we want process the uses of this
+ // instruction to propagate the information down to them.
+ //
+ if (Op1R.incorporate(Opcode, VI))
+ UpdateUsersOfValue(Op0, RI);
+}
+
+
+// UpdateUsersOfValue - The information about V in this region has been updated.
+// Propagate this to all consumers of the value.
+//
+void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
+ for (Value::use_iterator I = V->use_begin(), E = V->use_end();
+ I != E; ++I)
+ if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
+ // If this is an instruction using a value that we know something about,
+ // try to propagate information to the value produced by the
+ // instruction. We can only do this if it is an instruction we can
+ // propagate information for (a setcc for example), and we only WANT to
+ // do this if the instruction dominates this region.
+ //
+ // If the instruction doesn't dominate this region, then it cannot be
+ // used in this region and we don't care about it. If the instruction
+ // is IN this region, then we will simplify the instruction before we
+ // get to uses of it anyway, so there is no reason to bother with it
+ // here. This check is also effectively checking to make sure that Inst
+ // is in the same function as our region (in case V is a global f.e.).
+ //
+ if (DT->properlyDominates(Inst->getParent(), RI.getEntryBlock()))
+ IncorporateInstruction(Inst, RI);
+ }
+}
+
+// IncorporateInstruction - We just updated the information about one of the
+// operands to the specified instruction. Update the information about the
+// value produced by this instruction
+//
+void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
+ if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
+ // See if we can figure out a result for this instruction...
+ Relation::KnownResult Result = getCmpResult(CI, RI);
+ if (Result != Relation::Unknown) {
+ PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Result != 0), RI);
+ }
+ }
+}
+
+
+// ComputeReplacements - Some values are known to be equal to other values in a
+// region. For example if there is a comparison of equality between a variable
+// X and a constant C, we can replace all uses of X with C in the region we are
+// interested in. We generalize this replacement to replace variables with
+// other variables if they are equal and there is a variable with lower rank
+// than the current one. This offers a canonicalizing property that exposes
+// more redundancies for later transformations to take advantage of.
+//
+void CEE::ComputeReplacements(RegionInfo &RI) {
+ // Loop over all of the values in the region info map...
+ for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) {
+ ValueInfo &VI = I->second;
+
+ // If we know that this value is a particular constant, set Replacement to
+ // the constant...
+ Value *Replacement = 0;
+ const APInt * Rplcmnt = VI.getBounds().getSingleElement();
+ if (Rplcmnt)
+ Replacement = ConstantInt::get(*Rplcmnt);
+
+ // If this value is not known to be some constant, figure out the lowest
+ // rank value that it is known to be equal to (if anything).
+ //
+ if (Replacement == 0) {
+ // Find out if there are any equality relationships with values of lower
+ // rank than VI itself...
+ unsigned MinRank = getRank(I->first);
+
+ // Loop over the relationships known about Op0.
+ const std::vector<Relation> &Relationships = VI.getRelationships();
+ for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
+ if (Relationships[i].getRelation() == FCmpInst::FCMP_OEQ) {
+ unsigned R = getRank(Relationships[i].getValue());
+ if (R < MinRank) {
+ MinRank = R;
+ Replacement = Relationships[i].getValue();
+ }
+ }
+ else if (Relationships[i].getRelation() == ICmpInst::ICMP_EQ) {
+ unsigned R = getRank(Relationships[i].getValue());
+ if (R < MinRank) {
+ MinRank = R;
+ Replacement = Relationships[i].getValue();
+ }
+ }
+ }
+
+ // If we found something to replace this value with, keep track of it.
+ if (Replacement)
+ VI.setReplacement(Replacement);
+ }
+}
+
+// SimplifyBasicBlock - Given information about values in region RI, simplify
+// the instructions in the specified basic block.
+//
+bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) {
+ bool Changed = false;
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
+ Instruction *Inst = I++;
+
+ // Convert instruction arguments to canonical forms...
+ Changed |= SimplifyInstruction(Inst, RI);
+
+ if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
+ // Try to simplify a setcc instruction based on inherited information
+ Relation::KnownResult Result = getCmpResult(CI, RI);
+ if (Result != Relation::Unknown) {
+ DEBUG(cerr << "Replacing icmp with " << Result
+ << " constant: " << *CI);
+
+ CI->replaceAllUsesWith(ConstantInt::get(Type::Int1Ty, (bool)Result));
+ // The instruction is now dead, remove it from the program.
+ CI->getParent()->getInstList().erase(CI);
+ ++NumCmpRemoved;
+ Changed = true;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+// SimplifyInstruction - Inspect the operands of the instruction, converting
+// them to their canonical form if possible. This takes care of, for example,
+// replacing a value 'X' with a constant 'C' if the instruction in question is
+// dominated by a true seteq 'X', 'C'.
+//
+bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) {
+ bool Changed = false;
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i)))
+ if (Value *Repl = VI->getReplacement()) {
+ // If we know if a replacement with lower rank than Op0, make the
+ // replacement now.
+ DOUT << "In Inst: " << *I << " Replacing operand #" << i
+ << " with " << *Repl << "\n";
+ I->setOperand(i, Repl);
+ Changed = true;
+ ++NumOperandsCann;
+ }
+
+ return Changed;
+}
+
+// getCmpResult - Try to simplify a cmp instruction based on information
+// inherited from a dominating icmp instruction. V is one of the operands to
+// the icmp instruction, and VI is the set of information known about it. We
+// take two cases into consideration here. If the comparison is against a
+// constant value, we can use the constant range to see if the comparison is
+// possible to succeed. If it is not a comparison against a constant, we check
+// to see if there is a known relationship between the two values. If so, we
+// may be able to eliminate the check.
+//
+Relation::KnownResult CEE::getCmpResult(CmpInst *CI,
+ const RegionInfo &RI) {
+ Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+ unsigned short predicate = CI->getPredicate();
+
+ if (isa<Constant>(Op0)) {
+ if (isa<Constant>(Op1)) {
+ if (Constant *Result = ConstantFoldInstruction(CI)) {
+ // Wow, this is easy, directly eliminate the ICmpInst.
+ DEBUG(cerr << "Replacing cmp with constant fold: " << *CI);
+ return cast<ConstantInt>(Result)->getZExtValue()
+ ? Relation::KnownTrue : Relation::KnownFalse;
+ }
+ } else {
+ // We want to swap this instruction so that operand #0 is the constant.
+ std::swap(Op0, Op1);
+ if (isa<ICmpInst>(CI))
+ predicate = cast<ICmpInst>(CI)->getSwappedPredicate();
+ else
+ predicate = cast<FCmpInst>(CI)->getSwappedPredicate();
+ }
+ }
+
+ // Try to figure out what the result of this comparison will be...
+ Relation::KnownResult Result = Relation::Unknown;
+
+ // We have to know something about the relationship to prove anything...
+ if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) {
+
+ // At this point, we know that if we have a constant argument that it is in
+ // Op1. Check to see if we know anything about comparing value with a
+ // constant, and if we can use this info to fold the icmp.
+ //
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
+ // Check to see if we already know the result of this comparison...
+ ICmpInst::Predicate ipred = ICmpInst::Predicate(predicate);
+ ConstantRange R = ICmpInst::makeConstantRange(ipred, C->getValue());
+ ConstantRange Int = R.intersectWith(Op0VI->getBounds());
+
+ // If the intersection of the two ranges is empty, then the condition
+ // could never be true!
+ //
+ if (Int.isEmptySet()) {
+ Result = Relation::KnownFalse;
+
+ // Otherwise, if VI.getBounds() (the possible values) is a subset of R
+ // (the allowed values) then we know that the condition must always be
+ // true!
+ //
+ } else if (Int == Op0VI->getBounds()) {
+ Result = Relation::KnownTrue;
+ }
+ } else {
+ // If we are here, we know that the second argument is not a constant
+ // integral. See if we know anything about Op0 & Op1 that allows us to
+ // fold this anyway.
+ //
+ // Do we have value information about Op0 and a relation to Op1?
+ if (const Relation *Op2R = Op0VI->requestRelation(Op1))
+ Result = Op2R->getImpliedResult(predicate);
+ }
+ }
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// Relation Implementation
+//===----------------------------------------------------------------------===//
+
+// contradicts - Return true if the relationship specified by the operand
+// contradicts already known information.
+//
+bool Relation::contradicts(unsigned Op,
+ const ValueInfo &VI) const {
+ assert (Op != Instruction::Add && "Invalid relation argument!");
+
+ // If this is a relationship with a constant, make sure that this relationship
+ // does not contradict properties known about the bounds of the constant.
+ //
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Val))
+ if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ Op <= ICmpInst::LAST_ICMP_PREDICATE) {
+ ICmpInst::Predicate ipred = ICmpInst::Predicate(Op);
+ if (ICmpInst::makeConstantRange(ipred, C->getValue())
+ .intersectWith(VI.getBounds()).isEmptySet())
+ return true;
+ }
+
+ switch (Rel) {
+ default: assert(0 && "Unknown Relationship code!");
+ case Instruction::Add: return false; // Nothing known, nothing contradicts
+ case ICmpInst::ICMP_EQ:
+ return Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT ||
+ Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT ||
+ Op == ICmpInst::ICMP_NE;
+ case ICmpInst::ICMP_NE: return Op == ICmpInst::ICMP_EQ;
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE: return Op == ICmpInst::ICMP_UGT ||
+ Op == ICmpInst::ICMP_SGT;
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE: return Op == ICmpInst::ICMP_ULT ||
+ Op == ICmpInst::ICMP_SLT;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ return Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_UGT ||
+ Op == ICmpInst::ICMP_SGT || Op == ICmpInst::ICMP_UGE ||
+ Op == ICmpInst::ICMP_SGE;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ return Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_ULT ||
+ Op == ICmpInst::ICMP_SLT || Op == ICmpInst::ICMP_ULE ||
+ Op == ICmpInst::ICMP_SLE;
+ case FCmpInst::FCMP_OEQ:
+ return Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT ||
+ Op == FCmpInst::FCMP_ONE;
+ case FCmpInst::FCMP_ONE: return Op == FCmpInst::FCMP_OEQ;
+ case FCmpInst::FCMP_OLE: return Op == FCmpInst::FCMP_OGT;
+ case FCmpInst::FCMP_OGE: return Op == FCmpInst::FCMP_OLT;
+ case FCmpInst::FCMP_OLT:
+ return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT ||
+ Op == FCmpInst::FCMP_OGE;
+ case FCmpInst::FCMP_OGT:
+ return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT ||
+ Op == FCmpInst::FCMP_OLE;
+ }
+}
+
+// incorporate - Incorporate information in the argument into this relation
+// entry. This assumes that the information doesn't contradict itself. If any
+// new information is gained, true is returned, otherwise false is returned to
+// indicate that nothing was updated.
+//
+bool Relation::incorporate(unsigned Op, ValueInfo &VI) {
+ assert(!contradicts(Op, VI) &&
+ "Cannot incorporate contradictory information!");
+
+ // If this is a relationship with a constant, make sure that we update the
+ // range that is possible for the value to have...
+ //
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Val))
+ if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ Op <= ICmpInst::LAST_ICMP_PREDICATE) {
+ ICmpInst::Predicate ipred = ICmpInst::Predicate(Op);
+ VI.getBounds() =
+ ICmpInst::makeConstantRange(ipred, C->getValue())
+ .intersectWith(VI.getBounds());
+ }
+
+ switch (Rel) {
+ default: assert(0 && "Unknown prior value!");
+ case Instruction::Add: Rel = Op; return true;
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT: return false; // Nothing is more precise
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE:
+ if (Op == ICmpInst::ICMP_EQ || Op == ICmpInst::ICMP_ULT ||
+ Op == ICmpInst::ICMP_SLT) {
+ Rel = Op;
+ return true;
+ } else if (Op == ICmpInst::ICMP_NE) {
+ Rel = Rel == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_ULT :
+ ICmpInst::ICMP_SLT;
+ return true;
+ }
+ return false;
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE:
+ if (Op == ICmpInst::ICMP_EQ || ICmpInst::ICMP_UGT ||
+ Op == ICmpInst::ICMP_SGT) {
+ Rel = Op;
+ return true;
+ } else if (Op == ICmpInst::ICMP_NE) {
+ Rel = Rel == ICmpInst::ICMP_UGE ? ICmpInst::ICMP_UGT :
+ ICmpInst::ICMP_SGT;
+ return true;
+ }
+ return false;
+ case FCmpInst::FCMP_OEQ: return false; // Nothing is more precise
+ case FCmpInst::FCMP_ONE: return false; // Nothing is more precise
+ case FCmpInst::FCMP_OLT: return false; // Nothing is more precise
+ case FCmpInst::FCMP_OGT: return false; // Nothing is more precise
+ case FCmpInst::FCMP_OLE:
+ if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT) {
+ Rel = Op;
+ return true;
+ } else if (Op == FCmpInst::FCMP_ONE) {
+ Rel = FCmpInst::FCMP_OLT;
+ return true;
+ }
+ return false;
+ case FCmpInst::FCMP_OGE:
+ return Op == FCmpInst::FCMP_OLT;
+ if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT) {
+ Rel = Op;
+ return true;
+ } else if (Op == FCmpInst::FCMP_ONE) {
+ Rel = FCmpInst::FCMP_OGT;
+ return true;
+ }
+ return false;
+ }
+}
+
+// getImpliedResult - If this relationship between two values implies that
+// the specified relationship is true or false, return that. If we cannot
+// determine the result required, return Unknown.
+//
+Relation::KnownResult
+Relation::getImpliedResult(unsigned Op) const {
+ if (Rel == Op) return KnownTrue;
+ if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ Op <= ICmpInst::LAST_ICMP_PREDICATE) {
+ if (Rel == unsigned(ICmpInst::getInversePredicate(ICmpInst::Predicate(Op))))
+ return KnownFalse;
+ } else if (Op <= FCmpInst::LAST_FCMP_PREDICATE) {
+ if (Rel == unsigned(FCmpInst::getInversePredicate(FCmpInst::Predicate(Op))))
+ return KnownFalse;
+ }
+
+ switch (Rel) {
+ default: assert(0 && "Unknown prior value!");
+ case ICmpInst::ICMP_EQ:
+ if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE ||
+ Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE) return KnownTrue;
+ if (Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT ||
+ Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT) return KnownFalse;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE ||
+ Op == ICmpInst::ICMP_NE) return KnownTrue;
+ if (Op == ICmpInst::ICMP_EQ) return KnownFalse;
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ if (Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE ||
+ Op == ICmpInst::ICMP_NE) return KnownTrue;
+ if (Op == ICmpInst::ICMP_EQ) return KnownFalse;
+ break;
+ case FCmpInst::FCMP_OEQ:
+ if (Op == FCmpInst::FCMP_OLE || Op == FCmpInst::FCMP_OGE) return KnownTrue;
+ if (Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT) return KnownFalse;
+ break;
+ case FCmpInst::FCMP_OLT:
+ if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OLE) return KnownTrue;
+ if (Op == FCmpInst::FCMP_OEQ) return KnownFalse;
+ break;
+ case FCmpInst::FCMP_OGT:
+ if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OGE) return KnownTrue;
+ if (Op == FCmpInst::FCMP_OEQ) return KnownFalse;
+ break;
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_SLE:
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE:
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_OLE:
+ case FCmpInst::FCMP_OGE:
+ case FCmpInst::FCMP_FALSE:
+ case FCmpInst::FCMP_ORD:
+ case FCmpInst::FCMP_UNO:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_TRUE:
+ break;
+ }
+ return Unknown;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Printing Support...
+//===----------------------------------------------------------------------===//
+
+// print - Implement the standard print form to print out analysis information.
+void CEE::print(std::ostream &O, const Module *M) const {
+ O << "\nPrinting Correlated Expression Info:\n";
+ for (std::map<BasicBlock*, RegionInfo>::const_iterator I =
+ RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I)
+ I->second.print(O);
+}
+
+// print - Output information about this region...
+void RegionInfo::print(std::ostream &OS) const {
+ if (ValueMap.empty()) return;
+
+ OS << " RegionInfo for basic block: " << BB->getName() << "\n";
+ for (std::map<Value*, ValueInfo>::const_iterator
+ I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I)
+ I->second.print(OS, I->first);
+ OS << "\n";
+}
+
+// print - Output information about this value relation...
+void ValueInfo::print(std::ostream &OS, Value *V) const {
+ if (Relationships.empty()) return;
+
+ if (V) {
+ OS << " ValueInfo for: ";
+ WriteAsOperand(OS, V);
+ }
+ OS << "\n Bounds = " << Bounds << "\n";
+ if (Replacement) {
+ OS << " Replacement = ";
+ WriteAsOperand(OS, Replacement);
+ OS << "\n";
+ }
+ for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
+ Relationships[i].print(OS);
+}
+
+// print - Output this relation to the specified stream
+void Relation::print(std::ostream &OS) const {
+ OS << " is ";
+ switch (Rel) {
+ default: OS << "*UNKNOWN*"; break;
+ case ICmpInst::ICMP_EQ:
+ case FCmpInst::FCMP_ORD:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ: OS << "== "; break;
+ case ICmpInst::ICMP_NE:
+ case FCmpInst::FCMP_UNO:
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ONE: OS << "!= "; break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_OLT: OS << "< "; break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT: OS << "> "; break;
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLE: OS << "<= "; break;
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE: OS << ">= "; break;
+ }
+
+ WriteAsOperand(OS, Val);
+ OS << "\n";
+}
+
+// Don't inline these methods or else we won't be able to call them from GDB!
+void Relation::dump() const { print(*cerr.stream()); }
+void ValueInfo::dump() const { print(*cerr.stream(), 0); }
+void RegionInfo::dump() const { print(*cerr.stream()); }