aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/Float2Int.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/Float2Int.cpp')
-rw-r--r--lib/Transforms/Scalar/Float2Int.cpp540
1 files changed, 540 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/Float2Int.cpp b/lib/Transforms/Scalar/Float2Int.cpp
new file mode 100644
index 0000000..c931422
--- /dev/null
+++ b/lib/Transforms/Scalar/Float2Int.cpp
@@ -0,0 +1,540 @@
+//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Float2Int pass, which aims to demote floating
+// point operations to work on integers, where that is losslessly possible.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "float2int"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include <deque>
+#include <functional> // For std::function
+using namespace llvm;
+
+// The algorithm is simple. Start at instructions that convert from the
+// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
+// graph, using an equivalence datastructure to unify graphs that interfere.
+//
+// Mappable instructions are those with an integer corrollary that, given
+// integer domain inputs, produce an integer output; fadd, for example.
+//
+// If a non-mappable instruction is seen, this entire def-use graph is marked
+// as non-transformable. If we see an instruction that converts from the
+// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
+
+/// The largest integer type worth dealing with.
+static cl::opt<unsigned>
+MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
+ cl::desc("Max integer bitwidth to consider in float2int"
+ "(default=64)"));
+
+namespace {
+ struct Float2Int : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ Float2Int() : FunctionPass(ID) {
+ initializeFloat2IntPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ }
+
+ void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
+ ConstantRange seen(Instruction *I, ConstantRange R);
+ ConstantRange badRange();
+ ConstantRange unknownRange();
+ ConstantRange validateRange(ConstantRange R);
+ void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
+ void walkForwards();
+ bool validateAndTransform();
+ Value *convert(Instruction *I, Type *ToTy);
+ void cleanup();
+
+ MapVector<Instruction*, ConstantRange > SeenInsts;
+ SmallPtrSet<Instruction*,8> Roots;
+ EquivalenceClasses<Instruction*> ECs;
+ MapVector<Instruction*, Value*> ConvertedInsts;
+ LLVMContext *Ctx;
+ };
+}
+
+char Float2Int::ID = 0;
+INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false)
+
+// Given a FCmp predicate, return a matching ICmp predicate if one
+// exists, otherwise return BAD_ICMP_PREDICATE.
+static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
+ switch (P) {
+ case CmpInst::FCMP_OEQ:
+ case CmpInst::FCMP_UEQ:
+ return CmpInst::ICMP_EQ;
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_UGT:
+ return CmpInst::ICMP_SGT;
+ case CmpInst::FCMP_OGE:
+ case CmpInst::FCMP_UGE:
+ return CmpInst::ICMP_SGE;
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_ULT:
+ return CmpInst::ICMP_SLT;
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ULE:
+ return CmpInst::ICMP_SLE;
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UNE:
+ return CmpInst::ICMP_NE;
+ default:
+ return CmpInst::BAD_ICMP_PREDICATE;
+ }
+}
+
+// Given a floating point binary operator, return the matching
+// integer version.
+static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: llvm_unreachable("Unhandled opcode!");
+ case Instruction::FAdd: return Instruction::Add;
+ case Instruction::FSub: return Instruction::Sub;
+ case Instruction::FMul: return Instruction::Mul;
+ }
+}
+
+// Find the roots - instructions that convert from the FP domain to
+// integer domain.
+void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
+ for (auto &I : inst_range(F)) {
+ switch (I.getOpcode()) {
+ default: break;
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ Roots.insert(&I);
+ break;
+ case Instruction::FCmp:
+ if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
+ CmpInst::BAD_ICMP_PREDICATE)
+ Roots.insert(&I);
+ break;
+ }
+ }
+}
+
+// Helper - mark I as having been traversed, having range R.
+ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
+ DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
+ if (SeenInsts.find(I) != SeenInsts.end())
+ SeenInsts.find(I)->second = R;
+ else
+ SeenInsts.insert(std::make_pair(I, R));
+ return R;
+}
+
+// Helper - get a range representing a poison value.
+ConstantRange Float2Int::badRange() {
+ return ConstantRange(MaxIntegerBW + 1, true);
+}
+ConstantRange Float2Int::unknownRange() {
+ return ConstantRange(MaxIntegerBW + 1, false);
+}
+ConstantRange Float2Int::validateRange(ConstantRange R) {
+ if (R.getBitWidth() > MaxIntegerBW + 1)
+ return badRange();
+ return R;
+}
+
+// The most obvious way to structure the search is a depth-first, eager
+// search from each root. However, that require direct recursion and so
+// can only handle small instruction sequences. Instead, we split the search
+// up into two phases:
+// - walkBackwards: A breadth-first walk of the use-def graph starting from
+// the roots. Populate "SeenInsts" with interesting
+// instructions and poison values if they're obvious and
+// cheap to compute. Calculate the equivalance set structure
+// while we're here too.
+// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
+// defs before their uses. Calculate the real range info.
+
+// Breadth-first walk of the use-def graph; determine the set of nodes
+// we care about and eagerly determine if some of them are poisonous.
+void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
+ std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.back();
+ Worklist.pop_back();
+
+ if (SeenInsts.find(I) != SeenInsts.end())
+ // Seen already.
+ continue;
+
+ switch (I->getOpcode()) {
+ // FIXME: Handle select and phi nodes.
+ default:
+ // Path terminated uncleanly.
+ seen(I, badRange());
+ break;
+
+ case Instruction::UIToFP: {
+ // Path terminated cleanly.
+ unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
+ APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
+ APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
+ seen(I, validateRange(ConstantRange(Min, Max)));
+ continue;
+ }
+
+ case Instruction::SIToFP: {
+ // Path terminated cleanly.
+ unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
+ APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
+ APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
+ seen(I, validateRange(ConstantRange(SMin, SMax)));
+ continue;
+ }
+
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FCmp:
+ seen(I, unknownRange());
+ break;
+ }
+
+ for (Value *O : I->operands()) {
+ if (Instruction *OI = dyn_cast<Instruction>(O)) {
+ // Unify def-use chains if they interfere.
+ ECs.unionSets(I, OI);
+ if (SeenInsts.find(I)->second != badRange())
+ Worklist.push_back(OI);
+ } else if (!isa<ConstantFP>(O)) {
+ // Not an instruction or ConstantFP? we can't do anything.
+ seen(I, badRange());
+ }
+ }
+ }
+}
+
+// Walk forwards down the list of seen instructions, so we visit defs before
+// uses.
+void Float2Int::walkForwards() {
+ for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) {
+ if (It->second != unknownRange())
+ continue;
+
+ Instruction *I = It->first;
+ std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
+ switch (I->getOpcode()) {
+ // FIXME: Handle select and phi nodes.
+ default:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ llvm_unreachable("Should have been handled in walkForwards!");
+
+ case Instruction::FAdd:
+ Op = [](ArrayRef<ConstantRange> Ops) {
+ assert(Ops.size() == 2 && "FAdd is a binary operator!");
+ return Ops[0].add(Ops[1]);
+ };
+ break;
+
+ case Instruction::FSub:
+ Op = [](ArrayRef<ConstantRange> Ops) {
+ assert(Ops.size() == 2 && "FSub is a binary operator!");
+ return Ops[0].sub(Ops[1]);
+ };
+ break;
+
+ case Instruction::FMul:
+ Op = [](ArrayRef<ConstantRange> Ops) {
+ assert(Ops.size() == 2 && "FMul is a binary operator!");
+ return Ops[0].multiply(Ops[1]);
+ };
+ break;
+
+ //
+ // Root-only instructions - we'll only see these if they're the
+ // first node in a walk.
+ //
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ Op = [](ArrayRef<ConstantRange> Ops) {
+ assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
+ return Ops[0];
+ };
+ break;
+
+ case Instruction::FCmp:
+ Op = [](ArrayRef<ConstantRange> Ops) {
+ assert(Ops.size() == 2 && "FCmp is a binary operator!");
+ return Ops[0].unionWith(Ops[1]);
+ };
+ break;
+ }
+
+ bool Abort = false;
+ SmallVector<ConstantRange,4> OpRanges;
+ for (Value *O : I->operands()) {
+ if (Instruction *OI = dyn_cast<Instruction>(O)) {
+ assert(SeenInsts.find(OI) != SeenInsts.end() &&
+ "def not seen before use!");
+ OpRanges.push_back(SeenInsts.find(OI)->second);
+ } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
+ // Work out if the floating point number can be losslessly represented
+ // as an integer.
+ // APFloat::convertToInteger(&Exact) purports to do what we want, but
+ // the exactness can be too precise. For example, negative zero can
+ // never be exactly converted to an integer.
+ //
+ // Instead, we ask APFloat to round itself to an integral value - this
+ // preserves sign-of-zero - then compare the result with the original.
+ //
+ APFloat F = CF->getValueAPF();
+
+ // First, weed out obviously incorrect values. Non-finite numbers
+ // can't be represented and neither can negative zero, unless
+ // we're in fast math mode.
+ if (!F.isFinite() ||
+ (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
+ !I->hasNoSignedZeros())) {
+ seen(I, badRange());
+ Abort = true;
+ break;
+ }
+
+ APFloat NewF = F;
+ auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
+ if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
+ seen(I, badRange());
+ Abort = true;
+ break;
+ }
+ // OK, it's representable. Now get it.
+ APSInt Int(MaxIntegerBW+1, false);
+ bool Exact;
+ CF->getValueAPF().convertToInteger(Int,
+ APFloat::rmNearestTiesToEven,
+ &Exact);
+ OpRanges.push_back(ConstantRange(Int));
+ } else {
+ llvm_unreachable("Should have already marked this as badRange!");
+ }
+ }
+
+ // Reduce the operands' ranges to a single range and return.
+ if (!Abort)
+ seen(I, Op(OpRanges));
+ }
+}
+
+// If there is a valid transform to be done, do it.
+bool Float2Int::validateAndTransform() {
+ bool MadeChange = false;
+
+ // Iterate over every disjoint partition of the def-use graph.
+ for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
+ ConstantRange R(MaxIntegerBW + 1, false);
+ bool Fail = false;
+ Type *ConvertedToTy = nullptr;
+
+ // For every member of the partition, union all the ranges together.
+ for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
+ MI != ME; ++MI) {
+ Instruction *I = *MI;
+ auto SeenI = SeenInsts.find(I);
+ if (SeenI == SeenInsts.end())
+ continue;
+
+ R = R.unionWith(SeenI->second);
+ // We need to ensure I has no users that have not been seen.
+ // If it does, transformation would be illegal.
+ //
+ // Don't count the roots, as they terminate the graphs.
+ if (Roots.count(I) == 0) {
+ // Set the type of the conversion while we're here.
+ if (!ConvertedToTy)
+ ConvertedToTy = I->getType();
+ for (User *U : I->users()) {
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
+ DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
+ Fail = true;
+ break;
+ }
+ }
+ }
+ if (Fail)
+ break;
+ }
+
+ // If the set was empty, or we failed, or the range is poisonous,
+ // bail out.
+ if (ECs.member_begin(It) == ECs.member_end() || Fail ||
+ R.isFullSet() || R.isSignWrappedSet())
+ continue;
+ assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
+
+ // The number of bits required is the maximum of the upper and
+ // lower limits, plus one so it can be signed.
+ unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
+ R.getUpper().getMinSignedBits()) + 1;
+ DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
+
+ // If we've run off the realms of the exactly representable integers,
+ // the floating point result will differ from an integer approximation.
+
+ // Do we need more bits than are in the mantissa of the type we converted
+ // to? semanticsPrecision returns the number of mantissa bits plus one
+ // for the sign bit.
+ unsigned MaxRepresentableBits
+ = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
+ if (MinBW > MaxRepresentableBits) {
+ DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
+ continue;
+ }
+ if (MinBW > 64) {
+ DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
+ continue;
+ }
+
+ // OK, R is known to be representable. Now pick a type for it.
+ // FIXME: Pick the smallest legal type that will fit.
+ Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
+
+ for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
+ MI != ME; ++MI)
+ convert(*MI, Ty);
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+Value *Float2Int::convert(Instruction *I, Type *ToTy) {
+ if (ConvertedInsts.find(I) != ConvertedInsts.end())
+ // Already converted this instruction.
+ return ConvertedInsts[I];
+
+ SmallVector<Value*,4> NewOperands;
+ for (Value *V : I->operands()) {
+ // Don't recurse if we're an instruction that terminates the path.
+ if (I->getOpcode() == Instruction::UIToFP ||
+ I->getOpcode() == Instruction::SIToFP) {
+ NewOperands.push_back(V);
+ } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
+ NewOperands.push_back(convert(VI, ToTy));
+ } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
+ APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
+ bool Exact;
+ CF->getValueAPF().convertToInteger(Val,
+ APFloat::rmNearestTiesToEven,
+ &Exact);
+ NewOperands.push_back(ConstantInt::get(ToTy, Val));
+ } else {
+ llvm_unreachable("Unhandled operand type?");
+ }
+ }
+
+ // Now create a new instruction.
+ IRBuilder<> IRB(I);
+ Value *NewV = nullptr;
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unhandled instruction!");
+
+ case Instruction::FPToUI:
+ NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
+ break;
+
+ case Instruction::FPToSI:
+ NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
+ break;
+
+ case Instruction::FCmp: {
+ CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
+ assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
+ NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
+ break;
+ }
+
+ case Instruction::UIToFP:
+ NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
+ break;
+
+ case Instruction::SIToFP:
+ NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
+ break;
+
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
+ NewOperands[0], NewOperands[1],
+ I->getName());
+ break;
+ }
+
+ // If we're a root instruction, RAUW.
+ if (Roots.count(I))
+ I->replaceAllUsesWith(NewV);
+
+ ConvertedInsts[I] = NewV;
+ return NewV;
+}
+
+// Perform dead code elimination on the instructions we just modified.
+void Float2Int::cleanup() {
+ for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend();
+ I != E; ++I)
+ I->first->eraseFromParent();
+}
+
+bool Float2Int::runOnFunction(Function &F) {
+ if (skipOptnoneFunction(F))
+ return false;
+
+ DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
+ // Clear out all state.
+ ECs = EquivalenceClasses<Instruction*>();
+ SeenInsts.clear();
+ ConvertedInsts.clear();
+ Roots.clear();
+
+ Ctx = &F.getParent()->getContext();
+
+ findRoots(F, Roots);
+
+ walkBackwards(Roots);
+ walkForwards();
+
+ bool Modified = validateAndTransform();
+ if (Modified)
+ cleanup();
+ return Modified;
+}
+
+FunctionPass *llvm::createFloat2IntPass() {
+ return new Float2Int();
+}
+