aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp')
-rw-r--r--lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp1422
1 files changed, 1422 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp b/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
new file mode 100644
index 0000000..8559e63
--- /dev/null
+++ b/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
@@ -0,0 +1,1422 @@
+//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// The InductiveRangeCheckElimination pass splits a loop's iteration space into
+// three disjoint ranges. It does that in a way such that the loop running in
+// the middle loop provably does not need range checks. As an example, it will
+// convert
+//
+// len = < known positive >
+// for (i = 0; i < n; i++) {
+// if (0 <= i && i < len) {
+// do_something();
+// } else {
+// throw_out_of_bounds();
+// }
+// }
+//
+// to
+//
+// len = < known positive >
+// limit = smin(n, len)
+// // no first segment
+// for (i = 0; i < limit; i++) {
+// if (0 <= i && i < len) { // this check is fully redundant
+// do_something();
+// } else {
+// throw_out_of_bounds();
+// }
+// }
+// for (i = limit; i < n; i++) {
+// if (0 <= i && i < len) {
+// do_something();
+// } else {
+// throw_out_of_bounds();
+// }
+// }
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Optional.h"
+
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ValueTracking.h"
+
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/Verifier.h"
+
+#include "llvm/Support/Debug.h"
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+
+#include "llvm/Pass.h"
+
+#include <array>
+
+using namespace llvm;
+
+static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
+ cl::init(64));
+
+static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
+ cl::init(false));
+
+static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
+ cl::Hidden, cl::init(10));
+
+#define DEBUG_TYPE "irce"
+
+namespace {
+
+/// An inductive range check is conditional branch in a loop with
+///
+/// 1. a very cold successor (i.e. the branch jumps to that successor very
+/// rarely)
+///
+/// and
+///
+/// 2. a condition that is provably true for some range of values taken by the
+/// containing loop's induction variable.
+///
+/// Currently all inductive range checks are branches conditional on an
+/// expression of the form
+///
+/// 0 <= (Offset + Scale * I) < Length
+///
+/// where `I' is the canonical induction variable of a loop to which Offset and
+/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
+/// is considered cold, looking at profiling data to verify that is a TODO.
+
+class InductiveRangeCheck {
+ const SCEV *Offset;
+ const SCEV *Scale;
+ Value *Length;
+ BranchInst *Branch;
+
+ InductiveRangeCheck() :
+ Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
+
+public:
+ const SCEV *getOffset() const { return Offset; }
+ const SCEV *getScale() const { return Scale; }
+ Value *getLength() const { return Length; }
+
+ void print(raw_ostream &OS) const {
+ OS << "InductiveRangeCheck:\n";
+ OS << " Offset: ";
+ Offset->print(OS);
+ OS << " Scale: ";
+ Scale->print(OS);
+ OS << " Length: ";
+ Length->print(OS);
+ OS << " Branch: ";
+ getBranch()->print(OS);
+ OS << "\n";
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void dump() {
+ print(dbgs());
+ }
+#endif
+
+ BranchInst *getBranch() const { return Branch; }
+
+ /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
+ /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
+
+ class Range {
+ const SCEV *Begin;
+ const SCEV *End;
+
+ public:
+ Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
+ assert(Begin->getType() == End->getType() && "ill-typed range!");
+ }
+
+ Type *getType() const { return Begin->getType(); }
+ const SCEV *getBegin() const { return Begin; }
+ const SCEV *getEnd() const { return End; }
+ };
+
+ typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
+
+ /// This is the value the condition of the branch needs to evaluate to for the
+ /// branch to take the hot successor (see (1) above).
+ bool getPassingDirection() { return true; }
+
+ /// Computes a range for the induction variable (IndVar) in which the range
+ /// check is redundant and can be constant-folded away. The induction
+ /// variable is not required to be the canonical {0,+,1} induction variable.
+ Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
+ const SCEVAddRecExpr *IndVar,
+ IRBuilder<> &B) const;
+
+ /// Create an inductive range check out of BI if possible, else return
+ /// nullptr.
+ static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
+ Loop *L, ScalarEvolution &SE,
+ BranchProbabilityInfo &BPI);
+};
+
+class InductiveRangeCheckElimination : public LoopPass {
+ InductiveRangeCheck::AllocatorTy Allocator;
+
+public:
+ static char ID;
+ InductiveRangeCheckElimination() : LoopPass(ID) {
+ initializeInductiveRangeCheckEliminationPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<BranchProbabilityInfo>();
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+};
+
+char InductiveRangeCheckElimination::ID = 0;
+}
+
+INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
+ "Inductive range check elimination", false, false)
+
+static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
+ using namespace llvm::PatternMatch;
+
+ ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ Value *LHS = nullptr, *RHS = nullptr;
+
+ if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
+ return false;
+
+ switch (Pred) {
+ default:
+ return false;
+
+ case ICmpInst::ICMP_SLE:
+ std::swap(LHS, RHS);
+ // fallthrough
+ case ICmpInst::ICMP_SGE:
+ if (!match(RHS, m_ConstantInt<0>()))
+ return false;
+ IndexV = LHS;
+ return true;
+
+ case ICmpInst::ICMP_SLT:
+ std::swap(LHS, RHS);
+ // fallthrough
+ case ICmpInst::ICMP_SGT:
+ if (!match(RHS, m_ConstantInt<-1>()))
+ return false;
+ IndexV = LHS;
+ return true;
+ }
+}
+
+static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
+ using namespace llvm::PatternMatch;
+
+ ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ Value *LHS = nullptr, *RHS = nullptr;
+
+ if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
+ return false;
+
+ switch (Pred) {
+ default:
+ return false;
+
+ case ICmpInst::ICMP_SGT:
+ std::swap(LHS, RHS);
+ // fallthrough
+ case ICmpInst::ICMP_SLT:
+ if (LHS != Index)
+ return false;
+ UpperLimit = RHS;
+ return true;
+
+ case ICmpInst::ICMP_UGT:
+ std::swap(LHS, RHS);
+ // fallthrough
+ case ICmpInst::ICMP_ULT:
+ if (LHS != Index)
+ return false;
+ UpperLimit = RHS;
+ return true;
+ }
+}
+
+/// Split a condition into something semantically equivalent to (0 <= I <
+/// Limit), both comparisons signed and Len loop invariant on L and positive.
+/// On success, return true and set Index to I and UpperLimit to Limit. Return
+/// false on failure (we may still write to UpperLimit and Index on failure).
+/// It does not try to interpret I as a loop index.
+///
+static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
+ Value *Condition, const SCEV *&Index,
+ Value *&UpperLimit) {
+
+ // TODO: currently this catches some silly cases like comparing "%idx slt 1".
+ // Our transformations are still correct, but less likely to be profitable in
+ // those cases. We have to come up with some heuristics that pick out the
+ // range checks that are more profitable to clone a loop for. This function
+ // in general can be made more robust.
+
+ using namespace llvm::PatternMatch;
+
+ Value *A = nullptr;
+ Value *B = nullptr;
+ ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+
+ // In these early checks we assume that the matched UpperLimit is positive.
+ // We'll verify that fact later, before returning true.
+
+ if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
+ Value *IndexV = nullptr;
+ Value *ExpectedUpperBoundCheck = nullptr;
+
+ if (IsLowerBoundCheck(A, IndexV))
+ ExpectedUpperBoundCheck = B;
+ else if (IsLowerBoundCheck(B, IndexV))
+ ExpectedUpperBoundCheck = A;
+ else
+ return false;
+
+ if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
+ return false;
+
+ Index = SE.getSCEV(IndexV);
+
+ if (isa<SCEVCouldNotCompute>(Index))
+ return false;
+
+ } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
+ switch (Pred) {
+ default:
+ return false;
+
+ case ICmpInst::ICMP_SGT:
+ std::swap(A, B);
+ // fall through
+ case ICmpInst::ICMP_SLT:
+ UpperLimit = B;
+ Index = SE.getSCEV(A);
+ if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
+ return false;
+ break;
+
+ case ICmpInst::ICMP_UGT:
+ std::swap(A, B);
+ // fall through
+ case ICmpInst::ICMP_ULT:
+ UpperLimit = B;
+ Index = SE.getSCEV(A);
+ if (isa<SCEVCouldNotCompute>(Index))
+ return false;
+ break;
+ }
+ } else {
+ return false;
+ }
+
+ const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
+ if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
+ !SE.isKnownNonNegative(UpperLimitSCEV))
+ return false;
+
+ if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
+ ScalarEvolution::LoopInvariant) {
+ DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
+ << " ";
+ dbgs() << " UpperLimit is not loop invariant: "
+ << UpperLimit->getName() << "\n";);
+ return false;
+ }
+
+ return true;
+}
+
+
+InductiveRangeCheck *
+InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
+ Loop *L, ScalarEvolution &SE,
+ BranchProbabilityInfo &BPI) {
+
+ if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
+ return nullptr;
+
+ BranchProbability LikelyTaken(15, 16);
+
+ if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
+ return nullptr;
+
+ Value *Length = nullptr;
+ const SCEV *IndexSCEV = nullptr;
+
+ if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
+ return nullptr;
+
+ assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
+
+ const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
+ bool IsAffineIndex =
+ IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
+
+ if (!IsAffineIndex)
+ return nullptr;
+
+ InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
+ IRC->Length = Length;
+ IRC->Offset = IndexAddRec->getStart();
+ IRC->Scale = IndexAddRec->getStepRecurrence(SE);
+ IRC->Branch = BI;
+ return IRC;
+}
+
+namespace {
+
+// Keeps track of the structure of a loop. This is similar to llvm::Loop,
+// except that it is more lightweight and can track the state of a loop through
+// changing and potentially invalid IR. This structure also formalizes the
+// kinds of loops we can deal with -- ones that have a single latch that is also
+// an exiting block *and* have a canonical induction variable.
+struct LoopStructure {
+ const char *Tag;
+
+ BasicBlock *Header;
+ BasicBlock *Latch;
+
+ // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
+ // successor is `LatchExit', the exit block of the loop.
+ BranchInst *LatchBr;
+ BasicBlock *LatchExit;
+ unsigned LatchBrExitIdx;
+
+ Value *IndVarNext;
+ Value *IndVarStart;
+ Value *LoopExitAt;
+ bool IndVarIncreasing;
+
+ LoopStructure()
+ : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
+ LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
+ IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
+
+ template <typename M> LoopStructure map(M Map) const {
+ LoopStructure Result;
+ Result.Tag = Tag;
+ Result.Header = cast<BasicBlock>(Map(Header));
+ Result.Latch = cast<BasicBlock>(Map(Latch));
+ Result.LatchBr = cast<BranchInst>(Map(LatchBr));
+ Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
+ Result.LatchBrExitIdx = LatchBrExitIdx;
+ Result.IndVarNext = Map(IndVarNext);
+ Result.IndVarStart = Map(IndVarStart);
+ Result.LoopExitAt = Map(LoopExitAt);
+ Result.IndVarIncreasing = IndVarIncreasing;
+ return Result;
+ }
+
+ static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
+ BranchProbabilityInfo &BPI,
+ Loop &,
+ const char *&);
+};
+
+/// This class is used to constrain loops to run within a given iteration space.
+/// The algorithm this class implements is given a Loop and a range [Begin,
+/// End). The algorithm then tries to break out a "main loop" out of the loop
+/// it is given in a way that the "main loop" runs with the induction variable
+/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
+/// loops to run any remaining iterations. The pre loop runs any iterations in
+/// which the induction variable is < Begin, and the post loop runs any
+/// iterations in which the induction variable is >= End.
+///
+class LoopConstrainer {
+ // The representation of a clone of the original loop we started out with.
+ struct ClonedLoop {
+ // The cloned blocks
+ std::vector<BasicBlock *> Blocks;
+
+ // `Map` maps values in the clonee into values in the cloned version
+ ValueToValueMapTy Map;
+
+ // An instance of `LoopStructure` for the cloned loop
+ LoopStructure Structure;
+ };
+
+ // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
+ // more details on what these fields mean.
+ struct RewrittenRangeInfo {
+ BasicBlock *PseudoExit;
+ BasicBlock *ExitSelector;
+ std::vector<PHINode *> PHIValuesAtPseudoExit;
+ PHINode *IndVarEnd;
+
+ RewrittenRangeInfo()
+ : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
+ };
+
+ // Calculated subranges we restrict the iteration space of the main loop to.
+ // See the implementation of `calculateSubRanges' for more details on how
+ // these fields are computed. `LowLimit` is None if there is no restriction
+ // on low end of the restricted iteration space of the main loop. `HighLimit`
+ // is None if there is no restriction on high end of the restricted iteration
+ // space of the main loop.
+
+ struct SubRanges {
+ Optional<const SCEV *> LowLimit;
+ Optional<const SCEV *> HighLimit;
+ };
+
+ // A utility function that does a `replaceUsesOfWith' on the incoming block
+ // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
+ // incoming block list with `ReplaceBy'.
+ static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
+ BasicBlock *ReplaceBy);
+
+ // Compute a safe set of limits for the main loop to run in -- effectively the
+ // intersection of `Range' and the iteration space of the original loop.
+ // Return None if unable to compute the set of subranges.
+ //
+ Optional<SubRanges> calculateSubRanges() const;
+
+ // Clone `OriginalLoop' and return the result in CLResult. The IR after
+ // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
+ // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
+ // but there is no such edge.
+ //
+ void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
+
+ // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
+ // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
+ // iteration space is not changed. `ExitLoopAt' is assumed to be slt
+ // `OriginalHeaderCount'.
+ //
+ // If there are iterations left to execute, control is made to jump to
+ // `ContinuationBlock', otherwise they take the normal loop exit. The
+ // returned `RewrittenRangeInfo' object is populated as follows:
+ //
+ // .PseudoExit is a basic block that unconditionally branches to
+ // `ContinuationBlock'.
+ //
+ // .ExitSelector is a basic block that decides, on exit from the loop,
+ // whether to branch to the "true" exit or to `PseudoExit'.
+ //
+ // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
+ // for each PHINode in the loop header on taking the pseudo exit.
+ //
+ // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
+ // preheader because it is made to branch to the loop header only
+ // conditionally.
+ //
+ RewrittenRangeInfo
+ changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
+ Value *ExitLoopAt,
+ BasicBlock *ContinuationBlock) const;
+
+ // The loop denoted by `LS' has `OldPreheader' as its preheader. This
+ // function creates a new preheader for `LS' and returns it.
+ //
+ BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
+ const char *Tag) const;
+
+ // `ContinuationBlockAndPreheader' was the continuation block for some call to
+ // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
+ // This function rewrites the PHI nodes in `LS.Header' to start with the
+ // correct value.
+ void rewriteIncomingValuesForPHIs(
+ LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
+ const LoopConstrainer::RewrittenRangeInfo &RRI) const;
+
+ // Even though we do not preserve any passes at this time, we at least need to
+ // keep the parent loop structure consistent. The `LPPassManager' seems to
+ // verify this after running a loop pass. This function adds the list of
+ // blocks denoted by BBs to this loops parent loop if required.
+ void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
+
+ // Some global state.
+ Function &F;
+ LLVMContext &Ctx;
+ ScalarEvolution &SE;
+
+ // Information about the original loop we started out with.
+ Loop &OriginalLoop;
+ LoopInfo &OriginalLoopInfo;
+ const SCEV *LatchTakenCount;
+ BasicBlock *OriginalPreheader;
+
+ // The preheader of the main loop. This may or may not be different from
+ // `OriginalPreheader'.
+ BasicBlock *MainLoopPreheader;
+
+ // The range we need to run the main loop in.
+ InductiveRangeCheck::Range Range;
+
+ // The structure of the main loop (see comment at the beginning of this class
+ // for a definition)
+ LoopStructure MainLoopStructure;
+
+public:
+ LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
+ ScalarEvolution &SE, InductiveRangeCheck::Range R)
+ : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
+ SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
+ OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
+ MainLoopStructure(LS) {}
+
+ // Entry point for the algorithm. Returns true on success.
+ bool run();
+};
+
+}
+
+void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
+ BasicBlock *ReplaceBy) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingBlock(i) == Block)
+ PN->setIncomingBlock(i, ReplaceBy);
+}
+
+static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
+ APInt SMax =
+ APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
+ return SE.getSignedRange(S).contains(SMax) &&
+ SE.getUnsignedRange(S).contains(SMax);
+}
+
+static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
+ APInt SMin =
+ APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
+ return SE.getSignedRange(S).contains(SMin) &&
+ SE.getUnsignedRange(S).contains(SMin);
+}
+
+Optional<LoopStructure>
+LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
+ Loop &L, const char *&FailureReason) {
+ assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
+
+ BasicBlock *Latch = L.getLoopLatch();
+ if (!L.isLoopExiting(Latch)) {
+ FailureReason = "no loop latch";
+ return None;
+ }
+
+ BasicBlock *Header = L.getHeader();
+ BasicBlock *Preheader = L.getLoopPreheader();
+ if (!Preheader) {
+ FailureReason = "no preheader";
+ return None;
+ }
+
+ BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
+ if (!LatchBr || LatchBr->isUnconditional()) {
+ FailureReason = "latch terminator not conditional branch";
+ return None;
+ }
+
+ unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
+
+ BranchProbability ExitProbability =
+ BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
+
+ if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
+ FailureReason = "short running loop, not profitable";
+ return None;
+ }
+
+ ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
+ if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
+ FailureReason = "latch terminator branch not conditional on integral icmp";
+ return None;
+ }
+
+ const SCEV *LatchCount = SE.getExitCount(&L, Latch);
+ if (isa<SCEVCouldNotCompute>(LatchCount)) {
+ FailureReason = "could not compute latch count";
+ return None;
+ }
+
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ Value *LeftValue = ICI->getOperand(0);
+ const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
+ IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
+
+ Value *RightValue = ICI->getOperand(1);
+ const SCEV *RightSCEV = SE.getSCEV(RightValue);
+
+ // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
+ if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
+ if (isa<SCEVAddRecExpr>(RightSCEV)) {
+ std::swap(LeftSCEV, RightSCEV);
+ std::swap(LeftValue, RightValue);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ } else {
+ FailureReason = "no add recurrences in the icmp";
+ return None;
+ }
+ }
+
+ auto IsInductionVar = [&SE](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
+ if (!AR->isAffine())
+ return false;
+
+ IntegerType *Ty = cast<IntegerType>(AR->getType());
+ IntegerType *WideTy =
+ IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
+
+ // Currently we only work with induction variables that have been proved to
+ // not wrap. This restriction can potentially be lifted in the future.
+
+ const SCEVAddRecExpr *ExtendAfterOp =
+ dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
+ if (!ExtendAfterOp)
+ return false;
+
+ const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
+ const SCEV *ExtendedStep =
+ SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
+
+ bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
+ ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
+
+ if (!NoSignedWrap)
+ return false;
+
+ if (const SCEVConstant *StepExpr =
+ dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
+ ConstantInt *StepCI = StepExpr->getValue();
+ if (StepCI->isOne() || StepCI->isMinusOne()) {
+ IsIncreasing = StepCI->isOne();
+ return true;
+ }
+ }
+
+ return false;
+ };
+
+ // `ICI` is interpreted as taking the backedge if the *next* value of the
+ // induction variable satisfies some constraint.
+
+ const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
+ bool IsIncreasing = false;
+ if (!IsInductionVar(IndVarNext, IsIncreasing)) {
+ FailureReason = "LHS in icmp not induction variable";
+ return None;
+ }
+
+ ConstantInt *One = ConstantInt::get(IndVarTy, 1);
+ // TODO: generalize the predicates here to also match their unsigned variants.
+ if (IsIncreasing) {
+ bool FoundExpectedPred =
+ (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
+ (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
+
+ if (!FoundExpectedPred) {
+ FailureReason = "expected icmp slt semantically, found something else";
+ return None;
+ }
+
+ if (LatchBrExitIdx == 0) {
+ if (CanBeSMax(SE, RightSCEV)) {
+ // TODO: this restriction is easily removable -- we just have to
+ // remember that the icmp was an slt and not an sle.
+ FailureReason = "limit may overflow when coercing sle to slt";
+ return None;
+ }
+
+ IRBuilder<> B(&*Preheader->rbegin());
+ RightValue = B.CreateAdd(RightValue, One);
+ }
+
+ } else {
+ bool FoundExpectedPred =
+ (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
+ (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
+
+ if (!FoundExpectedPred) {
+ FailureReason = "expected icmp sgt semantically, found something else";
+ return None;
+ }
+
+ if (LatchBrExitIdx == 0) {
+ if (CanBeSMin(SE, RightSCEV)) {
+ // TODO: this restriction is easily removable -- we just have to
+ // remember that the icmp was an sgt and not an sge.
+ FailureReason = "limit may overflow when coercing sge to sgt";
+ return None;
+ }
+
+ IRBuilder<> B(&*Preheader->rbegin());
+ RightValue = B.CreateSub(RightValue, One);
+ }
+ }
+
+ const SCEV *StartNext = IndVarNext->getStart();
+ const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
+ const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
+
+ BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
+
+ assert(SE.getLoopDisposition(LatchCount, &L) ==
+ ScalarEvolution::LoopInvariant &&
+ "loop variant exit count doesn't make sense!");
+
+ assert(!L.contains(LatchExit) && "expected an exit block!");
+
+ Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
+ IndVarStart, IndVarTy, &*Preheader->rbegin());
+ IndVarStartV->setName("indvar.start");
+
+ LoopStructure Result;
+
+ Result.Tag = "main";
+ Result.Header = Header;
+ Result.Latch = Latch;
+ Result.LatchBr = LatchBr;
+ Result.LatchExit = LatchExit;
+ Result.LatchBrExitIdx = LatchBrExitIdx;
+ Result.IndVarStart = IndVarStartV;
+ Result.IndVarNext = LeftValue;
+ Result.IndVarIncreasing = IsIncreasing;
+ Result.LoopExitAt = RightValue;
+
+ FailureReason = nullptr;
+
+ return Result;
+}
+
+Optional<LoopConstrainer::SubRanges>
+LoopConstrainer::calculateSubRanges() const {
+ IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
+
+ if (Range.getType() != Ty)
+ return None;
+
+ LoopConstrainer::SubRanges Result;
+
+ // I think we can be more aggressive here and make this nuw / nsw if the
+ // addition that feeds into the icmp for the latch's terminating branch is nuw
+ // / nsw. In any case, a wrapping 2's complement addition is safe.
+ ConstantInt *One = ConstantInt::get(Ty, 1);
+ const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
+ const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
+
+ bool Increasing = MainLoopStructure.IndVarIncreasing;
+ // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
+ // range of values the induction variable takes.
+ const SCEV *Smallest =
+ Increasing ? Start : SE.getAddExpr(End, SE.getSCEV(One));
+ const SCEV *Greatest =
+ Increasing ? End : SE.getAddExpr(Start, SE.getSCEV(One));
+
+ auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
+ return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
+ };
+
+ // In some cases we can prove that we don't need a pre or post loop
+
+ bool ProvablyNoPreloop =
+ SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
+ if (!ProvablyNoPreloop)
+ Result.LowLimit = Clamp(Range.getBegin());
+
+ bool ProvablyNoPostLoop =
+ SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
+ if (!ProvablyNoPostLoop)
+ Result.HighLimit = Clamp(Range.getEnd());
+
+ return Result;
+}
+
+void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
+ const char *Tag) const {
+ for (BasicBlock *BB : OriginalLoop.getBlocks()) {
+ BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
+ Result.Blocks.push_back(Clone);
+ Result.Map[BB] = Clone;
+ }
+
+ auto GetClonedValue = [&Result](Value *V) {
+ assert(V && "null values not in domain!");
+ auto It = Result.Map.find(V);
+ if (It == Result.Map.end())
+ return V;
+ return static_cast<Value *>(It->second);
+ };
+
+ Result.Structure = MainLoopStructure.map(GetClonedValue);
+ Result.Structure.Tag = Tag;
+
+ for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
+ BasicBlock *ClonedBB = Result.Blocks[i];
+ BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
+
+ assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
+
+ for (Instruction &I : *ClonedBB)
+ RemapInstruction(&I, Result.Map,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
+
+ // Exit blocks will now have one more predecessor and their PHI nodes need
+ // to be edited to reflect that. No phi nodes need to be introduced because
+ // the loop is in LCSSA.
+
+ for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
+ SBBI != SBBE; ++SBBI) {
+
+ if (OriginalLoop.contains(*SBBI))
+ continue; // not an exit block
+
+ for (Instruction &I : **SBBI) {
+ if (!isa<PHINode>(&I))
+ break;
+
+ PHINode *PN = cast<PHINode>(&I);
+ Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
+ PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
+ }
+ }
+ }
+}
+
+LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
+ const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
+ BasicBlock *ContinuationBlock) const {
+
+ // We start with a loop with a single latch:
+ //
+ // +--------------------+
+ // | |
+ // | preheader |
+ // | |
+ // +--------+-----------+
+ // | ----------------\
+ // | / |
+ // +--------v----v------+ |
+ // | | |
+ // | header | |
+ // | | |
+ // +--------------------+ |
+ // |
+ // ..... |
+ // |
+ // +--------------------+ |
+ // | | |
+ // | latch >----------/
+ // | |
+ // +-------v------------+
+ // |
+ // |
+ // | +--------------------+
+ // | | |
+ // +---> original exit |
+ // | |
+ // +--------------------+
+ //
+ // We change the control flow to look like
+ //
+ //
+ // +--------------------+
+ // | |
+ // | preheader >-------------------------+
+ // | | |
+ // +--------v-----------+ |
+ // | /-------------+ |
+ // | / | |
+ // +--------v--v--------+ | |
+ // | | | |
+ // | header | | +--------+ |
+ // | | | | | |
+ // +--------------------+ | | +-----v-----v-----------+
+ // | | | |
+ // | | | .pseudo.exit |
+ // | | | |
+ // | | +-----------v-----------+
+ // | | |
+ // ..... | | |
+ // | | +--------v-------------+
+ // +--------------------+ | | | |
+ // | | | | | ContinuationBlock |
+ // | latch >------+ | | |
+ // | | | +----------------------+
+ // +---------v----------+ |
+ // | |
+ // | |
+ // | +---------------^-----+
+ // | | |
+ // +-----> .exit.selector |
+ // | |
+ // +----------v----------+
+ // |
+ // +--------------------+ |
+ // | | |
+ // | original exit <----+
+ // | |
+ // +--------------------+
+ //
+
+ RewrittenRangeInfo RRI;
+
+ auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
+ RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
+ &F, BBInsertLocation);
+ RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
+ BBInsertLocation);
+
+ BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
+ bool Increasing = LS.IndVarIncreasing;
+
+ IRBuilder<> B(PreheaderJump);
+
+ // EnterLoopCond - is it okay to start executing this `LS'?
+ Value *EnterLoopCond = Increasing
+ ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
+ : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
+
+ B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
+ PreheaderJump->eraseFromParent();
+
+ LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
+ B.SetInsertPoint(LS.LatchBr);
+ Value *TakeBackedgeLoopCond =
+ Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
+ : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
+ Value *CondForBranch = LS.LatchBrExitIdx == 1
+ ? TakeBackedgeLoopCond
+ : B.CreateNot(TakeBackedgeLoopCond);
+
+ LS.LatchBr->setCondition(CondForBranch);
+
+ B.SetInsertPoint(RRI.ExitSelector);
+
+ // IterationsLeft - are there any more iterations left, given the original
+ // upper bound on the induction variable? If not, we branch to the "real"
+ // exit.
+ Value *IterationsLeft = Increasing
+ ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
+ : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
+ B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
+
+ BranchInst *BranchToContinuation =
+ BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
+
+ // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
+ // each of the PHI nodes in the loop header. This feeds into the initial
+ // value of the same PHI nodes if/when we continue execution.
+ for (Instruction &I : *LS.Header) {
+ if (!isa<PHINode>(&I))
+ break;
+
+ PHINode *PN = cast<PHINode>(&I);
+
+ PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
+ BranchToContinuation);
+
+ NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
+ NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
+ RRI.ExitSelector);
+ RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
+ }
+
+ RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
+ BranchToContinuation);
+ RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
+ RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
+
+ // The latch exit now has a branch from `RRI.ExitSelector' instead of
+ // `LS.Latch'. The PHI nodes need to be updated to reflect that.
+ for (Instruction &I : *LS.LatchExit) {
+ if (PHINode *PN = dyn_cast<PHINode>(&I))
+ replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
+ else
+ break;
+ }
+
+ return RRI;
+}
+
+void LoopConstrainer::rewriteIncomingValuesForPHIs(
+ LoopStructure &LS, BasicBlock *ContinuationBlock,
+ const LoopConstrainer::RewrittenRangeInfo &RRI) const {
+
+ unsigned PHIIndex = 0;
+ for (Instruction &I : *LS.Header) {
+ if (!isa<PHINode>(&I))
+ break;
+
+ PHINode *PN = cast<PHINode>(&I);
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
+ if (PN->getIncomingBlock(i) == ContinuationBlock)
+ PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
+ }
+
+ LS.IndVarStart = RRI.IndVarEnd;
+}
+
+BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
+ BasicBlock *OldPreheader,
+ const char *Tag) const {
+
+ BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
+ BranchInst::Create(LS.Header, Preheader);
+
+ for (Instruction &I : *LS.Header) {
+ if (!isa<PHINode>(&I))
+ break;
+
+ PHINode *PN = cast<PHINode>(&I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
+ replacePHIBlock(PN, OldPreheader, Preheader);
+ }
+
+ return Preheader;
+}
+
+void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
+ Loop *ParentLoop = OriginalLoop.getParentLoop();
+ if (!ParentLoop)
+ return;
+
+ for (BasicBlock *BB : BBs)
+ ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
+}
+
+bool LoopConstrainer::run() {
+ BasicBlock *Preheader = nullptr;
+ LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
+ Preheader = OriginalLoop.getLoopPreheader();
+ assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
+ "preconditions!");
+
+ OriginalPreheader = Preheader;
+ MainLoopPreheader = Preheader;
+
+ Optional<SubRanges> MaybeSR = calculateSubRanges();
+ if (!MaybeSR.hasValue()) {
+ DEBUG(dbgs() << "irce: could not compute subranges\n");
+ return false;
+ }
+
+ SubRanges SR = MaybeSR.getValue();
+ bool Increasing = MainLoopStructure.IndVarIncreasing;
+ IntegerType *IVTy =
+ cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
+
+ SCEVExpander Expander(SE, "irce");
+ Instruction *InsertPt = OriginalPreheader->getTerminator();
+
+ // It would have been better to make `PreLoop' and `PostLoop'
+ // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
+ // constructor.
+ ClonedLoop PreLoop, PostLoop;
+ bool NeedsPreLoop =
+ Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
+ bool NeedsPostLoop =
+ Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
+
+ Value *ExitPreLoopAt = nullptr;
+ Value *ExitMainLoopAt = nullptr;
+ const SCEVConstant *MinusOneS =
+ cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
+
+ if (NeedsPreLoop) {
+ const SCEV *ExitPreLoopAtSCEV = nullptr;
+
+ if (Increasing)
+ ExitPreLoopAtSCEV = *SR.LowLimit;
+ else {
+ if (CanBeSMin(SE, *SR.HighLimit)) {
+ DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
+ << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
+ << "\n");
+ return false;
+ }
+ ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
+ }
+
+ ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
+ ExitPreLoopAt->setName("exit.preloop.at");
+ }
+
+ if (NeedsPostLoop) {
+ const SCEV *ExitMainLoopAtSCEV = nullptr;
+
+ if (Increasing)
+ ExitMainLoopAtSCEV = *SR.HighLimit;
+ else {
+ if (CanBeSMin(SE, *SR.LowLimit)) {
+ DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
+ << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
+ << "\n");
+ return false;
+ }
+ ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
+ }
+
+ ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
+ ExitMainLoopAt->setName("exit.mainloop.at");
+ }
+
+ // We clone these ahead of time so that we don't have to deal with changing
+ // and temporarily invalid IR as we transform the loops.
+ if (NeedsPreLoop)
+ cloneLoop(PreLoop, "preloop");
+ if (NeedsPostLoop)
+ cloneLoop(PostLoop, "postloop");
+
+ RewrittenRangeInfo PreLoopRRI;
+
+ if (NeedsPreLoop) {
+ Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
+ PreLoop.Structure.Header);
+
+ MainLoopPreheader =
+ createPreheader(MainLoopStructure, Preheader, "mainloop");
+ PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
+ ExitPreLoopAt, MainLoopPreheader);
+ rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
+ PreLoopRRI);
+ }
+
+ BasicBlock *PostLoopPreheader = nullptr;
+ RewrittenRangeInfo PostLoopRRI;
+
+ if (NeedsPostLoop) {
+ PostLoopPreheader =
+ createPreheader(PostLoop.Structure, Preheader, "postloop");
+ PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
+ ExitMainLoopAt, PostLoopPreheader);
+ rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
+ PostLoopRRI);
+ }
+
+ BasicBlock *NewMainLoopPreheader =
+ MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
+ BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
+ PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
+ PostLoopRRI.ExitSelector, NewMainLoopPreheader};
+
+ // Some of the above may be nullptr, filter them out before passing to
+ // addToParentLoopIfNeeded.
+ auto NewBlocksEnd =
+ std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
+
+ addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
+ addToParentLoopIfNeeded(PreLoop.Blocks);
+ addToParentLoopIfNeeded(PostLoop.Blocks);
+
+ return true;
+}
+
+/// Computes and returns a range of values for the induction variable (IndVar)
+/// in which the range check can be safely elided. If it cannot compute such a
+/// range, returns None.
+Optional<InductiveRangeCheck::Range>
+InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
+ const SCEVAddRecExpr *IndVar,
+ IRBuilder<> &) const {
+ // IndVar is of the form "A + B * I" (where "I" is the canonical induction
+ // variable, that may or may not exist as a real llvm::Value in the loop) and
+ // this inductive range check is a range check on the "C + D * I" ("C" is
+ // getOffset() and "D" is getScale()). We rewrite the value being range
+ // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
+ // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
+ // can be generalized as needed.
+ //
+ // The actual inequalities we solve are of the form
+ //
+ // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
+ //
+ // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
+ // and subtractions are twos-complement wrapping and comparisons are signed.
+ //
+ // Proof:
+ //
+ // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
+ // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
+ // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
+ // overflown.
+ //
+ // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
+ // Hence 0 <= (IndVar + M) < L
+
+ // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
+ // 127, IndVar = 126 and L = -2 in an i8 world.
+
+ if (!IndVar->isAffine())
+ return None;
+
+ const SCEV *A = IndVar->getStart();
+ const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
+ if (!B)
+ return None;
+
+ const SCEV *C = getOffset();
+ const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
+ if (D != B)
+ return None;
+
+ ConstantInt *ConstD = D->getValue();
+ if (!(ConstD->isMinusOne() || ConstD->isOne()))
+ return None;
+
+ const SCEV *M = SE.getMinusSCEV(C, A);
+
+ const SCEV *Begin = SE.getNegativeSCEV(M);
+ const SCEV *End = SE.getMinusSCEV(SE.getSCEV(getLength()), M);
+
+ return InductiveRangeCheck::Range(Begin, End);
+}
+
+static Optional<InductiveRangeCheck::Range>
+IntersectRange(ScalarEvolution &SE,
+ const Optional<InductiveRangeCheck::Range> &R1,
+ const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
+ if (!R1.hasValue())
+ return R2;
+ auto &R1Value = R1.getValue();
+
+ // TODO: we could widen the smaller range and have this work; but for now we
+ // bail out to keep things simple.
+ if (R1Value.getType() != R2.getType())
+ return None;
+
+ const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
+ const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
+
+ return InductiveRangeCheck::Range(NewBegin, NewEnd);
+}
+
+bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (L->getBlocks().size() >= LoopSizeCutoff) {
+ DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
+ return false;
+ }
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
+ return false;
+ }
+
+ LLVMContext &Context = Preheader->getContext();
+ InductiveRangeCheck::AllocatorTy IRCAlloc;
+ SmallVector<InductiveRangeCheck *, 16> RangeChecks;
+ ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
+ BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
+
+ for (auto BBI : L->getBlocks())
+ if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
+ if (InductiveRangeCheck *IRC =
+ InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
+ RangeChecks.push_back(IRC);
+
+ if (RangeChecks.empty())
+ return false;
+
+ DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
+ dbgs() << "irce: loop has " << RangeChecks.size()
+ << " inductive range checks: \n";
+ for (InductiveRangeCheck *IRC : RangeChecks)
+ IRC->print(dbgs());
+ );
+
+ const char *FailureReason = nullptr;
+ Optional<LoopStructure> MaybeLoopStructure =
+ LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
+ if (!MaybeLoopStructure.hasValue()) {
+ DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
+ << "\n";);
+ return false;
+ }
+ LoopStructure LS = MaybeLoopStructure.getValue();
+ bool Increasing = LS.IndVarIncreasing;
+ const SCEV *MinusOne =
+ SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
+ const SCEVAddRecExpr *IndVar =
+ cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
+
+ Optional<InductiveRangeCheck::Range> SafeIterRange;
+ Instruction *ExprInsertPt = Preheader->getTerminator();
+
+ SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
+
+ IRBuilder<> B(ExprInsertPt);
+ for (InductiveRangeCheck *IRC : RangeChecks) {
+ auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
+ if (Result.hasValue()) {
+ auto MaybeSafeIterRange =
+ IntersectRange(SE, SafeIterRange, Result.getValue(), B);
+ if (MaybeSafeIterRange.hasValue()) {
+ RangeChecksToEliminate.push_back(IRC);
+ SafeIterRange = MaybeSafeIterRange.getValue();
+ }
+ }
+ }
+
+ if (!SafeIterRange.hasValue())
+ return false;
+
+ LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
+ SE, SafeIterRange.getValue());
+ bool Changed = LC.run();
+
+ if (Changed) {
+ auto PrintConstrainedLoopInfo = [L]() {
+ dbgs() << "irce: in function ";
+ dbgs() << L->getHeader()->getParent()->getName() << ": ";
+ dbgs() << "constrained ";
+ L->print(dbgs());
+ };
+
+ DEBUG(PrintConstrainedLoopInfo());
+
+ if (PrintChangedLoops)
+ PrintConstrainedLoopInfo();
+
+ // Optimize away the now-redundant range checks.
+
+ for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
+ ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
+ ? ConstantInt::getTrue(Context)
+ : ConstantInt::getFalse(Context);
+ IRC->getBranch()->setCondition(FoldedRangeCheck);
+ }
+ }
+
+ return Changed;
+}
+
+Pass *llvm::createInductiveRangeCheckEliminationPass() {
+ return new InductiveRangeCheckElimination;
+}