diff options
Diffstat (limited to 'lib/Transforms/Scalar/SCCP.cpp')
-rw-r--r-- | lib/Transforms/Scalar/SCCP.cpp | 1691 |
1 files changed, 1691 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp new file mode 100644 index 0000000..0e4fe8f --- /dev/null +++ b/lib/Transforms/Scalar/SCCP.cpp @@ -0,0 +1,1691 @@ +//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements sparse conditional constant propagation and merging: +// +// Specifically, this: +// * Assumes values are constant unless proven otherwise +// * Assumes BasicBlocks are dead unless proven otherwise +// * Proves values to be constant, and replaces them with constants +// * Proves conditional branches to be unconditional +// +// Notice that: +// * This pass has a habit of making definitions be dead. It is a good idea +// to to run a DCE pass sometime after running this pass. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "sccp" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumInstRemoved, "Number of instructions removed"); +STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); + +STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); +STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); +STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); +STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); + +namespace { +/// LatticeVal class - This class represents the different lattice values that +/// an LLVM value may occupy. It is a simple class with value semantics. +/// +class VISIBILITY_HIDDEN LatticeVal { + enum { + /// undefined - This LLVM Value has no known value yet. + undefined, + + /// constant - This LLVM Value has a specific constant value. + constant, + + /// forcedconstant - This LLVM Value was thought to be undef until + /// ResolvedUndefsIn. This is treated just like 'constant', but if merged + /// with another (different) constant, it goes to overdefined, instead of + /// asserting. + forcedconstant, + + /// overdefined - This instruction is not known to be constant, and we know + /// it has a value. + overdefined + } LatticeValue; // The current lattice position + + Constant *ConstantVal; // If Constant value, the current value +public: + inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} + + // markOverdefined - Return true if this is a new status to be in... + inline bool markOverdefined() { + if (LatticeValue != overdefined) { + LatticeValue = overdefined; + return true; + } + return false; + } + + // markConstant - Return true if this is a new status for us. + inline bool markConstant(Constant *V) { + if (LatticeValue != constant) { + if (LatticeValue == undefined) { + LatticeValue = constant; + assert(V && "Marking constant with NULL"); + ConstantVal = V; + } else { + assert(LatticeValue == forcedconstant && + "Cannot move from overdefined to constant!"); + // Stay at forcedconstant if the constant is the same. + if (V == ConstantVal) return false; + + // Otherwise, we go to overdefined. Assumptions made based on the + // forced value are possibly wrong. Assuming this is another constant + // could expose a contradiction. + LatticeValue = overdefined; + } + return true; + } else { + assert(ConstantVal == V && "Marking constant with different value"); + } + return false; + } + + inline void markForcedConstant(Constant *V) { + assert(LatticeValue == undefined && "Can't force a defined value!"); + LatticeValue = forcedconstant; + ConstantVal = V; + } + + inline bool isUndefined() const { return LatticeValue == undefined; } + inline bool isConstant() const { + return LatticeValue == constant || LatticeValue == forcedconstant; + } + inline bool isOverdefined() const { return LatticeValue == overdefined; } + + inline Constant *getConstant() const { + assert(isConstant() && "Cannot get the constant of a non-constant!"); + return ConstantVal; + } +}; + +} // end anonymous namespace + + +//===----------------------------------------------------------------------===// +// +/// SCCPSolver - This class is a general purpose solver for Sparse Conditional +/// Constant Propagation. +/// +class SCCPSolver : public InstVisitor<SCCPSolver> { + SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable + std::map<Value*, LatticeVal> ValueState; // The state each value is in. + + /// GlobalValue - If we are tracking any values for the contents of a global + /// variable, we keep a mapping from the constant accessor to the element of + /// the global, to the currently known value. If the value becomes + /// overdefined, it's entry is simply removed from this map. + DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; + + /// TrackedFunctionRetVals - If we are tracking arguments into and the return + /// value out of a function, it will have an entry in this map, indicating + /// what the known return value for the function is. + DenseMap<Function*, LatticeVal> TrackedFunctionRetVals; + + // The reason for two worklists is that overdefined is the lowest state + // on the lattice, and moving things to overdefined as fast as possible + // makes SCCP converge much faster. + // By having a separate worklist, we accomplish this because everything + // possibly overdefined will become overdefined at the soonest possible + // point. + std::vector<Value*> OverdefinedInstWorkList; + std::vector<Value*> InstWorkList; + + + std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list + + /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not + /// overdefined, despite the fact that the PHI node is overdefined. + std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; + + /// KnownFeasibleEdges - Entries in this set are edges which have already had + /// PHI nodes retriggered. + typedef std::pair<BasicBlock*,BasicBlock*> Edge; + std::set<Edge> KnownFeasibleEdges; +public: + + /// MarkBlockExecutable - This method can be used by clients to mark all of + /// the blocks that are known to be intrinsically live in the processed unit. + void MarkBlockExecutable(BasicBlock *BB) { + DOUT << "Marking Block Executable: " << BB->getName() << "\n"; + BBExecutable.insert(BB); // Basic block is executable! + BBWorkList.push_back(BB); // Add the block to the work list! + } + + /// TrackValueOfGlobalVariable - Clients can use this method to + /// inform the SCCPSolver that it should track loads and stores to the + /// specified global variable if it can. This is only legal to call if + /// performing Interprocedural SCCP. + void TrackValueOfGlobalVariable(GlobalVariable *GV) { + const Type *ElTy = GV->getType()->getElementType(); + if (ElTy->isFirstClassType()) { + LatticeVal &IV = TrackedGlobals[GV]; + if (!isa<UndefValue>(GV->getInitializer())) + IV.markConstant(GV->getInitializer()); + } + } + + /// AddTrackedFunction - If the SCCP solver is supposed to track calls into + /// and out of the specified function (which cannot have its address taken), + /// this method must be called. + void AddTrackedFunction(Function *F) { + assert(F->hasInternalLinkage() && "Can only track internal functions!"); + // Add an entry, F -> undef. + TrackedFunctionRetVals[F]; + } + + /// Solve - Solve for constants and executable blocks. + /// + void Solve(); + + /// ResolvedUndefsIn - While solving the dataflow for a function, we assume + /// that branches on undef values cannot reach any of their successors. + /// However, this is not a safe assumption. After we solve dataflow, this + /// method should be use to handle this. If this returns true, the solver + /// should be rerun. + bool ResolvedUndefsIn(Function &F); + + /// getExecutableBlocks - Once we have solved for constants, return the set of + /// blocks that is known to be executable. + SmallSet<BasicBlock*, 16> &getExecutableBlocks() { + return BBExecutable; + } + + /// getValueMapping - Once we have solved for constants, return the mapping of + /// LLVM values to LatticeVals. + std::map<Value*, LatticeVal> &getValueMapping() { + return ValueState; + } + + /// getTrackedFunctionRetVals - Get the inferred return value map. + /// + const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() { + return TrackedFunctionRetVals; + } + + /// getTrackedGlobals - Get and return the set of inferred initializers for + /// global variables. + const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { + return TrackedGlobals; + } + + inline void markOverdefined(Value *V) { + markOverdefined(ValueState[V], V); + } + +private: + // markConstant - Make a value be marked as "constant". If the value + // is not already a constant, add it to the instruction work list so that + // the users of the instruction are updated later. + // + inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { + if (IV.markConstant(C)) { + DOUT << "markConstant: " << *C << ": " << *V; + InstWorkList.push_back(V); + } + } + + inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { + IV.markForcedConstant(C); + DOUT << "markForcedConstant: " << *C << ": " << *V; + InstWorkList.push_back(V); + } + + inline void markConstant(Value *V, Constant *C) { + markConstant(ValueState[V], V, C); + } + + // markOverdefined - Make a value be marked as "overdefined". If the + // value is not already overdefined, add it to the overdefined instruction + // work list so that the users of the instruction are updated later. + + inline void markOverdefined(LatticeVal &IV, Value *V) { + if (IV.markOverdefined()) { + DEBUG(DOUT << "markOverdefined: "; + if (Function *F = dyn_cast<Function>(V)) + DOUT << "Function '" << F->getName() << "'\n"; + else + DOUT << *V); + // Only instructions go on the work list + OverdefinedInstWorkList.push_back(V); + } + } + + inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { + if (IV.isOverdefined() || MergeWithV.isUndefined()) + return; // Noop. + if (MergeWithV.isOverdefined()) + markOverdefined(IV, V); + else if (IV.isUndefined()) + markConstant(IV, V, MergeWithV.getConstant()); + else if (IV.getConstant() != MergeWithV.getConstant()) + markOverdefined(IV, V); + } + + inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { + return mergeInValue(ValueState[V], V, MergeWithV); + } + + + // getValueState - Return the LatticeVal object that corresponds to the value. + // This function is necessary because not all values should start out in the + // underdefined state... Argument's should be overdefined, and + // constants should be marked as constants. If a value is not known to be an + // Instruction object, then use this accessor to get its value from the map. + // + inline LatticeVal &getValueState(Value *V) { + std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); + if (I != ValueState.end()) return I->second; // Common case, in the map + + if (Constant *C = dyn_cast<Constant>(V)) { + if (isa<UndefValue>(V)) { + // Nothing to do, remain undefined. + } else { + LatticeVal &LV = ValueState[C]; + LV.markConstant(C); // Constants are constant + return LV; + } + } + // All others are underdefined by default... + return ValueState[V]; + } + + // markEdgeExecutable - Mark a basic block as executable, adding it to the BB + // work list if it is not already executable... + // + void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { + if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) + return; // This edge is already known to be executable! + + if (BBExecutable.count(Dest)) { + DOUT << "Marking Edge Executable: " << Source->getName() + << " -> " << Dest->getName() << "\n"; + + // The destination is already executable, but we just made an edge + // feasible that wasn't before. Revisit the PHI nodes in the block + // because they have potentially new operands. + for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) + visitPHINode(*cast<PHINode>(I)); + + } else { + MarkBlockExecutable(Dest); + } + } + + // getFeasibleSuccessors - Return a vector of booleans to indicate which + // successors are reachable from a given terminator instruction. + // + void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); + + // isEdgeFeasible - Return true if the control flow edge from the 'From' basic + // block to the 'To' basic block is currently feasible... + // + bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); + + // OperandChangedState - This method is invoked on all of the users of an + // instruction that was just changed state somehow.... Based on this + // information, we need to update the specified user of this instruction. + // + void OperandChangedState(User *U) { + // Only instructions use other variable values! + Instruction &I = cast<Instruction>(*U); + if (BBExecutable.count(I.getParent())) // Inst is executable? + visit(I); + } + +private: + friend class InstVisitor<SCCPSolver>; + + // visit implementations - Something changed in this instruction... Either an + // operand made a transition, or the instruction is newly executable. Change + // the value type of I to reflect these changes if appropriate. + // + void visitPHINode(PHINode &I); + + // Terminators + void visitReturnInst(ReturnInst &I); + void visitTerminatorInst(TerminatorInst &TI); + + void visitCastInst(CastInst &I); + void visitSelectInst(SelectInst &I); + void visitBinaryOperator(Instruction &I); + void visitCmpInst(CmpInst &I); + void visitExtractElementInst(ExtractElementInst &I); + void visitInsertElementInst(InsertElementInst &I); + void visitShuffleVectorInst(ShuffleVectorInst &I); + + // Instructions that cannot be folded away... + void visitStoreInst (Instruction &I); + void visitLoadInst (LoadInst &I); + void visitGetElementPtrInst(GetElementPtrInst &I); + void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } + void visitInvokeInst (InvokeInst &II) { + visitCallSite(CallSite::get(&II)); + visitTerminatorInst(II); + } + void visitCallSite (CallSite CS); + void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } + void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } + void visitAllocationInst(Instruction &I) { markOverdefined(&I); } + void visitVANextInst (Instruction &I) { markOverdefined(&I); } + void visitVAArgInst (Instruction &I) { markOverdefined(&I); } + void visitFreeInst (Instruction &I) { /*returns void*/ } + + void visitInstruction(Instruction &I) { + // If a new instruction is added to LLVM that we don't handle... + cerr << "SCCP: Don't know how to handle: " << I; + markOverdefined(&I); // Just in case + } +}; + +// getFeasibleSuccessors - Return a vector of booleans to indicate which +// successors are reachable from a given terminator instruction. +// +void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, + SmallVector<bool, 16> &Succs) { + Succs.resize(TI.getNumSuccessors()); + if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { + if (BI->isUnconditional()) { + Succs[0] = true; + } else { + LatticeVal &BCValue = getValueState(BI->getCondition()); + if (BCValue.isOverdefined() || + (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { + // Overdefined condition variables, and branches on unfoldable constant + // conditions, mean the branch could go either way. + Succs[0] = Succs[1] = true; + } else if (BCValue.isConstant()) { + // Constant condition variables mean the branch can only go a single way + Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; + } + } + } else if (isa<InvokeInst>(&TI)) { + // Invoke instructions successors are always executable. + Succs[0] = Succs[1] = true; + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { + LatticeVal &SCValue = getValueState(SI->getCondition()); + if (SCValue.isOverdefined() || // Overdefined condition? + (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { + // All destinations are executable! + Succs.assign(TI.getNumSuccessors(), true); + } else if (SCValue.isConstant()) { + Constant *CPV = SCValue.getConstant(); + // Make sure to skip the "default value" which isn't a value + for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { + if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... + Succs[i] = true; + return; + } + } + + // Constant value not equal to any of the branches... must execute + // default branch then... + Succs[0] = true; + } + } else { + assert(0 && "SCCP: Don't know how to handle this terminator!"); + } +} + + +// isEdgeFeasible - Return true if the control flow edge from the 'From' basic +// block to the 'To' basic block is currently feasible... +// +bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { + assert(BBExecutable.count(To) && "Dest should always be alive!"); + + // Make sure the source basic block is executable!! + if (!BBExecutable.count(From)) return false; + + // Check to make sure this edge itself is actually feasible now... + TerminatorInst *TI = From->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isUnconditional()) + return true; + else { + LatticeVal &BCValue = getValueState(BI->getCondition()); + if (BCValue.isOverdefined()) { + // Overdefined condition variables mean the branch could go either way. + return true; + } else if (BCValue.isConstant()) { + // Not branching on an evaluatable constant? + if (!isa<ConstantInt>(BCValue.getConstant())) return true; + + // Constant condition variables mean the branch can only go a single way + return BI->getSuccessor(BCValue.getConstant() == + ConstantInt::getFalse()) == To; + } + return false; + } + } else if (isa<InvokeInst>(TI)) { + // Invoke instructions successors are always executable. + return true; + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + LatticeVal &SCValue = getValueState(SI->getCondition()); + if (SCValue.isOverdefined()) { // Overdefined condition? + // All destinations are executable! + return true; + } else if (SCValue.isConstant()) { + Constant *CPV = SCValue.getConstant(); + if (!isa<ConstantInt>(CPV)) + return true; // not a foldable constant? + + // Make sure to skip the "default value" which isn't a value + for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) + if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... + return SI->getSuccessor(i) == To; + + // Constant value not equal to any of the branches... must execute + // default branch then... + return SI->getDefaultDest() == To; + } + return false; + } else { + cerr << "Unknown terminator instruction: " << *TI; + abort(); + } +} + +// visit Implementations - Something changed in this instruction... Either an +// operand made a transition, or the instruction is newly executable. Change +// the value type of I to reflect these changes if appropriate. This method +// makes sure to do the following actions: +// +// 1. If a phi node merges two constants in, and has conflicting value coming +// from different branches, or if the PHI node merges in an overdefined +// value, then the PHI node becomes overdefined. +// 2. If a phi node merges only constants in, and they all agree on value, the +// PHI node becomes a constant value equal to that. +// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant +// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined +// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined +// 6. If a conditional branch has a value that is constant, make the selected +// destination executable +// 7. If a conditional branch has a value that is overdefined, make all +// successors executable. +// +void SCCPSolver::visitPHINode(PHINode &PN) { + LatticeVal &PNIV = getValueState(&PN); + if (PNIV.isOverdefined()) { + // There may be instructions using this PHI node that are not overdefined + // themselves. If so, make sure that they know that the PHI node operand + // changed. + std::multimap<PHINode*, Instruction*>::iterator I, E; + tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); + if (I != E) { + SmallVector<Instruction*, 16> Users; + for (; I != E; ++I) Users.push_back(I->second); + while (!Users.empty()) { + visit(Users.back()); + Users.pop_back(); + } + } + return; // Quick exit + } + + // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, + // and slow us down a lot. Just mark them overdefined. + if (PN.getNumIncomingValues() > 64) { + markOverdefined(PNIV, &PN); + return; + } + + // Look at all of the executable operands of the PHI node. If any of them + // are overdefined, the PHI becomes overdefined as well. If they are all + // constant, and they agree with each other, the PHI becomes the identical + // constant. If they are constant and don't agree, the PHI is overdefined. + // If there are no executable operands, the PHI remains undefined. + // + Constant *OperandVal = 0; + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + LatticeVal &IV = getValueState(PN.getIncomingValue(i)); + if (IV.isUndefined()) continue; // Doesn't influence PHI node. + + if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { + if (IV.isOverdefined()) { // PHI node becomes overdefined! + markOverdefined(PNIV, &PN); + return; + } + + if (OperandVal == 0) { // Grab the first value... + OperandVal = IV.getConstant(); + } else { // Another value is being merged in! + // There is already a reachable operand. If we conflict with it, + // then the PHI node becomes overdefined. If we agree with it, we + // can continue on. + + // Check to see if there are two different constants merging... + if (IV.getConstant() != OperandVal) { + // Yes there is. This means the PHI node is not constant. + // You must be overdefined poor PHI. + // + markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined + return; // I'm done analyzing you + } + } + } + } + + // If we exited the loop, this means that the PHI node only has constant + // arguments that agree with each other(and OperandVal is the constant) or + // OperandVal is null because there are no defined incoming arguments. If + // this is the case, the PHI remains undefined. + // + if (OperandVal) + markConstant(PNIV, &PN, OperandVal); // Acquire operand value +} + +void SCCPSolver::visitReturnInst(ReturnInst &I) { + if (I.getNumOperands() == 0) return; // Ret void + + // If we are tracking the return value of this function, merge it in. + Function *F = I.getParent()->getParent(); + if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { + DenseMap<Function*, LatticeVal>::iterator TFRVI = + TrackedFunctionRetVals.find(F); + if (TFRVI != TrackedFunctionRetVals.end() && + !TFRVI->second.isOverdefined()) { + LatticeVal &IV = getValueState(I.getOperand(0)); + mergeInValue(TFRVI->second, F, IV); + } + } +} + + +void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { + SmallVector<bool, 16> SuccFeasible; + getFeasibleSuccessors(TI, SuccFeasible); + + BasicBlock *BB = TI.getParent(); + + // Mark all feasible successors executable... + for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) + if (SuccFeasible[i]) + markEdgeExecutable(BB, TI.getSuccessor(i)); +} + +void SCCPSolver::visitCastInst(CastInst &I) { + Value *V = I.getOperand(0); + LatticeVal &VState = getValueState(V); + if (VState.isOverdefined()) // Inherit overdefinedness of operand + markOverdefined(&I); + else if (VState.isConstant()) // Propagate constant value + markConstant(&I, ConstantExpr::getCast(I.getOpcode(), + VState.getConstant(), I.getType())); +} + +void SCCPSolver::visitSelectInst(SelectInst &I) { + LatticeVal &CondValue = getValueState(I.getCondition()); + if (CondValue.isUndefined()) + return; + if (CondValue.isConstant()) { + if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ + mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() + : I.getFalseValue())); + return; + } + } + + // Otherwise, the condition is overdefined or a constant we can't evaluate. + // See if we can produce something better than overdefined based on the T/F + // value. + LatticeVal &TVal = getValueState(I.getTrueValue()); + LatticeVal &FVal = getValueState(I.getFalseValue()); + + // select ?, C, C -> C. + if (TVal.isConstant() && FVal.isConstant() && + TVal.getConstant() == FVal.getConstant()) { + markConstant(&I, FVal.getConstant()); + return; + } + + if (TVal.isUndefined()) { // select ?, undef, X -> X. + mergeInValue(&I, FVal); + } else if (FVal.isUndefined()) { // select ?, X, undef -> X. + mergeInValue(&I, TVal); + } else { + markOverdefined(&I); + } +} + +// Handle BinaryOperators and Shift Instructions... +void SCCPSolver::visitBinaryOperator(Instruction &I) { + LatticeVal &IV = ValueState[&I]; + if (IV.isOverdefined()) return; + + LatticeVal &V1State = getValueState(I.getOperand(0)); + LatticeVal &V2State = getValueState(I.getOperand(1)); + + if (V1State.isOverdefined() || V2State.isOverdefined()) { + // If this is an AND or OR with 0 or -1, it doesn't matter that the other + // operand is overdefined. + if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { + LatticeVal *NonOverdefVal = 0; + if (!V1State.isOverdefined()) { + NonOverdefVal = &V1State; + } else if (!V2State.isOverdefined()) { + NonOverdefVal = &V2State; + } + + if (NonOverdefVal) { + if (NonOverdefVal->isUndefined()) { + // Could annihilate value. + if (I.getOpcode() == Instruction::And) + markConstant(IV, &I, Constant::getNullValue(I.getType())); + else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) + markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); + else + markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); + return; + } else { + if (I.getOpcode() == Instruction::And) { + if (NonOverdefVal->getConstant()->isNullValue()) { + markConstant(IV, &I, NonOverdefVal->getConstant()); + return; // X and 0 = 0 + } + } else { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) + if (CI->isAllOnesValue()) { + markConstant(IV, &I, NonOverdefVal->getConstant()); + return; // X or -1 = -1 + } + } + } + } + } + + + // If both operands are PHI nodes, it is possible that this instruction has + // a constant value, despite the fact that the PHI node doesn't. Check for + // this condition now. + if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) + if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) + if (PN1->getParent() == PN2->getParent()) { + // Since the two PHI nodes are in the same basic block, they must have + // entries for the same predecessors. Walk the predecessor list, and + // if all of the incoming values are constants, and the result of + // evaluating this expression with all incoming value pairs is the + // same, then this expression is a constant even though the PHI node + // is not a constant! + LatticeVal Result; + for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { + LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); + BasicBlock *InBlock = PN1->getIncomingBlock(i); + LatticeVal &In2 = + getValueState(PN2->getIncomingValueForBlock(InBlock)); + + if (In1.isOverdefined() || In2.isOverdefined()) { + Result.markOverdefined(); + break; // Cannot fold this operation over the PHI nodes! + } else if (In1.isConstant() && In2.isConstant()) { + Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), + In2.getConstant()); + if (Result.isUndefined()) + Result.markConstant(V); + else if (Result.isConstant() && Result.getConstant() != V) { + Result.markOverdefined(); + break; + } + } + } + + // If we found a constant value here, then we know the instruction is + // constant despite the fact that the PHI nodes are overdefined. + if (Result.isConstant()) { + markConstant(IV, &I, Result.getConstant()); + // Remember that this instruction is virtually using the PHI node + // operands. + UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); + UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); + return; + } else if (Result.isUndefined()) { + return; + } + + // Okay, this really is overdefined now. Since we might have + // speculatively thought that this was not overdefined before, and + // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, + // make sure to clean out any entries that we put there, for + // efficiency. + std::multimap<PHINode*, Instruction*>::iterator It, E; + tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); + while (It != E) { + if (It->second == &I) { + UsersOfOverdefinedPHIs.erase(It++); + } else + ++It; + } + tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); + while (It != E) { + if (It->second == &I) { + UsersOfOverdefinedPHIs.erase(It++); + } else + ++It; + } + } + + markOverdefined(IV, &I); + } else if (V1State.isConstant() && V2State.isConstant()) { + markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), + V2State.getConstant())); + } +} + +// Handle ICmpInst instruction... +void SCCPSolver::visitCmpInst(CmpInst &I) { + LatticeVal &IV = ValueState[&I]; + if (IV.isOverdefined()) return; + + LatticeVal &V1State = getValueState(I.getOperand(0)); + LatticeVal &V2State = getValueState(I.getOperand(1)); + + if (V1State.isOverdefined() || V2State.isOverdefined()) { + // If both operands are PHI nodes, it is possible that this instruction has + // a constant value, despite the fact that the PHI node doesn't. Check for + // this condition now. + if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) + if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) + if (PN1->getParent() == PN2->getParent()) { + // Since the two PHI nodes are in the same basic block, they must have + // entries for the same predecessors. Walk the predecessor list, and + // if all of the incoming values are constants, and the result of + // evaluating this expression with all incoming value pairs is the + // same, then this expression is a constant even though the PHI node + // is not a constant! + LatticeVal Result; + for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { + LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); + BasicBlock *InBlock = PN1->getIncomingBlock(i); + LatticeVal &In2 = + getValueState(PN2->getIncomingValueForBlock(InBlock)); + + if (In1.isOverdefined() || In2.isOverdefined()) { + Result.markOverdefined(); + break; // Cannot fold this operation over the PHI nodes! + } else if (In1.isConstant() && In2.isConstant()) { + Constant *V = ConstantExpr::getCompare(I.getPredicate(), + In1.getConstant(), + In2.getConstant()); + if (Result.isUndefined()) + Result.markConstant(V); + else if (Result.isConstant() && Result.getConstant() != V) { + Result.markOverdefined(); + break; + } + } + } + + // If we found a constant value here, then we know the instruction is + // constant despite the fact that the PHI nodes are overdefined. + if (Result.isConstant()) { + markConstant(IV, &I, Result.getConstant()); + // Remember that this instruction is virtually using the PHI node + // operands. + UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); + UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); + return; + } else if (Result.isUndefined()) { + return; + } + + // Okay, this really is overdefined now. Since we might have + // speculatively thought that this was not overdefined before, and + // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, + // make sure to clean out any entries that we put there, for + // efficiency. + std::multimap<PHINode*, Instruction*>::iterator It, E; + tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); + while (It != E) { + if (It->second == &I) { + UsersOfOverdefinedPHIs.erase(It++); + } else + ++It; + } + tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); + while (It != E) { + if (It->second == &I) { + UsersOfOverdefinedPHIs.erase(It++); + } else + ++It; + } + } + + markOverdefined(IV, &I); + } else if (V1State.isConstant() && V2State.isConstant()) { + markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), + V1State.getConstant(), + V2State.getConstant())); + } +} + +void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { + // FIXME : SCCP does not handle vectors properly. + markOverdefined(&I); + return; + +#if 0 + LatticeVal &ValState = getValueState(I.getOperand(0)); + LatticeVal &IdxState = getValueState(I.getOperand(1)); + + if (ValState.isOverdefined() || IdxState.isOverdefined()) + markOverdefined(&I); + else if(ValState.isConstant() && IdxState.isConstant()) + markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), + IdxState.getConstant())); +#endif +} + +void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { + // FIXME : SCCP does not handle vectors properly. + markOverdefined(&I); + return; +#if 0 + LatticeVal &ValState = getValueState(I.getOperand(0)); + LatticeVal &EltState = getValueState(I.getOperand(1)); + LatticeVal &IdxState = getValueState(I.getOperand(2)); + + if (ValState.isOverdefined() || EltState.isOverdefined() || + IdxState.isOverdefined()) + markOverdefined(&I); + else if(ValState.isConstant() && EltState.isConstant() && + IdxState.isConstant()) + markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), + EltState.getConstant(), + IdxState.getConstant())); + else if (ValState.isUndefined() && EltState.isConstant() && + IdxState.isConstant()) + markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), + EltState.getConstant(), + IdxState.getConstant())); +#endif +} + +void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { + // FIXME : SCCP does not handle vectors properly. + markOverdefined(&I); + return; +#if 0 + LatticeVal &V1State = getValueState(I.getOperand(0)); + LatticeVal &V2State = getValueState(I.getOperand(1)); + LatticeVal &MaskState = getValueState(I.getOperand(2)); + + if (MaskState.isUndefined() || + (V1State.isUndefined() && V2State.isUndefined())) + return; // Undefined output if mask or both inputs undefined. + + if (V1State.isOverdefined() || V2State.isOverdefined() || + MaskState.isOverdefined()) { + markOverdefined(&I); + } else { + // A mix of constant/undef inputs. + Constant *V1 = V1State.isConstant() ? + V1State.getConstant() : UndefValue::get(I.getType()); + Constant *V2 = V2State.isConstant() ? + V2State.getConstant() : UndefValue::get(I.getType()); + Constant *Mask = MaskState.isConstant() ? + MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); + markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); + } +#endif +} + +// Handle getelementptr instructions... if all operands are constants then we +// can turn this into a getelementptr ConstantExpr. +// +void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { + LatticeVal &IV = ValueState[&I]; + if (IV.isOverdefined()) return; + + SmallVector<Constant*, 8> Operands; + Operands.reserve(I.getNumOperands()); + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + LatticeVal &State = getValueState(I.getOperand(i)); + if (State.isUndefined()) + return; // Operands are not resolved yet... + else if (State.isOverdefined()) { + markOverdefined(IV, &I); + return; + } + assert(State.isConstant() && "Unknown state!"); + Operands.push_back(State.getConstant()); + } + + Constant *Ptr = Operands[0]; + Operands.erase(Operands.begin()); // Erase the pointer from idx list... + + markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], + Operands.size())); +} + +void SCCPSolver::visitStoreInst(Instruction &SI) { + if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) + return; + GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); + DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); + if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; + + // Get the value we are storing into the global. + LatticeVal &PtrVal = getValueState(SI.getOperand(0)); + + mergeInValue(I->second, GV, PtrVal); + if (I->second.isOverdefined()) + TrackedGlobals.erase(I); // No need to keep tracking this! +} + + +// Handle load instructions. If the operand is a constant pointer to a constant +// global, we can replace the load with the loaded constant value! +void SCCPSolver::visitLoadInst(LoadInst &I) { + LatticeVal &IV = ValueState[&I]; + if (IV.isOverdefined()) return; + + LatticeVal &PtrVal = getValueState(I.getOperand(0)); + if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! + if (PtrVal.isConstant() && !I.isVolatile()) { + Value *Ptr = PtrVal.getConstant(); + if (isa<ConstantPointerNull>(Ptr)) { + // load null -> null + markConstant(IV, &I, Constant::getNullValue(I.getType())); + return; + } + + // Transform load (constant global) into the value loaded. + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { + if (GV->isConstant()) { + if (!GV->isDeclaration()) { + markConstant(IV, &I, GV->getInitializer()); + return; + } + } else if (!TrackedGlobals.empty()) { + // If we are tracking this global, merge in the known value for it. + DenseMap<GlobalVariable*, LatticeVal>::iterator It = + TrackedGlobals.find(GV); + if (It != TrackedGlobals.end()) { + mergeInValue(IV, &I, It->second); + return; + } + } + } + + // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) + if (CE->getOpcode() == Instruction::GetElementPtr) + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) + if (GV->isConstant() && !GV->isDeclaration()) + if (Constant *V = + ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { + markConstant(IV, &I, V); + return; + } + } + + // Otherwise we cannot say for certain what value this load will produce. + // Bail out. + markOverdefined(IV, &I); +} + +void SCCPSolver::visitCallSite(CallSite CS) { + Function *F = CS.getCalledFunction(); + + // If we are tracking this function, we must make sure to bind arguments as + // appropriate. + DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); + if (F && F->hasInternalLinkage()) + TFRVI = TrackedFunctionRetVals.find(F); + + if (TFRVI != TrackedFunctionRetVals.end()) { + // If this is the first call to the function hit, mark its entry block + // executable. + if (!BBExecutable.count(F->begin())) + MarkBlockExecutable(F->begin()); + + CallSite::arg_iterator CAI = CS.arg_begin(); + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); + AI != E; ++AI, ++CAI) { + LatticeVal &IV = ValueState[AI]; + if (!IV.isOverdefined()) + mergeInValue(IV, AI, getValueState(*CAI)); + } + } + Instruction *I = CS.getInstruction(); + if (I->getType() == Type::VoidTy) return; + + LatticeVal &IV = ValueState[I]; + if (IV.isOverdefined()) return; + + // Propagate the return value of the function to the value of the instruction. + if (TFRVI != TrackedFunctionRetVals.end()) { + mergeInValue(IV, I, TFRVI->second); + return; + } + + if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { + markOverdefined(IV, I); + return; + } + + SmallVector<Constant*, 8> Operands; + Operands.reserve(I->getNumOperands()-1); + + for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); + AI != E; ++AI) { + LatticeVal &State = getValueState(*AI); + if (State.isUndefined()) + return; // Operands are not resolved yet... + else if (State.isOverdefined()) { + markOverdefined(IV, I); + return; + } + assert(State.isConstant() && "Unknown state!"); + Operands.push_back(State.getConstant()); + } + + if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) + markConstant(IV, I, C); + else + markOverdefined(IV, I); +} + + +void SCCPSolver::Solve() { + // Process the work lists until they are empty! + while (!BBWorkList.empty() || !InstWorkList.empty() || + !OverdefinedInstWorkList.empty()) { + // Process the instruction work list... + while (!OverdefinedInstWorkList.empty()) { + Value *I = OverdefinedInstWorkList.back(); + OverdefinedInstWorkList.pop_back(); + + DOUT << "\nPopped off OI-WL: " << *I; + + // "I" got into the work list because it either made the transition from + // bottom to constant + // + // Anything on this worklist that is overdefined need not be visited + // since all of its users will have already been marked as overdefined + // Update all of the users of this instruction's value... + // + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) + OperandChangedState(*UI); + } + // Process the instruction work list... + while (!InstWorkList.empty()) { + Value *I = InstWorkList.back(); + InstWorkList.pop_back(); + + DOUT << "\nPopped off I-WL: " << *I; + + // "I" got into the work list because it either made the transition from + // bottom to constant + // + // Anything on this worklist that is overdefined need not be visited + // since all of its users will have already been marked as overdefined. + // Update all of the users of this instruction's value... + // + if (!getValueState(I).isOverdefined()) + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) + OperandChangedState(*UI); + } + + // Process the basic block work list... + while (!BBWorkList.empty()) { + BasicBlock *BB = BBWorkList.back(); + BBWorkList.pop_back(); + + DOUT << "\nPopped off BBWL: " << *BB; + + // Notify all instructions in this basic block that they are newly + // executable. + visit(BB); + } + } +} + +/// ResolvedUndefsIn - While solving the dataflow for a function, we assume +/// that branches on undef values cannot reach any of their successors. +/// However, this is not a safe assumption. After we solve dataflow, this +/// method should be use to handle this. If this returns true, the solver +/// should be rerun. +/// +/// This method handles this by finding an unresolved branch and marking it one +/// of the edges from the block as being feasible, even though the condition +/// doesn't say it would otherwise be. This allows SCCP to find the rest of the +/// CFG and only slightly pessimizes the analysis results (by marking one, +/// potentially infeasible, edge feasible). This cannot usefully modify the +/// constraints on the condition of the branch, as that would impact other users +/// of the value. +/// +/// This scan also checks for values that use undefs, whose results are actually +/// defined. For example, 'zext i8 undef to i32' should produce all zeros +/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, +/// even if X isn't defined. +bool SCCPSolver::ResolvedUndefsIn(Function &F) { + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (!BBExecutable.count(BB)) + continue; + + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + // Look for instructions which produce undef values. + if (I->getType() == Type::VoidTy) continue; + + LatticeVal &LV = getValueState(I); + if (!LV.isUndefined()) continue; + + // Get the lattice values of the first two operands for use below. + LatticeVal &Op0LV = getValueState(I->getOperand(0)); + LatticeVal Op1LV; + if (I->getNumOperands() == 2) { + // If this is a two-operand instruction, and if both operands are + // undefs, the result stays undef. + Op1LV = getValueState(I->getOperand(1)); + if (Op0LV.isUndefined() && Op1LV.isUndefined()) + continue; + } + + // If this is an instructions whose result is defined even if the input is + // not fully defined, propagate the information. + const Type *ITy = I->getType(); + switch (I->getOpcode()) { + default: break; // Leave the instruction as an undef. + case Instruction::ZExt: + // After a zero extend, we know the top part is zero. SExt doesn't have + // to be handled here, because we don't know whether the top part is 1's + // or 0's. + assert(Op0LV.isUndefined()); + markForcedConstant(LV, I, Constant::getNullValue(ITy)); + return true; + case Instruction::Mul: + case Instruction::And: + // undef * X -> 0. X could be zero. + // undef & X -> 0. X could be zero. + markForcedConstant(LV, I, Constant::getNullValue(ITy)); + return true; + + case Instruction::Or: + // undef | X -> -1. X could be -1. + if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) + markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); + else + markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); + return true; + + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + // X / undef -> undef. No change. + // X % undef -> undef. No change. + if (Op1LV.isUndefined()) break; + + // undef / X -> 0. X could be maxint. + // undef % X -> 0. X could be 1. + markForcedConstant(LV, I, Constant::getNullValue(ITy)); + return true; + + case Instruction::AShr: + // undef >>s X -> undef. No change. + if (Op0LV.isUndefined()) break; + + // X >>s undef -> X. X could be 0, X could have the high-bit known set. + if (Op0LV.isConstant()) + markForcedConstant(LV, I, Op0LV.getConstant()); + else + markOverdefined(LV, I); + return true; + case Instruction::LShr: + case Instruction::Shl: + // undef >> X -> undef. No change. + // undef << X -> undef. No change. + if (Op0LV.isUndefined()) break; + + // X >> undef -> 0. X could be 0. + // X << undef -> 0. X could be 0. + markForcedConstant(LV, I, Constant::getNullValue(ITy)); + return true; + case Instruction::Select: + // undef ? X : Y -> X or Y. There could be commonality between X/Y. + if (Op0LV.isUndefined()) { + if (!Op1LV.isConstant()) // Pick the constant one if there is any. + Op1LV = getValueState(I->getOperand(2)); + } else if (Op1LV.isUndefined()) { + // c ? undef : undef -> undef. No change. + Op1LV = getValueState(I->getOperand(2)); + if (Op1LV.isUndefined()) + break; + // Otherwise, c ? undef : x -> x. + } else { + // Leave Op1LV as Operand(1)'s LatticeValue. + } + + if (Op1LV.isConstant()) + markForcedConstant(LV, I, Op1LV.getConstant()); + else + markOverdefined(LV, I); + return true; + } + } + + TerminatorInst *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (!BI->isConditional()) continue; + if (!getValueState(BI->getCondition()).isUndefined()) + continue; + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + if (!getValueState(SI->getCondition()).isUndefined()) + continue; + } else { + continue; + } + + // If the edge to the first successor isn't thought to be feasible yet, mark + // it so now. + if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) + continue; + + // Otherwise, it isn't already thought to be feasible. Mark it as such now + // and return. This will make other blocks reachable, which will allow new + // values to be discovered and existing ones to be moved in the lattice. + markEdgeExecutable(BB, TI->getSuccessor(0)); + return true; + } + + return false; +} + + +namespace { + //===--------------------------------------------------------------------===// + // + /// SCCP Class - This class uses the SCCPSolver to implement a per-function + /// Sparse Conditional Constant Propagator. + /// + struct VISIBILITY_HIDDEN SCCP : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + SCCP() : FunctionPass((intptr_t)&ID) {} + + // runOnFunction - Run the Sparse Conditional Constant Propagation + // algorithm, and return true if the function was modified. + // + bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + } + }; + + char SCCP::ID = 0; + RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); +} // end anonymous namespace + + +// createSCCPPass - This is the public interface to this file... +FunctionPass *llvm::createSCCPPass() { + return new SCCP(); +} + + +// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, +// and return true if the function was modified. +// +bool SCCP::runOnFunction(Function &F) { + DOUT << "SCCP on function '" << F.getName() << "'\n"; + SCCPSolver Solver; + + // Mark the first block of the function as being executable. + Solver.MarkBlockExecutable(F.begin()); + + // Mark all arguments to the function as being overdefined. + for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) + Solver.markOverdefined(AI); + + // Solve for constants. + bool ResolvedUndefs = true; + while (ResolvedUndefs) { + Solver.Solve(); + DOUT << "RESOLVING UNDEFs\n"; + ResolvedUndefs = Solver.ResolvedUndefsIn(F); + } + + bool MadeChanges = false; + + // If we decided that there are basic blocks that are dead in this function, + // delete their contents now. Note that we cannot actually delete the blocks, + // as we cannot modify the CFG of the function. + // + SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); + SmallVector<Instruction*, 32> Insts; + std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); + + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + if (!ExecutableBBs.count(BB)) { + DOUT << " BasicBlock Dead:" << *BB; + ++NumDeadBlocks; + + // Delete the instructions backwards, as it has a reduced likelihood of + // having to update as many def-use and use-def chains. + for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); + I != E; ++I) + Insts.push_back(I); + while (!Insts.empty()) { + Instruction *I = Insts.back(); + Insts.pop_back(); + if (!I->use_empty()) + I->replaceAllUsesWith(UndefValue::get(I->getType())); + BB->getInstList().erase(I); + MadeChanges = true; + ++NumInstRemoved; + } + } else { + // Iterate over all of the instructions in a function, replacing them with + // constants if we have found them to be of constant values. + // + for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { + Instruction *Inst = BI++; + if (Inst->getType() != Type::VoidTy) { + LatticeVal &IV = Values[Inst]; + if ((IV.isConstant() || IV.isUndefined()) && + !isa<TerminatorInst>(Inst)) { + Constant *Const = IV.isConstant() + ? IV.getConstant() : UndefValue::get(Inst->getType()); + DOUT << " Constant: " << *Const << " = " << *Inst; + + // Replaces all of the uses of a variable with uses of the constant. + Inst->replaceAllUsesWith(Const); + + // Delete the instruction. + BB->getInstList().erase(Inst); + + // Hey, we just changed something! + MadeChanges = true; + ++NumInstRemoved; + } + } + } + } + + return MadeChanges; +} + +namespace { + //===--------------------------------------------------------------------===// + // + /// IPSCCP Class - This class implements interprocedural Sparse Conditional + /// Constant Propagation. + /// + struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { + static char ID; + IPSCCP() : ModulePass((intptr_t)&ID) {} + bool runOnModule(Module &M); + }; + + char IPSCCP::ID = 0; + RegisterPass<IPSCCP> + Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); +} // end anonymous namespace + +// createIPSCCPPass - This is the public interface to this file... +ModulePass *llvm::createIPSCCPPass() { + return new IPSCCP(); +} + + +static bool AddressIsTaken(GlobalValue *GV) { + // Delete any dead constantexpr klingons. + GV->removeDeadConstantUsers(); + + for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); + UI != E; ++UI) + if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { + if (SI->getOperand(0) == GV || SI->isVolatile()) + return true; // Storing addr of GV. + } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { + // Make sure we are calling the function, not passing the address. + CallSite CS = CallSite::get(cast<Instruction>(*UI)); + for (CallSite::arg_iterator AI = CS.arg_begin(), + E = CS.arg_end(); AI != E; ++AI) + if (*AI == GV) + return true; + } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { + if (LI->isVolatile()) + return true; + } else { + return true; + } + return false; +} + +bool IPSCCP::runOnModule(Module &M) { + SCCPSolver Solver; + + // Loop over all functions, marking arguments to those with their addresses + // taken or that are external as overdefined. + // + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) + if (!F->hasInternalLinkage() || AddressIsTaken(F)) { + if (!F->isDeclaration()) + Solver.MarkBlockExecutable(F->begin()); + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); + AI != E; ++AI) + Solver.markOverdefined(AI); + } else { + Solver.AddTrackedFunction(F); + } + + // Loop over global variables. We inform the solver about any internal global + // variables that do not have their 'addresses taken'. If they don't have + // their addresses taken, we can propagate constants through them. + for (Module::global_iterator G = M.global_begin(), E = M.global_end(); + G != E; ++G) + if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) + Solver.TrackValueOfGlobalVariable(G); + + // Solve for constants. + bool ResolvedUndefs = true; + while (ResolvedUndefs) { + Solver.Solve(); + + DOUT << "RESOLVING UNDEFS\n"; + ResolvedUndefs = false; + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) + ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); + } + + bool MadeChanges = false; + + // Iterate over all of the instructions in the module, replacing them with + // constants if we have found them to be of constant values. + // + SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); + SmallVector<Instruction*, 32> Insts; + SmallVector<BasicBlock*, 32> BlocksToErase; + std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); + + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); + AI != E; ++AI) + if (!AI->use_empty()) { + LatticeVal &IV = Values[AI]; + if (IV.isConstant() || IV.isUndefined()) { + Constant *CST = IV.isConstant() ? + IV.getConstant() : UndefValue::get(AI->getType()); + DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; + + // Replaces all of the uses of a variable with uses of the + // constant. + AI->replaceAllUsesWith(CST); + ++IPNumArgsElimed; + } + } + + for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + if (!ExecutableBBs.count(BB)) { + DOUT << " BasicBlock Dead:" << *BB; + ++IPNumDeadBlocks; + + // Delete the instructions backwards, as it has a reduced likelihood of + // having to update as many def-use and use-def chains. + TerminatorInst *TI = BB->getTerminator(); + for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) + Insts.push_back(I); + + while (!Insts.empty()) { + Instruction *I = Insts.back(); + Insts.pop_back(); + if (!I->use_empty()) + I->replaceAllUsesWith(UndefValue::get(I->getType())); + BB->getInstList().erase(I); + MadeChanges = true; + ++IPNumInstRemoved; + } + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { + BasicBlock *Succ = TI->getSuccessor(i); + if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) + TI->getSuccessor(i)->removePredecessor(BB); + } + if (!TI->use_empty()) + TI->replaceAllUsesWith(UndefValue::get(TI->getType())); + BB->getInstList().erase(TI); + + if (&*BB != &F->front()) + BlocksToErase.push_back(BB); + else + new UnreachableInst(BB); + + } else { + for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { + Instruction *Inst = BI++; + if (Inst->getType() != Type::VoidTy) { + LatticeVal &IV = Values[Inst]; + if (IV.isConstant() || IV.isUndefined() && + !isa<TerminatorInst>(Inst)) { + Constant *Const = IV.isConstant() + ? IV.getConstant() : UndefValue::get(Inst->getType()); + DOUT << " Constant: " << *Const << " = " << *Inst; + + // Replaces all of the uses of a variable with uses of the + // constant. + Inst->replaceAllUsesWith(Const); + + // Delete the instruction. + if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) + BB->getInstList().erase(Inst); + + // Hey, we just changed something! + MadeChanges = true; + ++IPNumInstRemoved; + } + } + } + } + + // Now that all instructions in the function are constant folded, erase dead + // blocks, because we can now use ConstantFoldTerminator to get rid of + // in-edges. + for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { + // If there are any PHI nodes in this successor, drop entries for BB now. + BasicBlock *DeadBB = BlocksToErase[i]; + while (!DeadBB->use_empty()) { + Instruction *I = cast<Instruction>(DeadBB->use_back()); + bool Folded = ConstantFoldTerminator(I->getParent()); + if (!Folded) { + // The constant folder may not have been able to fold the terminator + // if this is a branch or switch on undef. Fold it manually as a + // branch to the first successor. + if (BranchInst *BI = dyn_cast<BranchInst>(I)) { + assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && + "Branch should be foldable!"); + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { + assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); + } else { + assert(0 && "Didn't fold away reference to block!"); + } + + // Make this an uncond branch to the first successor. + TerminatorInst *TI = I->getParent()->getTerminator(); + new BranchInst(TI->getSuccessor(0), TI); + + // Remove entries in successor phi nodes to remove edges. + for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) + TI->getSuccessor(i)->removePredecessor(TI->getParent()); + + // Remove the old terminator. + TI->eraseFromParent(); + } + } + + // Finally, delete the basic block. + F->getBasicBlockList().erase(DeadBB); + } + BlocksToErase.clear(); + } + + // If we inferred constant or undef return values for a function, we replaced + // all call uses with the inferred value. This means we don't need to bother + // actually returning anything from the function. Replace all return + // instructions with return undef. + const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); + for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), + E = RV.end(); I != E; ++I) + if (!I->second.isOverdefined() && + I->first->getReturnType() != Type::VoidTy) { + Function *F = I->first; + for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) + if (!isa<UndefValue>(RI->getOperand(0))) + RI->setOperand(0, UndefValue::get(F->getReturnType())); + } + + // If we infered constant or undef values for globals variables, we can delete + // the global and any stores that remain to it. + const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); + for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), + E = TG.end(); I != E; ++I) { + GlobalVariable *GV = I->first; + assert(!I->second.isOverdefined() && + "Overdefined values should have been taken out of the map!"); + DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; + while (!GV->use_empty()) { + StoreInst *SI = cast<StoreInst>(GV->use_back()); + SI->eraseFromParent(); + } + M.getGlobalList().erase(GV); + ++IPNumGlobalConst; + } + + return MadeChanges; +} |