aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
-rw-r--r--lib/Transforms/Scalar/StraightLineStrengthReduce.cpp338
1 files changed, 241 insertions, 97 deletions
diff --git a/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
index e71031c..2fc9368 100644
--- a/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
@@ -15,42 +15,46 @@
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
-// reduction candidates in two forms:
+// reduction candidates in the following forms:
//
-// Form 1: (B + i) * S
-// Form 2: &B[i * S]
+// Form 1: B + i * S
+// Form 2: (B + i) * S
+// Form 3: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
-// candidates
+// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
+// in a simpler way with respect to S1. For example,
//
-// S1: X = (B + i) * S
-// S2: Y = (B + i') * S
+// S1: X = B + i * S
+// S2: Y = B + i' * S => X + (i' - i) * S
//
-// or
+// S1: X = (B + i) * S
+// S2: Y = (B + i') * S => X + (i' - i) * S
//
// S1: X = &B[i * S]
-// S2: Y = &B[i' * S]
-//
-// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
+// S2: Y = &B[i' * S] => &X[(i' - i) * S]
//
-// Y = X + (i' - i) * S
+// Note: (i' - i) * S is folded to the extent possible.
//
-// or
+// This rewriting is in general a good idea. The code patterns we focus on
+// usually come from loop unrolling, so (i' - i) * S is likely the same
+// across iterations and can be reused. When that happens, the optimized form
+// takes only one add starting from the second iteration.
//
-// Y = &X[(i' - i) * S]
-//
-// where (i' - i) * S is folded to the extent possible. When S2 has multiple
-// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
+// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
+// multiple bases, we choose to rewrite S2 with respect to its "immediate"
+// basis, the basis that is the closest ancestor in the dominator tree.
//
// TODO:
//
-// - Handle candidates in the form of B + i * S
-//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
// left as future work.
+//
+// - When (i' - i) is constant but i and i' are not, we could still perform
+// SLSR.
#include <vector>
#include "llvm/ADT/DenseSet.h"
@@ -72,13 +76,12 @@ namespace {
class StraightLineStrengthReduce : public FunctionPass {
public:
- // SLSR candidate. Such a candidate must be in the form of
- // (Base + Index) * Stride
- // or
- // Base[..][Index * Stride][..]
+ // SLSR candidate. Such a candidate must be in one of the forms described in
+ // the header comments.
struct Candidate : public ilist_node<Candidate> {
enum Kind {
Invalid, // reserved for the default constructor
+ Add, // B + i * S
Mul, // (B + i) * S
GEP, // &B[..][i * S][..]
};
@@ -92,14 +95,14 @@ public:
Basis(nullptr) {}
Kind CandidateKind;
const SCEV *Base;
- // Note that Index and Stride of a GEP candidate may not have the same
- // integer type. In that case, during rewriting, Stride will be
+ // Note that Index and Stride of a GEP candidate do not necessarily have the
+ // same integer type. In that case, during rewriting, Stride will be
// sign-extended or truncated to Index's type.
ConstantInt *Index;
Value *Stride;
// The instruction this candidate corresponds to. It helps us to rewrite a
// candidate with respect to its immediate basis. Note that one instruction
- // can corresponds to multiple candidates depending on how you associate the
+ // can correspond to multiple candidates depending on how you associate the
// expression. For instance,
//
// (a + 1) * (b + 2)
@@ -143,31 +146,43 @@ private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
+ // Returns whether the candidate can be folded into an addressing mode.
+ bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
+ const DataLayout *DL);
+ // Returns true if C is already in a simplest form and not worth being
+ // rewritten.
+ bool isSimplestForm(const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
- void allocateCandidateAndFindBasis(Instruction *I);
+ void allocateCandidatesAndFindBasis(Instruction *I);
+ // Allocate candidates and find bases for Add instructions.
+ void allocateCandidatesAndFindBasisForAdd(Instruction *I);
+ // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
+ // candidate.
+ void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
+ Instruction *I);
// Allocate candidates and find bases for Mul instructions.
- void allocateCandidateAndFindBasisForMul(Instruction *I);
+ void allocateCandidatesAndFindBasisForMul(Instruction *I);
// Splits LHS into Base + Index and, if succeeds, calls
- // allocateCandidateAndFindBasis.
- void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS,
- Instruction *I);
+ // allocateCandidatesAndFindBasis.
+ void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
+ Instruction *I);
// Allocate candidates and find bases for GetElementPtr instructions.
- void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP);
+ void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
// A helper function that scales Idx with ElementSize before invoking
- // allocateCandidateAndFindBasis.
- void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
- Value *S, uint64_t ElementSize,
- Instruction *I);
+ // allocateCandidatesAndFindBasis.
+ void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
+ Value *S, uint64_t ElementSize,
+ Instruction *I);
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
// basis.
- void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B,
- ConstantInt *Idx, Value *S,
- Instruction *I);
+ void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
+ ConstantInt *Idx, Value *S,
+ Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
// A helper function that factors ArrayIdx to a product of a stride and a
- // constant index, and invokes allocateCandidateAndFindBasis with the
+ // constant index, and invokes allocateCandidatesAndFindBasis with the
// factorings.
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
GetElementPtrInst *GEP);
@@ -187,7 +202,7 @@ private:
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
// after all rewriting finishes.
- DenseSet<Instruction *> UnlinkedInstructions;
+ std::vector<Instruction *> UnlinkedInstructions;
};
} // anonymous namespace
@@ -215,9 +230,9 @@ bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
Basis.CandidateKind == C.CandidateKind);
}
-static bool isCompletelyFoldable(GetElementPtrInst *GEP,
- const TargetTransformInfo *TTI,
- const DataLayout *DL) {
+static bool isGEPFoldable(GetElementPtrInst *GEP,
+ const TargetTransformInfo *TTI,
+ const DataLayout *DL) {
GlobalVariable *BaseGV = nullptr;
int64_t BaseOffset = 0;
bool HasBaseReg = false;
@@ -252,53 +267,143 @@ static bool isCompletelyFoldable(GetElementPtrInst *GEP,
BaseOffset, HasBaseReg, Scale);
}
-// TODO: We currently implement an algorithm whose time complexity is linear to
-// the number of existing candidates. However, a better algorithm exists. We
-// could depth-first search the dominator tree, and maintain a hash table that
-// contains all candidates that dominate the node being traversed. This hash
-// table is indexed by the base and the stride of a candidate. Therefore,
-// finding the immediate basis of a candidate boils down to one hash-table look
-// up.
-void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
- Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
- Instruction *I) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- // If &B[Idx * S] fits into an addressing mode, do not turn it into
- // non-free computation.
- if (isCompletelyFoldable(GEP, TTI, DL))
- return;
+// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
+static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
+ TargetTransformInfo *TTI) {
+ return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
+ Index->getSExtValue());
+}
+
+bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
+ TargetTransformInfo *TTI,
+ const DataLayout *DL) {
+ if (C.CandidateKind == Candidate::Add)
+ return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
+ if (C.CandidateKind == Candidate::GEP)
+ return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
+ return false;
+}
+
+// Returns true if GEP has zero or one non-zero index.
+static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
+ unsigned NumNonZeroIndices = 0;
+ for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
+ ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
+ if (ConstIdx == nullptr || !ConstIdx->isZero())
+ ++NumNonZeroIndices;
+ }
+ return NumNonZeroIndices <= 1;
+}
+
+bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
+ if (C.CandidateKind == Candidate::Add) {
+ // B + 1 * S or B + (-1) * S
+ return C.Index->isOne() || C.Index->isMinusOne();
+ }
+ if (C.CandidateKind == Candidate::Mul) {
+ // (B + 0) * S
+ return C.Index->isZero();
+ }
+ if (C.CandidateKind == Candidate::GEP) {
+ // (char*)B + S or (char*)B - S
+ return ((C.Index->isOne() || C.Index->isMinusOne()) &&
+ hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
}
+ return false;
+}
+// TODO: We currently implement an algorithm whose time complexity is linear in
+// the number of existing candidates. However, we could do better by using
+// ScopedHashTable. Specifically, while traversing the dominator tree, we could
+// maintain all the candidates that dominate the basic block being traversed in
+// a ScopedHashTable. This hash table is indexed by the base and the stride of
+// a candidate. Therefore, finding the immediate basis of a candidate boils down
+// to one hash-table look up.
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
+ Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
+ Instruction *I) {
Candidate C(CT, B, Idx, S, I);
- // Try to compute the immediate basis of C.
- unsigned NumIterations = 0;
- // Limit the scan radius to avoid running forever.
- static const unsigned MaxNumIterations = 50;
- for (auto Basis = Candidates.rbegin();
- Basis != Candidates.rend() && NumIterations < MaxNumIterations;
- ++Basis, ++NumIterations) {
- if (isBasisFor(*Basis, C)) {
- C.Basis = &(*Basis);
- break;
+ // SLSR can complicate an instruction in two cases:
+ //
+ // 1. If we can fold I into an addressing mode, computing I is likely free or
+ // takes only one instruction.
+ //
+ // 2. I is already in a simplest form. For example, when
+ // X = B + 8 * S
+ // Y = B + S,
+ // rewriting Y to X - 7 * S is probably a bad idea.
+ //
+ // In the above cases, we still add I to the candidate list so that I can be
+ // the basis of other candidates, but we leave I's basis blank so that I
+ // won't be rewritten.
+ if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
+ // Try to compute the immediate basis of C.
+ unsigned NumIterations = 0;
+ // Limit the scan radius to avoid running in quadratice time.
+ static const unsigned MaxNumIterations = 50;
+ for (auto Basis = Candidates.rbegin();
+ Basis != Candidates.rend() && NumIterations < MaxNumIterations;
+ ++Basis, ++NumIterations) {
+ if (isBasisFor(*Basis, C)) {
+ C.Basis = &(*Basis);
+ break;
+ }
}
}
// Regardless of whether we find a basis for C, we need to push C to the
- // candidate list.
+ // candidate list so that it can be the basis of other candidates.
Candidates.push_back(C);
}
-void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
+ Instruction *I) {
switch (I->getOpcode()) {
+ case Instruction::Add:
+ allocateCandidatesAndFindBasisForAdd(I);
+ break;
case Instruction::Mul:
- allocateCandidateAndFindBasisForMul(I);
+ allocateCandidatesAndFindBasisForMul(I);
break;
case Instruction::GetElementPtr:
- allocateCandidateAndFindBasisForGEP(cast<GetElementPtrInst>(I));
+ allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
break;
}
}
-void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
+ Instruction *I) {
+ // Try matching B + i * S.
+ if (!isa<IntegerType>(I->getType()))
+ return;
+
+ assert(I->getNumOperands() == 2 && "isn't I an add?");
+ Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
+ allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
+ if (LHS != RHS)
+ allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
+}
+
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
+ Value *LHS, Value *RHS, Instruction *I) {
+ Value *S = nullptr;
+ ConstantInt *Idx = nullptr;
+ if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
+ // I = LHS + RHS = LHS + Idx * S
+ allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
+ } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
+ // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
+ APInt One(Idx->getBitWidth(), 1);
+ Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
+ allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
+ } else {
+ // At least, I = LHS + 1 * RHS
+ ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
+ allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
+ I);
+ }
+}
+
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
@@ -306,54 +411,54 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
// If LHS is in the form of "Base + Index", then I is in the form of
// "(Base + Index) * RHS".
- allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
+ allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else {
// Otherwise, at least try the form (LHS + 0) * RHS.
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
- allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
+ allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
I);
}
}
-void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Instruction *I) {
// Try matching (B + i) * S.
// TODO: we could extend SLSR to float and vector types.
if (!isa<IntegerType>(I->getType()))
return;
+ assert(I->getNumOperands() == 2 && "isn't I a mul?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- allocateCandidateAndFindBasisForMul(LHS, RHS, I);
+ allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
if (LHS != RHS) {
// Symmetrically, try to split RHS to Base + Index.
- allocateCandidateAndFindBasisForMul(RHS, LHS, I);
+ allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
}
}
-void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
Instruction *I) {
- // I = B + sext(Idx *nsw S) *nsw ElementSize
+ // I = B + sext(Idx *nsw S) * ElementSize
+ // = B + (sext(Idx) * sext(S)) * ElementSize
// = B + (sext(Idx) * ElementSize) * sext(S)
// Casting to IntegerType is safe because we skipped vector GEPs.
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
ConstantInt *ScaledIdx = ConstantInt::get(
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
- allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
+ allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
const SCEV *Base,
uint64_t ElementSize,
GetElementPtrInst *GEP) {
- // At least, ArrayIdx = ArrayIdx *s 1.
- allocateCandidateAndFindBasisForGEP(
+ // At least, ArrayIdx = ArrayIdx *nsw 1.
+ allocateCandidatesAndFindBasisForGEP(
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
ArrayIdx, ElementSize, GEP);
Value *LHS = nullptr;
ConstantInt *RHS = nullptr;
- // TODO: handle shl. e.g., we could treat (S << 2) as (S * 4).
- //
// One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
// itself. This would allow us to handle the shl case for free. However,
// matching SCEVs has two issues:
@@ -367,12 +472,19 @@ void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
// sext'ed multiplication.
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
// SLSR is currently unsafe if i * S may overflow.
- // GEP = Base + sext(LHS *nsw RHS) *nsw ElementSize
- allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
+ // GEP = Base + sext(LHS *nsw RHS) * ElementSize
+ allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
+ } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
+ // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
+ // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
+ APInt One(RHS->getBitWidth(), 1);
+ ConstantInt *PowerOf2 =
+ ConstantInt::get(RHS->getContext(), One << RHS->getValue());
+ allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
}
}
-void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
+void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
GetElementPtrInst *GEP) {
// TODO: handle vector GEPs
if (GEP->getType()->isVectorTy())
@@ -436,6 +548,7 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
else
BumpWithUglyGEP = true;
}
+
// Compute Bump = C - Basis = (i' - i) * S.
// Common case 1: if (i' - i) is 1, Bump = S.
if (IndexOffset.getSExtValue() == 1)
@@ -443,9 +556,24 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
// Common case 2: if (i' - i) is -1, Bump = -S.
if (IndexOffset.getSExtValue() == -1)
return Builder.CreateNeg(C.Stride);
- // Otherwise, Bump = (i' - i) * sext/trunc(S).
- ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset);
- Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType());
+
+ // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
+ // have different bit widths.
+ IntegerType *DeltaType =
+ IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
+ Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
+ if (IndexOffset.isPowerOf2()) {
+ // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
+ ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
+ return Builder.CreateShl(ExtendedStride, Exponent);
+ }
+ if ((-IndexOffset).isPowerOf2()) {
+ // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
+ ConstantInt *Exponent =
+ ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
+ return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
+ }
+ Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
return Builder.CreateMul(ExtendedStride, Delta);
}
@@ -453,6 +581,9 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
C.Stride == Basis.Stride);
+ // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
+ // basis of a candidate cannot be unlinked before the candidate.
+ assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
@@ -466,25 +597,38 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
switch (C.CandidateKind) {
+ case Candidate::Add:
case Candidate::Mul:
- Reduced = Builder.CreateAdd(Basis.Ins, Bump);
+ if (BinaryOperator::isNeg(Bump)) {
+ Reduced =
+ Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
+ } else {
+ Reduced = Builder.CreateAdd(Basis.Ins, Bump);
+ }
break;
case Candidate::GEP:
{
Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
+ bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
if (BumpWithUglyGEP) {
// C = (char *)Basis + Bump
unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
- // We only considered inbounds GEP as candidates.
- Reduced = Builder.CreateInBoundsGEP(Reduced, Bump);
+ if (InBounds)
+ Reduced =
+ Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
+ else
+ Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
} else {
// C = gep Basis, Bump
// Canonicalize bump to pointer size.
Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
- Reduced = Builder.CreateInBoundsGEP(Basis.Ins, Bump);
+ if (InBounds)
+ Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
+ else
+ Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
}
}
break;
@@ -497,7 +641,7 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
// Unlink C.Ins so that we can skip other candidates also corresponding to
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
C.Ins->removeFromParent();
- UnlinkedInstructions.insert(C.Ins);
+ UnlinkedInstructions.push_back(C.Ins);
}
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
@@ -512,7 +656,7 @@ bool StraightLineStrengthReduce::runOnFunction(Function &F) {
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
for (auto &I : *node->getBlock())
- allocateCandidateAndFindBasis(&I);
+ allocateCandidatesAndFindBasis(&I);
}
// Rewrite candidates in the reverse depth-first order. This order makes sure