aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/SSAUpdater.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/SSAUpdater.cpp')
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp396
1 files changed, 396 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
new file mode 100644
index 0000000..a31235a
--- /dev/null
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -0,0 +1,396 @@
+//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SSAUpdater class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Instructions.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy;
+typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > >
+ IncomingPredInfoTy;
+
+static AvailableValsTy &getAvailableVals(void *AV) {
+ return *static_cast<AvailableValsTy*>(AV);
+}
+
+static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
+ return *static_cast<IncomingPredInfoTy*>(IPI);
+}
+
+
+SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
+ : AV(0), PrototypeValue(0), IPI(0), InsertedPHIs(NewPHI) {}
+
+SSAUpdater::~SSAUpdater() {
+ delete &getAvailableVals(AV);
+ delete &getIncomingPredInfo(IPI);
+}
+
+/// Initialize - Reset this object to get ready for a new set of SSA
+/// updates. ProtoValue is the value used to name PHI nodes.
+void SSAUpdater::Initialize(Value *ProtoValue) {
+ if (AV == 0)
+ AV = new AvailableValsTy();
+ else
+ getAvailableVals(AV).clear();
+
+ if (IPI == 0)
+ IPI = new IncomingPredInfoTy();
+ else
+ getIncomingPredInfo(IPI).clear();
+ PrototypeValue = ProtoValue;
+}
+
+/// HasValueForBlock - Return true if the SSAUpdater already has a value for
+/// the specified block.
+bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
+ return getAvailableVals(AV).count(BB);
+}
+
+/// AddAvailableValue - Indicate that a rewritten value is available in the
+/// specified block with the specified value.
+void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
+ assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
+ assert(PrototypeValue->getType() == V->getType() &&
+ "All rewritten values must have the same type");
+ getAvailableVals(AV)[BB] = V;
+}
+
+/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
+/// in ValueMapping for each predecessor block.
+static bool IsEquivalentPHI(PHINode *PHI,
+ DenseMap<BasicBlock*, Value*> &ValueMapping) {
+ unsigned PHINumValues = PHI->getNumIncomingValues();
+ if (PHINumValues != ValueMapping.size())
+ return false;
+
+ // Scan the phi to see if it matches.
+ for (unsigned i = 0, e = PHINumValues; i != e; ++i)
+ if (ValueMapping[PHI->getIncomingBlock(i)] !=
+ PHI->getIncomingValue(i)) {
+ return false;
+ }
+
+ return true;
+}
+
+/// GetExistingPHI - Check if BB already contains a phi node that is equivalent
+/// to the specified mapping from predecessor blocks to incoming values.
+static Value *GetExistingPHI(BasicBlock *BB,
+ DenseMap<BasicBlock*, Value*> &ValueMapping) {
+ PHINode *SomePHI;
+ for (BasicBlock::iterator It = BB->begin();
+ (SomePHI = dyn_cast<PHINode>(It)); ++It) {
+ if (IsEquivalentPHI(SomePHI, ValueMapping))
+ return SomePHI;
+ }
+ return 0;
+}
+
+/// GetExistingPHI - Check if BB already contains an equivalent phi node.
+/// The InputIt type must be an iterator over std::pair<BasicBlock*, Value*>
+/// objects that specify the mapping from predecessor blocks to incoming values.
+template<typename InputIt>
+static Value *GetExistingPHI(BasicBlock *BB, const InputIt &I,
+ const InputIt &E) {
+ // Avoid create the mapping if BB has no phi nodes at all.
+ if (!isa<PHINode>(BB->begin()))
+ return 0;
+ DenseMap<BasicBlock*, Value*> ValueMapping(I, E);
+ return GetExistingPHI(BB, ValueMapping);
+}
+
+/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
+/// live at the end of the specified block.
+Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
+ assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
+ Value *Res = GetValueAtEndOfBlockInternal(BB);
+ assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
+ return Res;
+}
+
+/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
+/// is live in the middle of the specified block.
+///
+/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
+/// important case: if there is a definition of the rewritten value after the
+/// 'use' in BB. Consider code like this:
+///
+/// X1 = ...
+/// SomeBB:
+/// use(X)
+/// X2 = ...
+/// br Cond, SomeBB, OutBB
+///
+/// In this case, there are two values (X1 and X2) added to the AvailableVals
+/// set by the client of the rewriter, and those values are both live out of
+/// their respective blocks. However, the use of X happens in the *middle* of
+/// a block. Because of this, we need to insert a new PHI node in SomeBB to
+/// merge the appropriate values, and this value isn't live out of the block.
+///
+Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
+ // If there is no definition of the renamed variable in this block, just use
+ // GetValueAtEndOfBlock to do our work.
+ if (!getAvailableVals(AV).count(BB))
+ return GetValueAtEndOfBlock(BB);
+
+ // Otherwise, we have the hard case. Get the live-in values for each
+ // predecessor.
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
+ Value *SingularValue = 0;
+
+ // We can get our predecessor info by walking the pred_iterator list, but it
+ // is relatively slow. If we already have PHI nodes in this block, walk one
+ // of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (i == 0)
+ SingularValue = PredVal;
+ else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ } else {
+ bool isFirstPred = true;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBB = *PI;
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ }
+
+ // If there are no predecessors, just return undef.
+ if (PredValues.empty())
+ return UndefValue::get(PrototypeValue->getType());
+
+ // Otherwise, if all the merged values are the same, just use it.
+ if (SingularValue != 0)
+ return SingularValue;
+
+ // Otherwise, we do need a PHI.
+ if (Value *ExistingPHI = GetExistingPHI(BB, PredValues.begin(),
+ PredValues.end()))
+ return ExistingPHI;
+
+ // Ok, we have no way out, insert a new one now.
+ PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
+ PrototypeValue->getName(),
+ &BB->front());
+ InsertedPHI->reserveOperandSpace(PredValues.size());
+
+ // Fill in all the predecessors of the PHI.
+ for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
+ InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
+ InsertedPHI->eraseFromParent();
+ return ConstVal;
+ }
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ return InsertedPHI;
+}
+
+/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
+/// which use their value in the corresponding predecessor.
+void SSAUpdater::RewriteUse(Use &U) {
+ Instruction *User = cast<Instruction>(U.getUser());
+
+ Value *V;
+ if (PHINode *UserPN = dyn_cast<PHINode>(User))
+ V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
+ else
+ V = GetValueInMiddleOfBlock(User->getParent());
+
+ U.set(V);
+}
+
+
+/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
+/// for the specified BB and if so, return it. If not, construct SSA form by
+/// walking predecessors inserting PHI nodes as needed until we get to a block
+/// where the value is available.
+///
+Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
+ AvailableValsTy &AvailableVals = getAvailableVals(AV);
+
+ // Query AvailableVals by doing an insertion of null.
+ std::pair<AvailableValsTy::iterator, bool> InsertRes =
+ AvailableVals.insert(std::make_pair(BB, TrackingVH<Value>()));
+
+ // Handle the case when the insertion fails because we have already seen BB.
+ if (!InsertRes.second) {
+ // If the insertion failed, there are two cases. The first case is that the
+ // value is already available for the specified block. If we get this, just
+ // return the value.
+ if (InsertRes.first->second != 0)
+ return InsertRes.first->second;
+
+ // Otherwise, if the value we find is null, then this is the value is not
+ // known but it is being computed elsewhere in our recursion. This means
+ // that we have a cycle. Handle this by inserting a PHI node and returning
+ // it. When we get back to the first instance of the recursion we will fill
+ // in the PHI node.
+ return InsertRes.first->second =
+ PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(),
+ &BB->front());
+ }
+
+ // Okay, the value isn't in the map and we just inserted a null in the entry
+ // to indicate that we're processing the block. Since we have no idea what
+ // value is in this block, we have to recurse through our predecessors.
+ //
+ // While we're walking our predecessors, we keep track of them in a vector,
+ // then insert a PHI node in the end if we actually need one. We could use a
+ // smallvector here, but that would take a lot of stack space for every level
+ // of the recursion, just use IncomingPredInfo as an explicit stack.
+ IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
+ unsigned FirstPredInfoEntry = IncomingPredInfo.size();
+
+ // As we're walking the predecessors, keep track of whether they are all
+ // producing the same value. If so, this value will capture it, if not, it
+ // will get reset to null. We distinguish the no-predecessor case explicitly
+ // below.
+ TrackingVH<Value> ExistingValue;
+
+ // We can get our predecessor info by walking the pred_iterator list, but it
+ // is relatively slow. If we already have PHI nodes in this block, walk one
+ // of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
+ Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
+
+ // Set ExistingValue to singular value from all predecessors so far.
+ if (i == 0)
+ ExistingValue = PredVal;
+ else if (PredVal != ExistingValue)
+ ExistingValue = 0;
+ }
+ } else {
+ bool isFirstPred = true;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBB = *PI;
+ Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
+
+ // Set ExistingValue to singular value from all predecessors so far.
+ if (isFirstPred) {
+ ExistingValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != ExistingValue)
+ ExistingValue = 0;
+ }
+ }
+
+ // If there are no predecessors, then we must have found an unreachable block
+ // just return 'undef'. Since there are no predecessors, InsertRes must not
+ // be invalidated.
+ if (IncomingPredInfo.size() == FirstPredInfoEntry)
+ return InsertRes.first->second = UndefValue::get(PrototypeValue->getType());
+
+ /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
+ /// this block is involved in a loop, a no-entry PHI node will have been
+ /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
+ /// above.
+ TrackingVH<Value> &InsertedVal = AvailableVals[BB];
+
+ // If the predecessor values are not all the same, then check to see if there
+ // is an existing PHI that can be used.
+ if (!ExistingValue)
+ ExistingValue = GetExistingPHI(BB,
+ IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+
+ // If there is an existing value we can use, then we don't need to insert a
+ // PHI. This is the simple and common case.
+ if (ExistingValue) {
+ // If a PHI node got inserted, replace it with the existing value and delete
+ // it.
+ if (InsertedVal) {
+ PHINode *OldVal = cast<PHINode>(InsertedVal);
+ // Be careful about dead loops. These RAUW's also update InsertedVal.
+ if (InsertedVal != ExistingValue)
+ OldVal->replaceAllUsesWith(ExistingValue);
+ else
+ OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType()));
+ OldVal->eraseFromParent();
+ } else {
+ InsertedVal = ExistingValue;
+ }
+
+ // Either path through the 'if' should have set InsertedVal -> ExistingVal.
+ assert((InsertedVal == ExistingValue || isa<UndefValue>(InsertedVal)) &&
+ "RAUW didn't change InsertedVal to be ExistingValue");
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+ return ExistingValue;
+ }
+
+ // Otherwise, we do need a PHI: insert one now if we don't already have one.
+ if (InsertedVal == 0)
+ InsertedVal = PHINode::Create(PrototypeValue->getType(),
+ PrototypeValue->getName(), &BB->front());
+
+ PHINode *InsertedPHI = cast<PHINode>(InsertedVal);
+ InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry);
+
+ // Fill in all the predecessors of the PHI.
+ for (IncomingPredInfoTy::iterator I =
+ IncomingPredInfo.begin()+FirstPredInfoEntry,
+ E = IncomingPredInfo.end(); I != E; ++I)
+ InsertedPHI->addIncoming(I->second, I->first);
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
+ InsertedPHI->replaceAllUsesWith(ConstVal);
+ InsertedPHI->eraseFromParent();
+ InsertedVal = ConstVal;
+ } else {
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+ }
+
+ return InsertedVal;
+}