diff options
Diffstat (limited to 'lib/Transforms')
-rw-r--r-- | lib/Transforms/Instrumentation/RSProfiling.cpp | 12 | ||||
-rw-r--r-- | lib/Transforms/Scalar/InstructionCombining.cpp | 281 | ||||
-rw-r--r-- | lib/Transforms/Scalar/LoopIndexSplit.cpp | 4 | ||||
-rw-r--r-- | lib/Transforms/Scalar/LoopStrengthReduce.cpp | 14 |
4 files changed, 170 insertions, 141 deletions
diff --git a/lib/Transforms/Instrumentation/RSProfiling.cpp b/lib/Transforms/Instrumentation/RSProfiling.cpp index c6cf4df..b110f4e 100644 --- a/lib/Transforms/Instrumentation/RSProfiling.cpp +++ b/lib/Transforms/Instrumentation/RSProfiling.cpp @@ -108,9 +108,9 @@ namespace { class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser { GlobalVariable* Counter; Value* ResetValue; - const Type* T; + const IntegerType* T; public: - GlobalRandomCounter(Module& M, const Type* t, uint64_t resetval); + GlobalRandomCounter(Module& M, const IntegerType* t, uint64_t resetval); virtual ~GlobalRandomCounter(); virtual void PrepFunction(Function* F); virtual void ProcessChoicePoint(BasicBlock* bb); @@ -121,9 +121,9 @@ namespace { GlobalVariable* Counter; Value* ResetValue; AllocaInst* AI; - const Type* T; + const IntegerType* T; public: - GlobalRandomCounterOpt(Module& M, const Type* t, uint64_t resetval); + GlobalRandomCounterOpt(Module& M, const IntegerType* t, uint64_t resetval); virtual ~GlobalRandomCounterOpt(); virtual void PrepFunction(Function* F); virtual void ProcessChoicePoint(BasicBlock* bb); @@ -193,7 +193,7 @@ static void getBackEdges(Function& F, T& BackEdges); // Methods of choosing when to profile /////////////////////////////////////// -GlobalRandomCounter::GlobalRandomCounter(Module& M, const Type* t, +GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t, uint64_t resetval) : T(t) { ConstantInt* Init = ConstantInt::get(T, resetval); ResetValue = Init; @@ -229,7 +229,7 @@ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) { ReplacePhiPred(oldnext, bb, resetblock); } -GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const Type* t, +GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t, uint64_t resetval) : AI(0), T(t) { ConstantInt* Init = ConstantInt::get(T, resetval); diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index 21d3939..8115a0f 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -390,7 +390,7 @@ namespace { Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); - bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, + bool CanEvaluateInDifferentType(Value *V, const Type *Ty, unsigned CastOpc, int &NumCastsRemoved); unsigned GetOrEnforceKnownAlignment(Value *V, unsigned PrefAlign = 0); @@ -654,30 +654,12 @@ static unsigned getOpcode(const Value *V) { } /// AddOne - Add one to a ConstantInt -static ConstantInt *AddOne(ConstantInt *C) { - APInt Val(C->getValue()); - return ConstantInt::get(++Val); +static Constant *AddOne(Constant *C) { + return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); } /// SubOne - Subtract one from a ConstantInt -static ConstantInt *SubOne(ConstantInt *C) { - APInt Val(C->getValue()); - return ConstantInt::get(--Val); -} -/// Add - Add two ConstantInts together -static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) { - return ConstantInt::get(C1->getValue() + C2->getValue()); -} -/// And - Bitwise AND two ConstantInts together -static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) { - return ConstantInt::get(C1->getValue() & C2->getValue()); -} -/// Subtract - Subtract one ConstantInt from another -static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) { - return ConstantInt::get(C1->getValue() - C2->getValue()); -} -/// Multiply - Multiply two ConstantInts together -static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) { - return ConstantInt::get(C1->getValue() * C2->getValue()); +static Constant *SubOne(ConstantInt *C) { + return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); } /// MultiplyOverflows - True if the multiply can not be expressed in an int /// this size. @@ -774,7 +756,7 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, /// SimplifyDemandedBits knows about. See if the instruction has any /// properties that allow us to simplify its operands. bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { - unsigned BitWidth = cast<IntegerType>(Inst.getType())->getBitWidth(); + unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); @@ -830,13 +812,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, const Type *VTy = V->getType(); assert((TD || !isa<PointerType>(VTy)) && "SimplifyDemandedBits needs to know bit widths!"); - assert((!TD || TD->getTypeSizeInBits(VTy) == BitWidth) && - (!isa<IntegerType>(VTy) || - VTy->getPrimitiveSizeInBits() == BitWidth) && + assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && + (!VTy->isIntOrIntVector() || + VTy->getScalarSizeInBits() == BitWidth) && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && - "Value *V, DemandedMask, KnownZero and KnownOne \ - must have same BitWidth"); + "Value *V, DemandedMask, KnownZero and KnownOne " + "must have same BitWidth"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & DemandedMask; @@ -1089,7 +1071,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, RHSKnownZero &= LHSKnownZero; break; case Instruction::Trunc: { - unsigned truncBf = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); DemandedMask.zext(truncBf); RHSKnownZero.zext(truncBf); RHSKnownOne.zext(truncBf); @@ -1112,7 +1094,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, break; case Instruction::ZExt: { // Compute the bits in the result that are not present in the input. - unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); DemandedMask.trunc(SrcBitWidth); RHSKnownZero.trunc(SrcBitWidth); @@ -1130,7 +1112,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. - unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); APInt InputDemandedBits = DemandedMask & APInt::getLowBitsSet(BitWidth, SrcBitWidth); @@ -2087,7 +2069,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { // See if SimplifyDemandedBits can simplify this. This handles stuff like // (X & 254)+1 -> (X&254)|1 - if (!isa<VectorType>(I.getType()) && SimplifyDemandedInstructionBits(I)) + if (SimplifyDemandedInstructionBits(I)) return &I; // zext(i1) - 1 -> select i1, 0, -1 @@ -2107,7 +2089,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { Value *XorLHS = 0; if (isa<ConstantInt>(RHSC) && match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { - uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits(); + uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue(); uint32_t Size = TySizeBits / 2; @@ -2197,7 +2179,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { // X*C1 + X*C2 --> X * (C1+C2) ConstantInt *C1; if (X == dyn_castFoldableMul(RHS, C1)) - return BinaryOperator::CreateMul(X, Add(C1, C2)); + return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); } // X + X*C --> X * (C+1) @@ -2262,7 +2244,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { // (X & FF00) + xx00 -> (X+xx00) & FF00 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { - Constant *Anded = And(CRHS, C2); + Constant *Anded = ConstantExpr::getAnd(CRHS, C2); if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. @@ -2299,7 +2281,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { Other = LHS; } if (CI && CI->getType()->isSized() && - (CI->getType()->getPrimitiveSizeInBits() == + (CI->getType()->getScalarSizeInBits() == TD->getIntPtrType()->getPrimitiveSizeInBits()) && isa<PointerType>(CI->getOperand(0)->getType())) { unsigned AS = @@ -2523,7 +2505,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) // C1-(X+C2) --> (C1-C2)-X - return BinaryOperator::CreateSub(Subtract(CI1, CI2), + return BinaryOperator::CreateSub(ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0)); } } @@ -2564,7 +2546,8 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { // X - X*C --> X * (1-C) ConstantInt *C2 = 0; if (dyn_castFoldableMul(Op1I, C2) == Op0) { - Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2); + Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), + C2); return BinaryOperator::CreateMul(Op0, CP1); } } @@ -2589,7 +2572,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) if (X == dyn_castFoldableMul(Op1, C2)) - return BinaryOperator::CreateMul(X, Subtract(C1, C2)); + return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); } return 0; } @@ -2950,12 +2933,12 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { // (sdiv X, X) --> 1 (udiv X, X) --> 1 if (Op0 == Op1) { if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) { - ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1); + Constant *CI = ConstantInt::get(Ty->getElementType(), 1); std::vector<Constant*> Elts(Ty->getNumElements(), CI); return ReplaceInstUsesWith(I, ConstantVector::get(Elts)); } - ConstantInt *CI = ConstantInt::get(I.getType(), 1); + Constant *CI = ConstantInt::get(I.getType(), 1); return ReplaceInstUsesWith(I, CI); } @@ -2980,7 +2963,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); else return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), - Multiply(RHS, LHSRHS)); + ConstantExpr::getMul(RHS, LHSRHS)); } if (!RHS->isZero()) { // avoid X udiv 0 @@ -3513,7 +3496,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, Value *X = Op->getOperand(0); Constant *Together = 0; if (!Op->isShift()) - Together = And(AndRHS, OpRHS); + Together = ConstantExpr::getAnd(AndRHS, OpRHS); switch (Op->getOpcode()) { case Instruction::Xor: @@ -3724,7 +3707,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, switch (LHSI->getOpcode()) { default: return 0; case Instruction::And: - if (And(N, Mask) == Mask) { + if (ConstantExpr::getAnd(N, Mask) == Mask) { // If the AndRHS is a power of two minus one (0+1+), this is simple. if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == @@ -3748,7 +3731,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() - && And(N, Mask)->isZero()) + && ConstantExpr::getAnd(N, Mask)->isNullValue()) break; return 0; } @@ -3946,10 +3929,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. - if (!isa<VectorType>(I.getType())) { - if (SimplifyDemandedInstructionBits(I)) - return &I; - } else { + if (SimplifyDemandedInstructionBits(I)) + return &I; + if (isa<VectorType>(I.getType())) { if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { if (CP->isAllOnesValue()) // X & <-1,-1> -> X return ReplaceInstUsesWith(I, I.getOperand(0)); @@ -3957,7 +3939,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0> } } - + if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { const APInt& AndRHSMask = AndRHS->getValue(); APInt NotAndRHS(~AndRHSMask); @@ -4510,7 +4492,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST, Val->getName()+".off"); InsertNewInstBefore(Add, I); - AddCST = Subtract(AddOne(RHSCst), LHSCst); + AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); } break; // (X == 13 | X == 15) -> no change @@ -4653,18 +4635,17 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. - if (!isa<VectorType>(I.getType())) { - if (SimplifyDemandedInstructionBits(I)) - return &I; - } else if (isa<ConstantAggregateZero>(Op1)) { - return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X - } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { - if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1> - return ReplaceInstUsesWith(I, I.getOperand(1)); + if (SimplifyDemandedInstructionBits(I)) + return &I; + if (isa<VectorType>(I.getType())) { + if (isa<ConstantAggregateZero>(Op1)) { + return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X + } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { + if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1> + return ReplaceInstUsesWith(I, I.getOperand(1)); + } } - - // or X, -1 == -1 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { ConstantInt *C1 = 0; Value *X = 0; @@ -4991,12 +4972,11 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) { // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. - if (!isa<VectorType>(I.getType())) { - if (SimplifyDemandedInstructionBits(I)) - return &I; - } else if (isa<ConstantAggregateZero>(Op1)) { - return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X - } + if (SimplifyDemandedInstructionBits(I)) + return &I; + if (isa<VectorType>(I.getType())) + if (isa<ConstantAggregateZero>(Op1)) + return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X // Is this a ~ operation? if (Value *NotOp = dyn_castNotVal(&I)) { @@ -5083,7 +5063,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) { Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); // Anything in both C1 and C2 is known to be zero, remove it from // NewRHS. - Constant *CommonBits = And(Op0CI, RHS); + Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); NewRHS = ConstantExpr::getAnd(NewRHS, ConstantExpr::getNot(CommonBits)); AddToWorkList(Op0I); @@ -5247,12 +5227,13 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) { return Changed ? &I : 0; } -/// AddWithOverflow - Compute Result = In1+In2, returning true if the result -/// overflowed for this type. -static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, - ConstantInt *In2, bool IsSigned = false) { - Result = cast<ConstantInt>(Add(In1, In2)); +static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { + return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); +} +static bool HasAddOverflow(ConstantInt *Result, + ConstantInt *In1, ConstantInt *In2, + bool IsSigned) { if (IsSigned) if (In2->getValue().isNegative()) return Result->getValue().sgt(In1->getValue()); @@ -5262,12 +5243,32 @@ static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, return Result->getValue().ult(In1->getValue()); } -/// SubWithOverflow - Compute Result = In1-In2, returning true if the result +/// AddWithOverflow - Compute Result = In1+In2, returning true if the result /// overflowed for this type. -static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1, - ConstantInt *In2, bool IsSigned = false) { - Result = cast<ConstantInt>(Subtract(In1, In2)); +static bool AddWithOverflow(Constant *&Result, Constant *In1, + Constant *In2, bool IsSigned = false) { + Result = ConstantExpr::getAdd(In1, In2); + + if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + Constant *Idx = ConstantInt::get(Type::Int32Ty, i); + if (HasAddOverflow(ExtractElement(Result, Idx), + ExtractElement(In1, Idx), + ExtractElement(In2, Idx), + IsSigned)) + return true; + } + return false; + } + return HasAddOverflow(cast<ConstantInt>(Result), + cast<ConstantInt>(In1), cast<ConstantInt>(In2), + IsSigned); +} + +static bool HasSubOverflow(ConstantInt *Result, + ConstantInt *In1, ConstantInt *In2, + bool IsSigned) { if (IsSigned) if (In2->getValue().isNegative()) return Result->getValue().slt(In1->getValue()); @@ -5277,6 +5278,29 @@ static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1, return Result->getValue().ugt(In1->getValue()); } +/// SubWithOverflow - Compute Result = In1-In2, returning true if the result +/// overflowed for this type. +static bool SubWithOverflow(Constant *&Result, Constant *In1, + Constant *In2, bool IsSigned = false) { + Result = ConstantExpr::getSub(In1, In2); + + if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + Constant *Idx = ConstantInt::get(Type::Int32Ty, i); + if (HasSubOverflow(ExtractElement(Result, Idx), + ExtractElement(In1, Idx), + ExtractElement(In2, Idx), + IsSigned)) + return true; + } + return false; + } + + return HasSubOverflow(cast<ConstantInt>(Result), + cast<ConstantInt>(In1), cast<ConstantInt>(In2), + IsSigned); +} + /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the /// code necessary to compute the offset from the base pointer (without adding /// in the base pointer). Return the result as a signed integer of intptr size. @@ -5589,7 +5613,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, // Check to see that the input is converted from an integer type that is small // enough that preserves all bits. TODO: check here for "known" sign bits. // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. - unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); + unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); // If this is a uitofp instruction, we need an extra bit to hold the sign. bool LHSUnsigned = isa<UIToFPInst>(LHSI); @@ -5644,7 +5668,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, // See if the FP constant is too large for the integer. For example, // comparing an i8 to 300.0. - unsigned IntWidth = IntTy->getPrimitiveSizeInBits(); + unsigned IntWidth = IntTy->getScalarSizeInBits(); if (!LHSUnsigned) { // If the RHS value is > SignedMax, fold the comparison. This handles +INF @@ -6459,7 +6483,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and // C2 (CI). By solving for X we can turn this into a range check // instead of computing a divide. - ConstantInt *Prod = Multiply(CmpRHS, DivRHS); + Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); // Determine if the product overflows by seeing if the product is // not equal to the divide. Make sure we do the same kind of divide @@ -6478,7 +6502,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, // overflow variable is set to 0 if it's corresponding bound variable is valid // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. int LoOverflow = 0, HiOverflow = 0; - ConstantInt *LoBound = 0, *HiBound = 0; + Constant *LoBound = 0, *HiBound = 0; if (!DivIsSigned) { // udiv // e.g. X/5 op 3 --> [15, 20) @@ -6966,7 +6990,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { if (BO->hasOneUse()) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), - Subtract(RHS, BOp1C)); + ConstantExpr::getSub(RHS, BOp1C)); } else if (RHSV == 0) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. @@ -7250,7 +7274,7 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { } // See if we can fold away this shift. - if (!isa<VectorType>(I.getType()) && SimplifyDemandedInstructionBits(I)) + if (SimplifyDemandedInstructionBits(I)) return &I; // Try to fold constant and into select arguments. @@ -7729,7 +7753,8 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, // If the allocation size is constant, form a constant mul expression Amt = ConstantInt::get(Type::Int32Ty, Scale); if (isa<ConstantInt>(NumElements)) - Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt)); + Amt = ConstantExpr::getMul(cast<ConstantInt>(NumElements), + cast<ConstantInt>(Amt)); // otherwise multiply the amount and the number of elements else { Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp"); @@ -7788,17 +7813,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, /// If CastOpc is a sext or zext, we are asking if the low bits of the value can /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get /// the final result. -bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, +bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty, unsigned CastOpc, int &NumCastsRemoved){ // We can always evaluate constants in another type. - if (isa<ConstantInt>(V)) + if (isa<Constant>(V)) return true; Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - const IntegerType *OrigTy = cast<IntegerType>(V->getType()); + const Type *OrigTy = V->getType(); // If this is an extension or truncate, we can often eliminate it. if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) { @@ -7836,8 +7861,8 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, // If we are truncating the result of this SHL, and if it's a shift of a // constant amount, we can always perform a SHL in a smaller type. if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { - uint32_t BitWidth = Ty->getBitWidth(); - if (BitWidth < OrigTy->getBitWidth() && + uint32_t BitWidth = Ty->getScalarSizeInBits(); + if (BitWidth < OrigTy->getScalarSizeInBits() && CI->getLimitedValue(BitWidth) < BitWidth) return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved); @@ -7848,8 +7873,8 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, // lshr iff we know that the bits we would otherwise be shifting in are // already zeros. if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { - uint32_t OrigBitWidth = OrigTy->getBitWidth(); - uint32_t BitWidth = Ty->getBitWidth(); + uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); + uint32_t BitWidth = Ty->getScalarSizeInBits(); if (BitWidth < OrigBitWidth && MaskedValueIsZero(I->getOperand(0), APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && @@ -8131,8 +8156,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI.getType(); - uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits(); + uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); + uint32_t DestBitSize = DestTy->getScalarSizeInBits(); // See if we can simplify any instructions used by the LHS whose sole // purpose is to compute bits we don't care about. @@ -8151,8 +8176,9 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { // Only do this if the dest type is a simple type, don't convert the // expression tree to something weird like i93 unless the source is also // strange. - (isSafeIntegerType(DestTy) || !isSafeIntegerType(SrcI->getType())) && - CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy), + (isSafeIntegerType(DestTy->getScalarType()) || + !isSafeIntegerType(SrcI->getType()->getScalarType())) && + CanEvaluateInDifferentType(SrcI, DestTy, CI.getOpcode(), NumCastsRemoved)) { // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. If this is a zero-extension, @@ -8350,17 +8376,17 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { Value *Src = CI.getOperand(0); const Type *Ty = CI.getType(); - uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits(); - uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth(); + uint32_t DestBitWidth = Ty->getScalarSizeInBits(); + uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits(); // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0) - if (DestBitWidth == 1) { + if (!isa<VectorType>(Ty) && DestBitWidth == 1) { Constant *One = ConstantInt::get(Src->getType(), 1); Src = InsertNewInstBefore(BinaryOperator::CreateAnd(Src, One, "tmp"), CI); Value *Zero = Constant::getNullValue(Src->getType()); return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); } - + // Optimize trunc(lshr(), c) to pull the shift through the truncate. ConstantInt *ShAmtV = 0; Value *ShiftOp = 0; @@ -8403,7 +8429,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), - In->getType()->getPrimitiveSizeInBits()-1); + In->getType()->getScalarSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh, In->getName()+".lobit"), CI); @@ -8494,28 +8520,30 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // Get the sizes of the types involved. We know that the intermediate type // will be smaller than A or C, but don't know the relation between A and C. Value *A = CSrc->getOperand(0); - unsigned SrcSize = A->getType()->getPrimitiveSizeInBits(); - unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits(); - unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); + unsigned SrcSize = A->getType()->getScalarSizeInBits(); + unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); + unsigned DstSize = CI.getType()->getScalarSizeInBits(); // If we're actually extending zero bits, then if // SrcSize < DstSize: zext(a & mask) // SrcSize == DstSize: a & mask // SrcSize > DstSize: trunc(a) & mask if (SrcSize < DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); - Constant *AndConst = ConstantInt::get(AndValue); + Constant *AndConst = ConstantInt::get(A->getType(), AndValue); Instruction *And = BinaryOperator::CreateAnd(A, AndConst, CSrc->getName()+".mask"); InsertNewInstBefore(And, CI); return new ZExtInst(And, CI.getType()); } else if (SrcSize == DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); - return BinaryOperator::CreateAnd(A, ConstantInt::get(AndValue)); + return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), + AndValue)); } else if (SrcSize > DstSize) { Instruction *Trunc = new TruncInst(A, CI.getType(), "tmp"); InsertNewInstBefore(Trunc, CI); APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); - return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(AndValue)); + return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Trunc->getType(), + AndValue)); } } @@ -8556,9 +8584,9 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // eliminate the trunc/sext pair. if (getOpcode(Src) == Instruction::Trunc) { Value *Op = cast<User>(Src)->getOperand(0); - unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth(); - unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth(); - unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth(); + unsigned OpBits = Op->getType()->getScalarSizeInBits(); + unsigned MidBits = Src->getType()->getScalarSizeInBits(); + unsigned DestBits = CI.getType()->getScalarSizeInBits(); unsigned NumSignBits = ComputeNumSignBits(Op); if (OpBits == DestBits) { @@ -8599,8 +8627,8 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { BA == CA && isa<TruncInst>(A)) { Value *I = cast<TruncInst>(A)->getOperand(0); if (I->getType() == CI.getType()) { - unsigned MidSize = Src->getType()->getPrimitiveSizeInBits(); - unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits(); + unsigned MidSize = Src->getType()->getScalarSizeInBits(); + unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV, @@ -8671,11 +8699,11 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); if (LHSTrunc->getType() != SrcTy && RHSTrunc->getType() != SrcTy) { - unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); + unsigned DstSize = CI.getType()->getScalarSizeInBits(); // If the source types were both smaller than the destination type of // the cast, do this xform. - if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize && - RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) { + if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && + RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc, CI.getType(), CI); RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc, @@ -8706,7 +8734,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && - (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */ + (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); @@ -8726,7 +8754,7 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && - (int)FI.getType()->getPrimitiveSizeInBits() <= + (int)FI.getType()->getScalarSizeInBits() <= OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); @@ -8747,7 +8775,7 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { // trunc to be exposed to other transforms. Don't do this for extending // ptrtoint's, because we don't know if the target sign or zero extends its // pointers. - if (CI.getType()->getPrimitiveSizeInBits() < TD->getPointerSizeInBits()) { + if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { Value *P = InsertNewInstBefore(new PtrToIntInst(CI.getOperand(0), TD->getIntPtrType(), "tmp"), CI); @@ -8763,7 +8791,7 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { // allows the trunc to be exposed to other transforms. Don't do this for // extending inttoptr's, because we don't know if the target sign or zero // extends to pointers. - if (CI.getOperand(0)->getType()->getPrimitiveSizeInBits() > + if (CI.getOperand(0)->getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) { Value *P = InsertNewInstBefore(new TruncInst(CI.getOperand(0), TD->getIntPtrType(), @@ -9194,7 +9222,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), - In->getType()->getPrimitiveSizeInBits()-1); + In->getType()->getScalarSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, In->getName()+".lobit"), *ICI); @@ -9316,7 +9344,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { // The comparison constant and the result are not neccessarily the // same width. Make an all-ones value by inserting a AShr. Value *X = IC->getOperand(0); - uint32_t Bits = X->getType()->getPrimitiveSizeInBits(); + uint32_t Bits = X->getType()->getScalarSizeInBits(); Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1); Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X, ShAmt, "ones"); @@ -10850,8 +10878,8 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) { static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy, Instruction *InsertPoint, InstCombiner *IC) { - unsigned PtrSize = DTy->getPrimitiveSizeInBits(); - unsigned VTySize = V->getType()->getPrimitiveSizeInBits(); + unsigned PtrSize = DTy->getScalarSizeInBits(); + unsigned VTySize = V->getType()->getScalarSizeInBits(); // We must cast correctly to the pointer type. Ensure that we // sign extend the integer value if it is smaller as this is // used for address computation. @@ -10892,7 +10920,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { const Type *SrcTy = CI->getOperand(0)->getType(); // We can eliminate a cast from i32 to i64 iff the target // is a 32-bit pointer target. - if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { + if (SrcTy->getScalarSizeInBits() >= TD->getPointerSizeInBits()) { MadeChange = true; *i = CI->getOperand(0); } @@ -11105,7 +11133,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { ConstantInt *Scale = 0; if (ArrayEltSize == 1) { NewIdx = GEP.getOperand(1); - Scale = ConstantInt::get(NewIdx->getType(), 1); + Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { NewIdx = ConstantInt::get(CI->getType(), 1); Scale = CI; @@ -11114,7 +11142,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { isa<ConstantInt>(Inst->getOperand(1))) { ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); uint32_t ShAmtVal = ShAmt->getLimitedValue(64); - Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal); + Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), + 1ULL << ShAmtVal); NewIdx = Inst->getOperand(0); } else if (Inst->getOpcode() == Instruction::Mul && isa<ConstantInt>(Inst->getOperand(1))) { diff --git a/lib/Transforms/Scalar/LoopIndexSplit.cpp b/lib/Transforms/Scalar/LoopIndexSplit.cpp index 9c78596..6f7a7f8 100644 --- a/lib/Transforms/Scalar/LoopIndexSplit.cpp +++ b/lib/Transforms/Scalar/LoopIndexSplit.cpp @@ -290,13 +290,13 @@ static bool isUsedOutsideLoop(Value *V, Loop *L) { // Return V+1 static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt) { - ConstantInt *One = ConstantInt::get(V->getType(), 1, Sign); + Constant *One = ConstantInt::get(V->getType(), 1, Sign); return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt); } // Return V-1 static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt) { - ConstantInt *One = ConstantInt::get(V->getType(), 1, Sign); + Constant *One = ConstantInt::get(V->getType(), 1, Sign); return BinaryOperator::CreateSub(V, One, "lsp", InsertPt); } diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp index 5603042..540433f 100644 --- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp +++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp @@ -2008,15 +2008,15 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond, if (!isa<PointerType>(NewCmpTy)) NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal); else { - ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal); + Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal); NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy); } NewOffset = TyBits == NewTyBits ? SE->getMulExpr(CondUse->getOffset(), - SE->getConstant(ConstantInt::get(CmpTy, Scale))) - : SE->getConstant(ConstantInt::get(NewCmpIntTy, + SE->getConstant(CmpTy, Scale)) + : SE->getConstant(NewCmpIntTy, cast<SCEVConstant>(CondUse->getOffset())->getValue() - ->getSExtValue()*Scale)); + ->getSExtValue()*Scale); break; } } @@ -2242,7 +2242,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) { ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); if (!Init) continue; - ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); + Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); BinaryOperator *Incr = dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); @@ -2266,7 +2266,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) { PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); /* create new increment. '++d' in above example. */ - ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue()); + Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); BinaryOperator *NewIncr = BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? Instruction::FAdd : Instruction::FSub, @@ -2506,7 +2506,7 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) { Value *startVal = phi->getIncomingValue(inBlock); Value *endVal = Cond->getOperand(1); // FIXME check for case where both are constant - ConstantInt* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0); + Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0); BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub, endVal, startVal, "tmp", PreInsertPt); |