diff options
Diffstat (limited to 'lib/VMCore/AsmWriter.cpp')
-rw-r--r-- | lib/VMCore/AsmWriter.cpp | 2116 |
1 files changed, 2116 insertions, 0 deletions
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp new file mode 100644 index 0000000..ab5f45a --- /dev/null +++ b/lib/VMCore/AsmWriter.cpp @@ -0,0 +1,2116 @@ +//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library implements the functionality defined in llvm/Assembly/Writer.h +// +// Note that these routines must be extremely tolerant of various errors in the +// LLVM code, because it can be used for debugging transformations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/Writer.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/Assembly/AsmAnnotationWriter.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Operator.h" +#include "llvm/Module.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/FormattedStream.h" +#include <algorithm> +#include <cctype> +#include <map> +using namespace llvm; + +// Make virtual table appear in this compilation unit. +AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +static const Module *getModuleFromVal(const Value *V) { + if (const Argument *MA = dyn_cast<Argument>(V)) + return MA->getParent() ? MA->getParent()->getParent() : 0; + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return BB->getParent() ? BB->getParent()->getParent() : 0; + + if (const Instruction *I = dyn_cast<Instruction>(V)) { + const Function *M = I->getParent() ? I->getParent()->getParent() : 0; + return M ? M->getParent() : 0; + } + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return GV->getParent(); + if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) + return NMD->getParent(); + return 0; +} + +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(const StringRef &Name, + raw_ostream &Out) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); + } +} + +enum PrefixType { + GlobalPrefix, + LabelPrefix, + LocalPrefix, + NoPrefix +}; + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const StringRef &Name, + PrefixType Prefix) { + assert(Name.data() && "Cannot get empty name!"); + switch (Prefix) { + default: llvm_unreachable("Bad prefix!"); + case NoPrefix: break; + case GlobalPrefix: OS << '@'; break; + case LabelPrefix: break; + case LocalPrefix: OS << '%'; break; + } + + // Scan the name to see if it needs quotes first. + bool NeedsQuotes = isdigit(Name[0]); + if (!NeedsQuotes) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + char C = Name[i]; + if (!isalnum(C) && C != '-' && C != '.' && C != '_') { + NeedsQuotes = true; + break; + } + } + } + + // If we didn't need any quotes, just write out the name in one blast. + if (!NeedsQuotes) { + OS << Name; + return; + } + + // Okay, we need quotes. Output the quotes and escape any scary characters as + // needed. + OS << '"'; + PrintEscapedString(Name, OS); + OS << '"'; +} + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const Value *V) { + PrintLLVMName(OS, V->getName(), + isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); +} + +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) { + return *static_cast<DenseMap<const Type *, std::string>*>(M); +} + +void TypePrinting::clear() { + getTypeNamesMap(TypeNames).clear(); +} + +bool TypePrinting::hasTypeName(const Type *Ty) const { + return getTypeNamesMap(TypeNames).count(Ty); +} + +void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { + getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); +} + + +TypePrinting::TypePrinting() { + TypeNames = new DenseMap<const Type *, std::string>(); +} + +TypePrinting::~TypePrinting() { + delete &getTypeNamesMap(TypeNames); +} + +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::CalcTypeName(const Type *Ty, + SmallVectorImpl<const Type *> &TypeStack, + raw_ostream &OS, bool IgnoreTopLevelName) { + // Check to see if the type is named. + if (!IgnoreTopLevelName) { + DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames); + DenseMap<const Type *, std::string>::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Check to see if the Type is already on the stack... + unsigned Slot = 0, CurSize = TypeStack.size(); + while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type + + // This is another base case for the recursion. In this case, we know + // that we have looped back to a type that we have previously visited. + // Generate the appropriate upreference to handle this. + if (Slot < CurSize) { + OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference + return; + } + + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. + + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::IntegerTyID: + OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); + break; + + case Type::FunctionTyID: { + const FunctionType *FTy = cast<FunctionType>(Ty); + CalcTypeName(FTy->getReturnType(), TypeStack, OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + CalcTypeName(*I, TypeStack, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + break; + } + case Type::StructTyID: { + const StructType *STy = cast<StructType>(Ty); + if (STy->isPacked()) + OS << '<'; + OS << "{ "; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + CalcTypeName(*I, TypeStack, OS); + if (next(I) != STy->element_end()) + OS << ','; + OS << ' '; + } + OS << '}'; + if (STy->isPacked()) + OS << '>'; + break; + } + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(Ty); + CalcTypeName(PTy->getElementType(), TypeStack, OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + break; + } + case Type::ArrayTyID: { + const ArrayType *ATy = cast<ArrayType>(Ty); + OS << '[' << ATy->getNumElements() << " x "; + CalcTypeName(ATy->getElementType(), TypeStack, OS); + OS << ']'; + break; + } + case Type::VectorTyID: { + const VectorType *PTy = cast<VectorType>(Ty); + OS << "<" << PTy->getNumElements() << " x "; + CalcTypeName(PTy->getElementType(), TypeStack, OS); + OS << '>'; + break; + } + case Type::OpaqueTyID: + OS << "opaque"; + break; + default: + OS << "<unrecognized-type>"; + break; + } + + TypeStack.pop_back(); // Remove self from stack. +} + +/// printTypeInt - The internal guts of printing out a type that has a +/// potentially named portion. +/// +void TypePrinting::print(const Type *Ty, raw_ostream &OS, + bool IgnoreTopLevelName) { + // Check to see if the type is named. + DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames); + if (!IgnoreTopLevelName) { + DenseMap<const Type*, std::string>::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Otherwise we have a type that has not been named but is a derived type. + // Carefully recurse the type hierarchy to print out any contained symbolic + // names. + SmallVector<const Type *, 16> TypeStack; + std::string TypeName; + + raw_string_ostream TypeOS(TypeName); + CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); + OS << TypeOS.str(); + + // Cache type name for later use. + if (!IgnoreTopLevelName) + TM.insert(std::make_pair(Ty, TypeOS.str())); +} + +namespace { + class TypeFinder { + // To avoid walking constant expressions multiple times and other IR + // objects, we keep several helper maps. + DenseSet<const Value*> VisitedConstants; + DenseSet<const Type*> VisitedTypes; + + TypePrinting &TP; + std::vector<const Type*> &NumberedTypes; + public: + TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes) + : TP(tp), NumberedTypes(numberedTypes) {} + + void Run(const Module &M) { + // Get types from the type symbol table. This gets opaque types referened + // only through derived named types. + const TypeSymbolTable &ST = M.getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) + IncorporateType(TI->second); + + // Get types from global variables. + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + // Get types from aliases. + for (Module::const_alias_iterator I = M.alias_begin(), + E = M.alias_end(); I != E; ++I) { + IncorporateType(I->getType()); + IncorporateValue(I->getAliasee()); + } + + // Get types from functions. + for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { + IncorporateType(FI->getType()); + + for (Function::const_iterator BB = FI->begin(), E = FI->end(); + BB != E;++BB) + for (BasicBlock::const_iterator II = BB->begin(), + E = BB->end(); II != E; ++II) { + const Instruction &I = *II; + // Incorporate the type of the instruction and all its operands. + IncorporateType(I.getType()); + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } + } + } + + private: + void IncorporateType(const Type *Ty) { + // Check to see if we're already visited this type. + if (!VisitedTypes.insert(Ty).second) + return; + + // If this is a structure or opaque type, add a name for the type. + if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements()) + || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) { + TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); + NumberedTypes.push_back(Ty); + } + + // Recursively walk all contained types. + for (Type::subtype_iterator I = Ty->subtype_begin(), + E = Ty->subtype_end(); I != E; ++I) + IncorporateType(*I); + } + + /// IncorporateValue - This method is used to walk operand lists finding + /// types hiding in constant expressions and other operands that won't be + /// walked in other ways. GlobalValues, basic blocks, instructions, and + /// inst operands are all explicitly enumerated. + void IncorporateValue(const Value *V) { + if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return; + + // Already visited? + if (!VisitedConstants.insert(V).second) + return; + + // Check this type. + IncorporateType(V->getType()); + + // Look in operands for types. + const Constant *C = cast<Constant>(V); + for (Constant::const_op_iterator I = C->op_begin(), + E = C->op_end(); I != E;++I) + IncorporateValue(*I); + } + }; +} // end anonymous namespace + + +/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in +/// the specified module to the TypePrinter and all numbered types to it and the +/// NumberedTypes table. +static void AddModuleTypesToPrinter(TypePrinting &TP, + std::vector<const Type*> &NumberedTypes, + const Module *M) { + if (M == 0) return; + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + const TypeSymbolTable &ST = M->getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) { + const Type *Ty = cast<Type>(TI->second); + + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { + const Type *PETy = PTy->getElementType(); + if ((PETy->isPrimitiveType() || PETy->isInteger()) && + !isa<OpaqueType>(PETy)) + continue; + } + + // Likewise don't insert primitives either. + if (Ty->isInteger() || Ty->isPrimitiveType()) + continue; + + // Get the name as a string and insert it into TypeNames. + std::string NameStr; + raw_string_ostream NameROS(NameStr); + formatted_raw_ostream NameOS(NameROS); + PrintLLVMName(NameOS, TI->first, LocalPrefix); + NameOS.flush(); + TP.addTypeName(Ty, NameStr); + } + + // Walk the entire module to find references to unnamed structure and opaque + // types. This is required for correctness by opaque types (because multiple + // uses of an unnamed opaque type needs to be referred to by the same ID) and + // it shrinks complex recursive structure types substantially in some cases. + TypeFinder(TP, NumberedTypes).Run(*M); +} + + +/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +/// type, iff there is an entry in the modules symbol table for the specified +/// type or one of it's component types. +/// +void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { + TypePrinting Printer; + std::vector<const Type*> NumberedTypes; + AddModuleTypesToPrinter(Printer, NumberedTypes, M); + Printer.print(Ty, OS); +} + +//===----------------------------------------------------------------------===// +// SlotTracker Class: Enumerate slot numbers for unnamed values +//===----------------------------------------------------------------------===// + +namespace { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// +class SlotTracker { +public: + /// ValueMap - A mapping of Values to slot numbers. + typedef DenseMap<const Value*, unsigned> ValueMap; + +private: + /// TheModule - The module for which we are holding slot numbers. + const Module* TheModule; + + /// TheFunction - The function for which we are holding slot numbers. + const Function* TheFunction; + bool FunctionProcessed; + + /// mMap - The TypePlanes map for the module level data. + ValueMap mMap; + unsigned mNext; + + /// fMap - The TypePlanes map for the function level data. + ValueMap fMap; + unsigned fNext; + + /// mdnMap - Map for MDNodes. + DenseMap<const MDNode*, unsigned> mdnMap; + unsigned mdnNext; +public: + /// Construct from a module + explicit SlotTracker(const Module *M); + /// Construct from a function, starting out in incorp state. + explicit SlotTracker(const Function *F); + + /// Return the slot number of the specified value in it's type + /// plane. If something is not in the SlotTracker, return -1. + int getLocalSlot(const Value *V); + int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); + + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotTracker. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotTracker. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + + /// MDNode map iterators. + typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; + mdn_iterator mdn_begin() { return mdnMap.begin(); } + mdn_iterator mdn_end() { return mdnMap.end(); } + unsigned mdn_size() const { return mdnMap.size(); } + bool mdn_empty() const { return mdnMap.empty(); } + + /// This function does the actual initialization. + inline void initialize(); + + // Implementation Details +private: + /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. + void CreateModuleSlot(const GlobalValue *V); + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + + /// CreateFunctionSlot - Insert the specified Value* into the slot table. + void CreateFunctionSlot(const Value *V); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions. + void processFunction(); + + SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT + void operator=(const SlotTracker &); // DO NOT IMPLEMENT +}; + +} // end anonymous namespace + + +static SlotTracker *createSlotTracker(const Value *V) { + if (const Argument *FA = dyn_cast<Argument>(V)) + return new SlotTracker(FA->getParent()); + + if (const Instruction *I = dyn_cast<Instruction>(V)) + return new SlotTracker(I->getParent()->getParent()); + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return new SlotTracker(BB->getParent()); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return new SlotTracker(GV->getParent()); + + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) + return new SlotTracker(GA->getParent()); + + if (const Function *Func = dyn_cast<Function>(V)) + return new SlotTracker(Func); + + if (isa<MDNode>(V)) + return new SlotTracker((Function *)0); + + return 0; +} + +#if 0 +#define ST_DEBUG(X) dbgs() << X +#else +#define ST_DEBUG(X) +#endif + +// Module level constructor. Causes the contents of the Module (sans functions) +// to be added to the slot table. +SlotTracker::SlotTracker(const Module *M) + : TheModule(M), TheFunction(0), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +// Function level constructor. Causes the contents of the Module and the one +// function provided to be added to the slot table. +SlotTracker::SlotTracker(const Function *F) + : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +inline void SlotTracker::initialize() { + if (TheModule) { + processModule(); + TheModule = 0; ///< Prevent re-processing next time we're called. + } + + if (TheFunction && !FunctionProcessed) + processFunction(); +} + +// Iterate through all the global variables, functions, and global +// variable initializers and create slots for them. +void SlotTracker::processModule() { + ST_DEBUG("begin processModule!\n"); + + // Add all of the unnamed global variables to the value table. + for (Module::const_global_iterator I = TheModule->global_begin(), + E = TheModule->global_end(); I != E; ++I) { + if (!I->hasName()) + CreateModuleSlot(I); + } + + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { + if (MDNode *MD = NMD->getOperand(i)) + CreateMetadataSlot(MD); + } + } + + // Add all the unnamed functions to the table. + for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); + I != E; ++I) + if (!I->hasName()) + CreateModuleSlot(I); + + ST_DEBUG("end processModule!\n"); +} + +// Process the arguments, basic blocks, and instructions of a function. +void SlotTracker::processFunction() { + ST_DEBUG("begin processFunction!\n"); + fNext = 0; + + // Add all the function arguments with no names. + for(Function::const_arg_iterator AI = TheFunction->arg_begin(), + AE = TheFunction->arg_end(); AI != AE; ++AI) + if (!AI->hasName()) + CreateFunctionSlot(AI); + + ST_DEBUG("Inserting Instructions:\n"); + + SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; + + // Add all of the basic blocks and instructions with no names. + for (Function::const_iterator BB = TheFunction->begin(), + E = TheFunction->end(); BB != E; ++BB) { + if (!BB->hasName()) + CreateFunctionSlot(BB); + + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + if (!I->getType()->isVoidTy() && !I->hasName()) + CreateFunctionSlot(I); + + // Intrinsics can directly use metadata. + if (isa<IntrinsicInst>(I)) + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) + CreateMetadataSlot(N); + + // Process metadata attached with this instruction. + I->getAllMetadata(MDForInst); + for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) + CreateMetadataSlot(MDForInst[i].second); + MDForInst.clear(); + } + } + + FunctionProcessed = true; + + ST_DEBUG("end processFunction!\n"); +} + +/// Clean up after incorporating a function. This is the only way to get out of +/// the function incorporation state that affects get*Slot/Create*Slot. Function +/// incorporation state is indicated by TheFunction != 0. +void SlotTracker::purgeFunction() { + ST_DEBUG("begin purgeFunction!\n"); + fMap.clear(); // Simply discard the function level map + TheFunction = 0; + FunctionProcessed = false; + ST_DEBUG("end purgeFunction!\n"); +} + +/// getGlobalSlot - Get the slot number of a global value. +int SlotTracker::getGlobalSlot(const GlobalValue *V) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + ValueMap::iterator MI = mMap.find(V); + return MI == mMap.end() ? -1 : (int)MI->second; +} + +/// getMetadataSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + mdn_iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; +} + + +/// getLocalSlot - Get the slot number for a value that is local to a function. +int SlotTracker::getLocalSlot(const Value *V) { + assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); + + // Check for uninitialized state and do lazy initialization. + initialize(); + + ValueMap::iterator FI = fMap.find(V); + return FI == fMap.end() ? -1 : (int)FI->second; +} + + +/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. +void SlotTracker::CreateModuleSlot(const GlobalValue *V) { + assert(V && "Can't insert a null Value into SlotTracker!"); + assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); + assert(!V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = mNext++; + mMap[V] = DestSlot; + + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " ["); + // G = Global, F = Function, A = Alias, o = other + ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : + (isa<Function>(V) ? 'F' : + (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); +} + +/// CreateSlot - Create a new slot for the specified value if it has no name. +void SlotTracker::CreateFunctionSlot(const Value *V) { + assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = fNext++; + fMap[V] = DestSlot; + + // G = Global, F = Function, o = other + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " [o]\n"); +} + +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); + + // Don't insert if N is a function-local metadata, these are always printed + // inline. + if (N->isFunctionLocal()) + return; + + mdn_iterator I = mdnMap.find(N); + if (I != mdnMap.end()) + return; + + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; + + // Recursively add any MDNodes referenced by operands. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) + CreateMetadataSlot(Op); +} + +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// + +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine); + + + +static const char *getPredicateText(unsigned predicate) { + const char * pred = "unknown"; + switch (predicate) { + case FCmpInst::FCMP_FALSE: pred = "false"; break; + case FCmpInst::FCMP_OEQ: pred = "oeq"; break; + case FCmpInst::FCMP_OGT: pred = "ogt"; break; + case FCmpInst::FCMP_OGE: pred = "oge"; break; + case FCmpInst::FCMP_OLT: pred = "olt"; break; + case FCmpInst::FCMP_OLE: pred = "ole"; break; + case FCmpInst::FCMP_ONE: pred = "one"; break; + case FCmpInst::FCMP_ORD: pred = "ord"; break; + case FCmpInst::FCMP_UNO: pred = "uno"; break; + case FCmpInst::FCMP_UEQ: pred = "ueq"; break; + case FCmpInst::FCMP_UGT: pred = "ugt"; break; + case FCmpInst::FCMP_UGE: pred = "uge"; break; + case FCmpInst::FCMP_ULT: pred = "ult"; break; + case FCmpInst::FCMP_ULE: pred = "ule"; break; + case FCmpInst::FCMP_UNE: pred = "une"; break; + case FCmpInst::FCMP_TRUE: pred = "true"; break; + case ICmpInst::ICMP_EQ: pred = "eq"; break; + case ICmpInst::ICMP_NE: pred = "ne"; break; + case ICmpInst::ICMP_SGT: pred = "sgt"; break; + case ICmpInst::ICMP_SGE: pred = "sge"; break; + case ICmpInst::ICMP_SLT: pred = "slt"; break; + case ICmpInst::ICMP_SLE: pred = "sle"; break; + case ICmpInst::ICMP_UGT: pred = "ugt"; break; + case ICmpInst::ICMP_UGE: pred = "uge"; break; + case ICmpInst::ICMP_ULT: pred = "ult"; break; + case ICmpInst::ICMP_ULE: pred = "ule"; break; + } + return pred; +} + + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(U)) { + if (OBO->hasNoUnsignedWrap()) + Out << " nuw"; + if (OBO->hasNoSignedWrap()) + Out << " nsw"; + } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + +static void WriteConstantInt(raw_ostream &Out, const Constant *CV, + TypePrinting &TypePrinter, SlotTracker *Machine) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + if (CI->getType()->isInteger(1)) { + Out << (CI->getZExtValue() ? "true" : "false"); + return; + } + Out << CI->getValue(); + return; + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || + &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { + // We would like to output the FP constant value in exponential notation, + // but we cannot do this if doing so will lose precision. Check here to + // make sure that we only output it in exponential format if we can parse + // the value back and get the same value. + // + bool ignored; + bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; + double Val = isDouble ? CFP->getValueAPF().convertToDouble() : + CFP->getValueAPF().convertToFloat(); + SmallString<128> StrVal; + raw_svector_ostream(StrVal) << Val; + + // Check to make sure that the stringized number is not some string like + // "Inf" or NaN, that atof will accept, but the lexer will not. Check + // that the string matches the "[-+]?[0-9]" regex. + // + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) { + // Reparse stringized version! + if (atof(StrVal.c_str()) == Val) { + Out << StrVal.str(); + return; + } + } + // Otherwise we could not reparse it to exactly the same value, so we must + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. + assert(sizeof(double) == sizeof(uint64_t) && + "assuming that double is 64 bits!"); + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); + return; + } + + // Some form of long double. These appear as a magic letter identifying + // the type, then a fixed number of hex digits. + Out << "0x"; + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { + Out << 'K'; + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + int shiftcount=12; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) + Out << 'L'; + else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) + Out << 'M'; + else + llvm_unreachable("Unsupported floating point type"); + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = *p; + int shiftcount=60; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *(++p); + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } + + if (isa<ConstantAggregateZero>(CV)) { + Out << "zeroinitializer"; + return; + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { + Out << "blockaddress("; + WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine); + Out << ", "; + WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine); + Out << ")"; + return; + } + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { + // As a special case, print the array as a string if it is an array of + // i8 with ConstantInt values. + // + const Type *ETy = CA->getType()->getElementType(); + if (CA->isString()) { + Out << "c\""; + PrintEscapedString(CA->getAsString(), Out); + Out << '"'; + } else { // Cannot output in string format... + Out << '['; + if (CA->getNumOperands()) { + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(0), + &TypePrinter, Machine); + for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine); + } + } + Out << ']'; + } + return; + } + + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { + if (CS->getType()->isPacked()) + Out << '<'; + Out << '{'; + unsigned N = CS->getNumOperands(); + if (N) { + Out << ' '; + TypePrinter.print(CS->getOperand(0)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine); + + for (unsigned i = 1; i < N; i++) { + Out << ", "; + TypePrinter.print(CS->getOperand(i)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine); + } + Out << ' '; + } + + Out << '}'; + if (CS->getType()->isPacked()) + Out << '>'; + return; + } + + if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { + const Type *ETy = CP->getType()->getElementType(); + assert(CP->getNumOperands() > 0 && + "Number of operands for a PackedConst must be > 0"); + Out << '<'; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine); + for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine); + } + Out << '>'; + return; + } + + if (isa<ConstantPointerNull>(CV)) { + Out << "null"; + return; + } + + if (isa<UndefValue>(CV)) { + Out << "undef"; + return; + } + + if (const MDNode *Node = dyn_cast<MDNode>(CV)) { + Out << "!" << Machine->getMetadataSlot(Node); + return; + } + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { + Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); + if (CE->isCompare()) + Out << ' ' << getPredicateText(CE->getPredicate()); + Out << " ("; + + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { + TypePrinter.print((*OI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine); + if (OI+1 != CE->op_end()) + Out << ", "; + } + + if (CE->hasIndices()) { + const SmallVector<unsigned, 4> &Indices = CE->getIndices(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + Out << ", " << Indices[i]; + } + + if (CE->isCast()) { + Out << " to "; + TypePrinter.print(CE->getType(), Out); + } + + Out << ')'; + return; + } + + Out << "<placeholder or erroneous Constant>"; +} + +static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, + TypePrinting *TypePrinter, + SlotTracker *Machine) { + Out << "!{"; + for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { + const Value *V = Node->getOperand(mi); + if (V == 0) + Out << "null"; + else { + TypePrinter->print(V->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, Node->getOperand(mi), + TypePrinter, Machine); + } + if (mi + 1 != me) + Out << ", "; + } + + Out << "}"; +} + + +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine) { + if (V->hasName()) { + PrintLLVMName(Out, V); + return; + } + + const Constant *CV = dyn_cast<Constant>(V); + if (CV && !isa<GlobalValue>(CV)) { + assert(TypePrinter && "Constants require TypePrinting!"); + WriteConstantInt(Out, CV, *TypePrinter, Machine); + return; + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Out << "asm "; + if (IA->hasSideEffects()) + Out << "sideeffect "; + if (IA->isAlignStack()) + Out << "alignstack "; + Out << '"'; + PrintEscapedString(IA->getAsmString(), Out); + Out << "\", \""; + PrintEscapedString(IA->getConstraintString(), Out); + Out << '"'; + return; + } + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + if (N->isFunctionLocal()) { + // Print metadata inline, not via slot reference number. + WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine); + return; + } + + if (!Machine) + Machine = createSlotTracker(V); + Out << '!' << Machine->getMetadataSlot(N); + return; + } + + if (const MDString *MDS = dyn_cast<MDString>(V)) { + Out << "!\""; + PrintEscapedString(MDS->getString(), Out); + Out << '"'; + return; + } + + if (V->getValueID() == Value::PseudoSourceValueVal || + V->getValueID() == Value::FixedStackPseudoSourceValueVal) { + V->print(Out); + return; + } + + char Prefix = '%'; + int Slot; + if (Machine) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + } + } else { + Machine = createSlotTracker(V); + if (Machine) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + } + delete Machine; + } else { + Slot = -1; + } + } + + if (Slot != -1) + Out << Prefix << Slot; + else + Out << "<badref>"; +} + +void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, + bool PrintType, const Module *Context) { + + // Fast path: Don't construct and populate a TypePrinting object if we + // won't be needing any types printed. + if (!PrintType && + (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) { + WriteAsOperandInternal(Out, V, 0, 0); + return; + } + + if (Context == 0) Context = getModuleFromVal(V); + + TypePrinting TypePrinter; + std::vector<const Type*> NumberedTypes; + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); + if (PrintType) { + TypePrinter.print(V->getType(), Out); + Out << ' '; + } + + WriteAsOperandInternal(Out, V, &TypePrinter, 0); +} + +namespace { + +class AssemblyWriter { + formatted_raw_ostream &Out; + SlotTracker &Machine; + const Module *TheModule; + TypePrinting TypePrinter; + AssemblyAnnotationWriter *AnnotationWriter; + std::vector<const Type*> NumberedTypes; + SmallVector<StringRef, 8> MDNames; + +public: + inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, + const Module *M, + AssemblyAnnotationWriter *AAW) + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); + if (M) + M->getMDKindNames(MDNames); + } + + void printMDNodeBody(const MDNode *MD); + void printNamedMDNode(const NamedMDNode *NMD); + + void printModule(const Module *M); + + void writeOperand(const Value *Op, bool PrintType); + void writeParamOperand(const Value *Operand, Attributes Attrs); + + void writeAllMDNodes(); + + void printTypeSymbolTable(const TypeSymbolTable &ST); + void printGlobal(const GlobalVariable *GV); + void printAlias(const GlobalAlias *GV); + void printFunction(const Function *F); + void printArgument(const Argument *FA, Attributes Attrs); + void printBasicBlock(const BasicBlock *BB); + void printInstruction(const Instruction &I); +private: + + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; +} // end of anonymous namespace + + +void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + if (PrintType) { + TypePrinter.print(Operand->getType(), Out); + Out << ' '; + } + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine); +} + +void AssemblyWriter::writeParamOperand(const Value *Operand, + Attributes Attrs) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + + // Print the type + TypePrinter.print(Operand->getType(), Out); + // Print parameter attributes list + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); + Out << ' '; + // Print the operand + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine); +} + +void AssemblyWriter::printModule(const Module *M) { + if (!M->getModuleIdentifier().empty() && + // Don't print the ID if it will start a new line (which would + // require a comment char before it). + M->getModuleIdentifier().find('\n') == std::string::npos) + Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + + if (!M->getDataLayout().empty()) + Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; + if (!M->getTargetTriple().empty()) + Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; + + if (!M->getModuleInlineAsm().empty()) { + // Split the string into lines, to make it easier to read the .ll file. + std::string Asm = M->getModuleInlineAsm(); + size_t CurPos = 0; + size_t NewLine = Asm.find_first_of('\n', CurPos); + Out << '\n'; + while (NewLine != std::string::npos) { + // We found a newline, print the portion of the asm string from the + // last newline up to this newline. + Out << "module asm \""; + PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), + Out); + Out << "\"\n"; + CurPos = NewLine+1; + NewLine = Asm.find_first_of('\n', CurPos); + } + Out << "module asm \""; + PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); + Out << "\"\n"; + } + + // Loop over the dependent libraries and emit them. + Module::lib_iterator LI = M->lib_begin(); + Module::lib_iterator LE = M->lib_end(); + if (LI != LE) { + Out << '\n'; + Out << "deplibs = [ "; + while (LI != LE) { + Out << '"' << *LI << '"'; + ++LI; + if (LI != LE) + Out << ", "; + } + Out << " ]"; + } + + // Loop over the symbol table, emitting all id'd types. + if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n'; + printTypeSymbolTable(M->getTypeSymbolTable()); + + // Output all globals. + if (!M->global_empty()) Out << '\n'; + for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); + I != E; ++I) + printGlobal(I); + + // Output all aliases. + if (!M->alias_empty()) Out << "\n"; + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + printAlias(I); + + // Output all of the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + printFunction(I); + + // Output named metadata. + if (!M->named_metadata_empty()) Out << '\n'; + + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) + printNamedMDNode(I); + + // Output metadata. + if (!Machine.mdn_empty()) { + Out << '\n'; + writeAllMDNodes(); + } +} + +void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { + Out << "!" << NMD->getName() << " = !{"; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { + if (i) Out << ", "; + if (MDNode *MD = NMD->getOperand(i)) + Out << '!' << Machine.getMetadataSlot(MD); + else + Out << "null"; + } + Out << "}\n"; +} + + +static void PrintLinkage(GlobalValue::LinkageTypes LT, + formatted_raw_ostream &Out) { + switch (LT) { + case GlobalValue::ExternalLinkage: break; + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; + case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; + case GlobalValue::WeakAnyLinkage: Out << "weak "; break; + case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::AvailableExternallyLinkage: + Out << "available_externally "; + break; + } +} + + +static void PrintVisibility(GlobalValue::VisibilityTypes Vis, + formatted_raw_ostream &Out) { + switch (Vis) { + case GlobalValue::DefaultVisibility: break; + case GlobalValue::HiddenVisibility: Out << "hidden "; break; + case GlobalValue::ProtectedVisibility: Out << "protected "; break; + } +} + +void AssemblyWriter::printGlobal(const GlobalVariable *GV) { + if (GV->isMaterializable()) + Out << "; Materializable\n"; + + WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine); + Out << " = "; + + if (!GV->hasInitializer() && GV->hasExternalLinkage()) + Out << "external "; + + PrintLinkage(GV->getLinkage(), Out); + PrintVisibility(GV->getVisibility(), Out); + + if (GV->isThreadLocal()) Out << "thread_local "; + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; + Out << (GV->isConstant() ? "constant " : "global "); + TypePrinter.print(GV->getType()->getElementType(), Out); + + if (GV->hasInitializer()) { + Out << ' '; + writeOperand(GV->getInitializer(), false); + } + + if (GV->hasSection()) + Out << ", section \"" << GV->getSection() << '"'; + if (GV->getAlignment()) + Out << ", align " << GV->getAlignment(); + + printInfoComment(*GV); + Out << '\n'; +} + +void AssemblyWriter::printAlias(const GlobalAlias *GA) { + if (GA->isMaterializable()) + Out << "; Materializable\n"; + + // Don't crash when dumping partially built GA + if (!GA->hasName()) + Out << "<<nameless>> = "; + else { + PrintLLVMName(Out, GA); + Out << " = "; + } + PrintVisibility(GA->getVisibility(), Out); + + Out << "alias "; + + PrintLinkage(GA->getLinkage(), Out); + + const Constant *Aliasee = GA->getAliasee(); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) { + TypePrinter.print(GV->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GV); + } else if (const Function *F = dyn_cast<Function>(Aliasee)) { + TypePrinter.print(F->getFunctionType(), Out); + Out << "* "; + + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine); + } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) { + TypePrinter.print(GA->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GA); + } else { + const ConstantExpr *CE = cast<ConstantExpr>(Aliasee); + // The only valid GEP is an all zero GEP. + assert((CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + "Unsupported aliasee"); + writeOperand(CE, false); + } + + printInfoComment(*GA); + Out << '\n'; +} + +void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << '%' << i << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); + Out << '\n'; + } + + // Print the named types. + for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); + TI != TE; ++TI) { + PrintLLVMName(Out, TI->first, LocalPrefix); + Out << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %FILE = type %FILE + TypePrinter.printAtLeastOneLevel(TI->second, Out); + Out << '\n'; + } +} + +/// printFunction - Print all aspects of a function. +/// +void AssemblyWriter::printFunction(const Function *F) { + // Print out the return type and name. + Out << '\n'; + + if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); + + if (F->isMaterializable()) + Out << "; Materializable\n"; + + if (F->isDeclaration()) + Out << "declare "; + else + Out << "define "; + + PrintLinkage(F->getLinkage(), Out); + PrintVisibility(F->getVisibility(), Out); + + // Print the calling convention. + switch (F->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << "fastcc "; break; + case CallingConv::Cold: Out << "coldcc "; break; + case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; + default: Out << "cc" << F->getCallingConv() << " "; break; + } + + const FunctionType *FT = F->getFunctionType(); + const AttrListPtr &Attrs = F->getAttributes(); + Attributes RetAttrs = Attrs.getRetAttributes(); + if (RetAttrs != Attribute::None) + Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; + TypePrinter.print(F->getReturnType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine); + Out << '('; + Machine.incorporateFunction(F); + + // Loop over the arguments, printing them... + + unsigned Idx = 1; + if (!F->isDeclaration()) { + // If this isn't a declaration, print the argument names as well. + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) { + // Insert commas as we go... the first arg doesn't get a comma + if (I != F->arg_begin()) Out << ", "; + printArgument(I, Attrs.getParamAttributes(Idx)); + Idx++; + } + } else { + // Otherwise, print the types from the function type. + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + // Insert commas as we go... the first arg doesn't get a comma + if (i) Out << ", "; + + // Output type... + TypePrinter.print(FT->getParamType(i), Out); + + Attributes ArgAttrs = Attrs.getParamAttributes(i+1); + if (ArgAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(ArgAttrs); + } + } + + // Finish printing arguments... + if (FT->isVarArg()) { + if (FT->getNumParams()) Out << ", "; + Out << "..."; // Output varargs portion of signature! + } + Out << ')'; + Attributes FnAttrs = Attrs.getFnAttributes(); + if (FnAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); + if (F->hasSection()) + Out << " section \"" << F->getSection() << '"'; + if (F->getAlignment()) + Out << " align " << F->getAlignment(); + if (F->hasGC()) + Out << " gc \"" << F->getGC() << '"'; + if (F->isDeclaration()) { + Out << "\n"; + } else { + Out << " {"; + + // Output all of its basic blocks... for the function + for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) + printBasicBlock(I); + + Out << "}\n"; + } + + Machine.purgeFunction(); +} + +/// printArgument - This member is called for every argument that is passed into +/// the function. Simply print it out +/// +void AssemblyWriter::printArgument(const Argument *Arg, + Attributes Attrs) { + // Output type... + TypePrinter.print(Arg->getType(), Out); + + // Output parameter attributes list + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); + + // Output name, if available... + if (Arg->hasName()) { + Out << ' '; + PrintLLVMName(Out, Arg); + } +} + +/// printBasicBlock - This member is called for each basic block in a method. +/// +void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { + if (BB->hasName()) { // Print out the label if it exists... + Out << "\n"; + PrintLLVMName(Out, BB->getName(), LabelPrefix); + Out << ':'; + } else if (!BB->use_empty()) { // Don't print block # of no uses... + Out << "\n; <label>:"; + int Slot = Machine.getLocalSlot(BB); + if (Slot != -1) + Out << Slot; + else + Out << "<badref>"; + } + + if (BB->getParent() == 0) { + Out.PadToColumn(50); + Out << "; Error: Block without parent!"; + } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? + // Output predecessors for the block... + Out.PadToColumn(50); + Out << ";"; + pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB); + + if (PI == PE) { + Out << " No predecessors!"; + } else { + Out << " preds = "; + writeOperand(*PI, false); + for (++PI; PI != PE; ++PI) { + Out << ", "; + writeOperand(*PI, false); + } + } + } + + Out << "\n"; + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); + + // Output all of the instructions in the basic block... + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + printInstruction(*I); + Out << '\n'; + } + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); +} + + +/// printInfoComment - Print a little comment after the instruction indicating +/// which slot it occupies. +/// +void AssemblyWriter::printInfoComment(const Value &V) { + if (V.getType()->isVoidTy()) return; + + Out.PadToColumn(50); + Out << "; <"; + TypePrinter.print(V.getType(), Out); + Out << "> [#uses=" << V.getNumUses() << ']'; // Output # uses +} + +// This member is called for each Instruction in a function.. +void AssemblyWriter::printInstruction(const Instruction &I) { + if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); + + // Print out indentation for an instruction. + Out << " "; + + // Print out name if it exists... + if (I.hasName()) { + PrintLLVMName(Out, &I); + Out << " = "; + } else if (!I.getType()->isVoidTy()) { + // Print out the def slot taken. + int SlotNum = Machine.getLocalSlot(&I); + if (SlotNum == -1) + Out << "<badref> = "; + else + Out << '%' << SlotNum << " = "; + } + + // If this is a volatile load or store, print out the volatile marker. + if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || + (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) { + Out << "volatile "; + } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) { + // If this is a call, check if it's a tail call. + Out << "tail "; + } + + // Print out the opcode... + Out << I.getOpcodeName(); + + // Print out optimization information. + WriteOptimizationInfo(Out, &I); + + // Print out the compare instruction predicates + if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) + Out << ' ' << getPredicateText(CI->getPredicate()); + + // Print out the type of the operands... + const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; + + // Special case conditional branches to swizzle the condition out to the front + if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { + BranchInst &BI(cast<BranchInst>(I)); + Out << ' '; + writeOperand(BI.getCondition(), true); + Out << ", "; + writeOperand(BI.getSuccessor(0), true); + Out << ", "; + writeOperand(BI.getSuccessor(1), true); + + } else if (isa<SwitchInst>(I)) { + // Special case switch instruction to get formatting nice and correct. + Out << ' '; + writeOperand(Operand , true); + Out << ", "; + writeOperand(I.getOperand(1), true); + Out << " ["; + + for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) { + Out << "\n "; + writeOperand(I.getOperand(op ), true); + Out << ", "; + writeOperand(I.getOperand(op+1), true); + } + Out << "\n ]"; + } else if (isa<IndirectBrInst>(I)) { + // Special case indirectbr instruction to get formatting nice and correct. + Out << ' '; + writeOperand(Operand, true); + Out << ", ["; + + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + if (i != 1) + Out << ", "; + writeOperand(I.getOperand(i), true); + } + Out << ']'; + } else if (isa<PHINode>(I)) { + Out << ' '; + TypePrinter.print(I.getType(), Out); + Out << ' '; + + for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) { + if (op) Out << ", "; + Out << "[ "; + writeOperand(I.getOperand(op ), false); Out << ", "; + writeOperand(I.getOperand(op+1), false); Out << " ]"; + } + } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); + for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); Out << ", "; + writeOperand(I.getOperand(1), true); + for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (isa<ReturnInst>(I) && !Operand) { + Out << " void"; + } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { + // Print the calling convention being used. + switch (CI->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << " fastcc"; break; + case CallingConv::Cold: Out << " coldcc"; break; + case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; + case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; + default: Out << " cc" << CI->getCallingConv(); break; + } + + const PointerType *PTy = cast<PointerType>(Operand->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + const AttrListPtr &PAL = CI->getAttributes(); + + if (PAL.getRetAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); + + // If possible, print out the short form of the call instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!isa<PointerType>(RetTy) || + !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) { + if (op > 1) + Out << ", "; + writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op)); + } + Out << ')'; + if (PAL.getFnAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { + const PointerType *PTy = cast<PointerType>(Operand->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + const AttrListPtr &PAL = II->getAttributes(); + + // Print the calling convention being used. + switch (II->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << " fastcc"; break; + case CallingConv::Cold: Out << " coldcc"; break; + case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; + case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; + default: Out << " cc" << II->getCallingConv(); break; + } + + if (PAL.getRetAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); + + // If possible, print out the short form of the invoke instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!isa<PointerType>(RetTy) || + !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) { + if (op > 3) + Out << ", "; + writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2)); + } + + Out << ')'; + if (PAL.getFnAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); + + Out << "\n to "; + writeOperand(II->getNormalDest(), true); + Out << " unwind "; + writeOperand(II->getUnwindDest(), true); + + } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { + Out << ' '; + TypePrinter.print(AI->getType()->getElementType(), Out); + if (!AI->getArraySize() || AI->isArrayAllocation()) { + Out << ", "; + writeOperand(AI->getArraySize(), true); + } + if (AI->getAlignment()) { + Out << ", align " << AI->getAlignment(); + } + } else if (isa<CastInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << " to "; + TypePrinter.print(I.getType(), Out); + } else if (isa<VAArgInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << ", "; + TypePrinter.print(I.getType(), Out); + } else if (Operand) { // Print the normal way. + + // PrintAllTypes - Instructions who have operands of all the same type + // omit the type from all but the first operand. If the instruction has + // different type operands (for example br), then they are all printed. + bool PrintAllTypes = false; + const Type *TheType = Operand->getType(); + + // Select, Store and ShuffleVector always print all types. + if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) + || isa<ReturnInst>(I)) { + PrintAllTypes = true; + } else { + for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { + Operand = I.getOperand(i); + // note that Operand shouldn't be null, but the test helps make dump() + // more tolerant of malformed IR + if (Operand && Operand->getType() != TheType) { + PrintAllTypes = true; // We have differing types! Print them all! + break; + } + } + } + + if (!PrintAllTypes) { + Out << ' '; + TypePrinter.print(TheType, Out); + } + + Out << ' '; + for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { + if (i) Out << ", "; + writeOperand(I.getOperand(i), PrintAllTypes); + } + } + + // Print post operand alignment for load/store. + if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) { + Out << ", align " << cast<LoadInst>(I).getAlignment(); + } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) { + Out << ", align " << cast<StoreInst>(I).getAlignment(); + } + + // Print Metadata info. + if (!MDNames.empty()) { + SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; + I.getAllMetadata(InstMD); + for (unsigned i = 0, e = InstMD.size(); i != e; ++i) + Out << ", !" << MDNames[InstMD[i].first] + << " !" << Machine.getMetadataSlot(InstMD[i].second); + } + printInfoComment(I); +} + +static void WriteMDNodeComment(const MDNode *Node, + formatted_raw_ostream &Out) { + if (Node->getNumOperands() < 1) + return; + ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0)); + if (!CI) return; + unsigned Val = CI->getZExtValue(); + unsigned Tag = Val & ~LLVMDebugVersionMask; + if (Val < LLVMDebugVersion) + return; + + Out.PadToColumn(50); + if (Tag == dwarf::DW_TAG_auto_variable) + Out << "; [ DW_TAG_auto_variable ]"; + else if (Tag == dwarf::DW_TAG_arg_variable) + Out << "; [ DW_TAG_arg_variable ]"; + else if (Tag == dwarf::DW_TAG_return_variable) + Out << "; [ DW_TAG_return_variable ]"; + else if (Tag == dwarf::DW_TAG_vector_type) + Out << "; [ DW_TAG_vector_type ]"; + else if (Tag == dwarf::DW_TAG_user_base) + Out << "; [ DW_TAG_user_base ]"; + else if (const char *TagName = dwarf::TagString(Tag)) + Out << "; [ " << TagName << " ]"; +} + +void AssemblyWriter::writeAllMDNodes() { + SmallVector<const MDNode *, 16> Nodes; + Nodes.resize(Machine.mdn_size()); + for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); + I != E; ++I) + Nodes[I->second] = cast<MDNode>(I->first); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Out << '!' << i << " = metadata "; + printMDNodeBody(Nodes[i]); + } +} + +void AssemblyWriter::printMDNodeBody(const MDNode *Node) { + WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine); + WriteMDNodeComment(Node, Out); + Out << "\n"; +} + +//===----------------------------------------------------------------------===// +// External Interface declarations +//===----------------------------------------------------------------------===// + +void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + SlotTracker SlotTable(this); + formatted_raw_ostream OS(ROS); + AssemblyWriter W(OS, SlotTable, this, AAW); + W.printModule(this); +} + +void Type::print(raw_ostream &OS) const { + if (this == 0) { + OS << "<null Type>"; + return; + } + TypePrinting().print(this, OS); +} + +void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + if (this == 0) { + ROS << "printing a <null> value\n"; + return; + } + formatted_raw_ostream OS(ROS); + if (const Instruction *I = dyn_cast<Instruction>(this)) { + const Function *F = I->getParent() ? I->getParent()->getParent() : 0; + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); + W.printInstruction(*I); + } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { + SlotTracker SlotTable(BB->getParent()); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); + W.printBasicBlock(BB); + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + SlotTracker SlotTable(GV->getParent()); + AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); + if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) + W.printGlobal(V); + else if (const Function *F = dyn_cast<Function>(GV)) + W.printFunction(F); + else + W.printAlias(cast<GlobalAlias>(GV)); + } else if (const MDNode *N = dyn_cast<MDNode>(this)) { + const Function *F = N->getFunction(); + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW); + W.printMDNodeBody(N); + } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) { + SlotTracker SlotTable(N->getParent()); + AssemblyWriter W(OS, SlotTable, N->getParent(), AAW); + W.printNamedMDNode(N); + } else if (const Constant *C = dyn_cast<Constant>(this)) { + TypePrinting TypePrinter; + TypePrinter.print(C->getType(), OS); + OS << ' '; + WriteConstantInt(OS, C, TypePrinter, 0); + } else if (isa<InlineAsm>(this) || isa<MDString>(this) || + isa<Argument>(this)) { + WriteAsOperand(OS, this, true, 0); + } else { + // Otherwise we don't know what it is. Call the virtual function to + // allow a subclass to print itself. + printCustom(OS); + } +} + +// Value::printCustom - subclasses should override this to implement printing. +void Value::printCustom(raw_ostream &OS) const { + llvm_unreachable("Unknown value to print out!"); +} + +// Value::dump - allow easy printing of Values from the debugger. +void Value::dump() const { print(dbgs()); dbgs() << '\n'; } + +// Type::dump - allow easy printing of Types from the debugger. +// This one uses type names from the given context module +void Type::dump(const Module *Context) const { + WriteTypeSymbolic(dbgs(), this, Context); + dbgs() << '\n'; +} + +// Type::dump - allow easy printing of Types from the debugger. +void Type::dump() const { dump(0); } + +// Module::dump() - Allow printing of Modules from the debugger. +void Module::dump() const { print(dbgs(), 0); } |