aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Constants.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r--lib/VMCore/Constants.cpp336
1 files changed, 67 insertions, 269 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index f94cd9e..96f729a 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
@@ -171,6 +172,72 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
+// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
+// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
+// operator== and operator!= to ensure that the DenseMap doesn't attempt to
+// compare APInt's of different widths, which would violate an APInt class
+// invariant which generates an assertion.
+ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
+ // Get the corresponding integer type for the bit width of the value.
+ const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
+ // get an existing value or the insertion position
+ DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
+
+ Context.pImpl->ConstantsLock.reader_acquire();
+ ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
+ Context.pImpl->ConstantsLock.reader_release();
+
+ if (!Slot) {
+ sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
+ ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
+ if (!Slot) {
+ NewSlot = new ConstantInt(ITy, V);
+ }
+
+ return NewSlot;
+ } else {
+ return Slot;
+ }
+}
+
+Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
+ Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
+ V, isSigned);
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return Ty->getContext().getConstantVector(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
+ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
+ bool isSigned) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
+}
+
+ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
+ ConstantInt *C = get(Ty->getContext(), V);
+ assert(C->getType() == Ty->getScalarType() &&
+ "ConstantInt type doesn't match the type implied by its value!");
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return Ty->getContext().getConstantVector(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
@@ -758,275 +825,6 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
//===----------------------------------------------------------------------===//
// Factory Function Implementation
-
-// The number of operands for each ConstantCreator::create method is
-// determined by the ConstantTraits template.
-// ConstantCreator - A class that is used to create constants by
-// ValueMap*. This class should be partially specialized if there is
-// something strange that needs to be done to interface to the ctor for the
-// constant.
-//
-namespace llvm {
- template<class ValType>
- struct ConstantTraits;
-
- template<typename T, typename Alloc>
- struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
- };
-
- template<class ConstantClass, class TypeClass, class ValType>
- struct VISIBILITY_HIDDEN ConstantCreator {
- static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
- }
- };
-
- template<class ConstantClass, class TypeClass>
- struct VISIBILITY_HIDDEN ConvertConstantType {
- static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
- llvm_unreachable("This type cannot be converted!");
- }
- };
-
- template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
- class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
- public:
- typedef std::pair<const Type*, ValType> MapKey;
- typedef std::map<MapKey, Constant *> MapTy;
- typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
- typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
- private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
- /// AbstractTypeMap - Map for abstract type constants.
- ///
- AbstractTypeMapTy AbstractTypeMap;
-
- /// ValueMapLock - Mutex for this map.
- sys::SmartMutex<true> ValueMapLock;
-
- public:
- // NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator map_end() { return Map.end(); }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- /// NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
- getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass* Create(const TypeClass *Ty, const ValType &V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- // If the type of the constant is abstract, make sure that an entry
- // exists for it in the AbstractTypeMap.
- if (Ty->isAbstract()) {
- typename AbstractTypeMapTy::iterator TI =
- AbstractTypeMap.find(Ty);
-
- if (TI == AbstractTypeMap.end()) {
- // Add ourselves to the ATU list of the type.
- cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
- AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
- }
- }
-
- return Result;
- }
-public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- MapKey Lookup(Ty, V);
- ConstantClass* Result = 0;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = static_cast<ConstantClass *>(I->second);
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- // Now that we found the entry, make sure this isn't the entry that
- // the AbstractTypeMap points to.
- const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
- if (Ty->isAbstract()) {
- assert(AbstractTypeMap.count(Ty) &&
- "Abstract type not in AbstractTypeMap?");
- typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
- if (ATMEntryIt == I) {
- // Yes, we are removing the representative entry for this type.
- // See if there are any other entries of the same type.
- typename MapTy::iterator TmpIt = ATMEntryIt;
-
- // First check the entry before this one...
- if (TmpIt != Map.begin()) {
- --TmpIt;
- if (TmpIt->first.first != Ty) // Not the same type, move back...
- ++TmpIt;
- }
-
- // If we didn't find the same type, try to move forward...
- if (TmpIt == ATMEntryIt) {
- ++TmpIt;
- if (TmpIt == Map.end() || TmpIt->first.first != Ty)
- --TmpIt; // No entry afterwards with the same type
- }
-
- // If there is another entry in the map of the same abstract type,
- // update the AbstractTypeMap entry now.
- if (TmpIt != ATMEntryIt) {
- ATMEntryIt = TmpIt;
- } else {
- // Otherwise, we are removing the last instance of this type
- // from the table. Remove from the ATM, and from user list.
- cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
- AbstractTypeMap.erase(Ty);
- }
- }
- }
-
- Map.erase(I);
- }
-
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- /// NOTE: This function is not locked. It is the responsibility of the
- /// caller to enforce proper synchronization if using this method.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // If this constant is the representative element for its abstract type,
- // update the AbstractTypeMap so that the representative element is I.
- if (C->getType()->isAbstract()) {
- typename AbstractTypeMapTy::iterator ATI =
- AbstractTypeMap.find(C->getType());
- assert(ATI != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
- if (ATI->second == OldI)
- ATI->second = I;
- }
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
-
- void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename AbstractTypeMapTy::iterator I =
- AbstractTypeMap.find(cast<Type>(OldTy));
-
- assert(I != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
-
- // Convert a constant at a time until the last one is gone. The last one
- // leaving will remove() itself, causing the AbstractTypeMapEntry to be
- // eliminated eventually.
- do {
- ConvertConstantType<ConstantClass,
- TypeClass>::convert(
- static_cast<ConstantClass *>(I->second->second),
- cast<TypeClass>(NewTy));
-
- I = AbstractTypeMap.find(cast<Type>(OldTy));
- } while (I != AbstractTypeMap.end());
- }
-
- // If the type became concrete without being refined to any other existing
- // type, we just remove ourselves from the ATU list.
- void typeBecameConcrete(const DerivedType *AbsTy) {
- AbsTy->removeAbstractTypeUser(this);
- }
-
- void dump() const {
- DOUT << "Constant.cpp: ValueMap\n";
- }
- };
-}
-
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {