diff options
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r-- | lib/VMCore/Constants.cpp | 336 |
1 files changed, 67 insertions, 269 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index f94cd9e..96f729a 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -11,6 +11,7 @@ // //===----------------------------------------------------------------------===// +#include "LLVMContextImpl.h" #include "llvm/Constants.h" #include "ConstantFold.h" #include "llvm/DerivedTypes.h" @@ -171,6 +172,72 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = Context.getIntegerType(V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + + Context.pImpl->ConstantsLock.reader_acquire(); + ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; + Context.pImpl->ConstantsLock.reader_release(); + + if (!Slot) { + sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock); + ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key]; + if (!Slot) { + NewSlot = new ConstantInt(ITy, V); + } + + return NewSlot; + } else { + return Slot; + } +} + +Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) { + Constant *C = get(cast<IntegerType>(Ty->getScalarType()), + V, isSigned); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return Ty->getContext().getConstantVector( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, + bool isSigned) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant* ConstantInt::get(const Type* Ty, const APInt& V) { + ConstantInt *C = get(Ty->getContext(), V); + assert(C->getType() == Ty->getScalarType() && + "ConstantInt type doesn't match the type implied by its value!"); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return Ty->getContext().getConstantVector( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// @@ -758,275 +825,6 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { //===----------------------------------------------------------------------===// // Factory Function Implementation - -// The number of operands for each ConstantCreator::create method is -// determined by the ConstantTraits template. -// ConstantCreator - A class that is used to create constants by -// ValueMap*. This class should be partially specialized if there is -// something strange that needs to be done to interface to the ctor for the -// constant. -// -namespace llvm { - template<class ValType> - struct ConstantTraits; - - template<typename T, typename Alloc> - struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > { - static unsigned uses(const std::vector<T, Alloc>& v) { - return v.size(); - } - }; - - template<class ConstantClass, class TypeClass, class ValType> - struct VISIBILITY_HIDDEN ConstantCreator { - static ConstantClass *create(const TypeClass *Ty, const ValType &V) { - return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); - } - }; - - template<class ConstantClass, class TypeClass> - struct VISIBILITY_HIDDEN ConvertConstantType { - static void convert(ConstantClass *OldC, const TypeClass *NewTy) { - llvm_unreachable("This type cannot be converted!"); - } - }; - - template<class ValType, class TypeClass, class ConstantClass, - bool HasLargeKey = false /*true for arrays and structs*/ > - class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { - public: - typedef std::pair<const Type*, ValType> MapKey; - typedef std::map<MapKey, Constant *> MapTy; - typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; - typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; - private: - /// Map - This is the main map from the element descriptor to the Constants. - /// This is the primary way we avoid creating two of the same shape - /// constant. - MapTy Map; - - /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping - /// from the constants to their element in Map. This is important for - /// removal of constants from the array, which would otherwise have to scan - /// through the map with very large keys. - InverseMapTy InverseMap; - - /// AbstractTypeMap - Map for abstract type constants. - /// - AbstractTypeMapTy AbstractTypeMap; - - /// ValueMapLock - Mutex for this map. - sys::SmartMutex<true> ValueMapLock; - - public: - // NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator map_end() { return Map.end(); } - - /// InsertOrGetItem - Return an iterator for the specified element. - /// If the element exists in the map, the returned iterator points to the - /// entry and Exists=true. If not, the iterator points to the newly - /// inserted entry and returns Exists=false. Newly inserted entries have - /// I->second == 0, and should be filled in. - /// NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> - &InsertVal, - bool &Exists) { - std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); - Exists = !IP.second; - return IP.first; - } - -private: - typename MapTy::iterator FindExistingElement(ConstantClass *CP) { - if (HasLargeKey) { - typename InverseMapTy::iterator IMI = InverseMap.find(CP); - assert(IMI != InverseMap.end() && IMI->second != Map.end() && - IMI->second->second == CP && - "InverseMap corrupt!"); - return IMI->second; - } - - typename MapTy::iterator I = - Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), - getValType(CP))); - if (I == Map.end() || I->second != CP) { - // FIXME: This should not use a linear scan. If this gets to be a - // performance problem, someone should look at this. - for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) - /* empty */; - } - return I; - } - - ConstantClass* Create(const TypeClass *Ty, const ValType &V, - typename MapTy::iterator I) { - ConstantClass* Result = - ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); - - assert(Result->getType() == Ty && "Type specified is not correct!"); - I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.insert(std::make_pair(Result, I)); - - // If the type of the constant is abstract, make sure that an entry - // exists for it in the AbstractTypeMap. - if (Ty->isAbstract()) { - typename AbstractTypeMapTy::iterator TI = - AbstractTypeMap.find(Ty); - - if (TI == AbstractTypeMap.end()) { - // Add ourselves to the ATU list of the type. - cast<DerivedType>(Ty)->addAbstractTypeUser(this); - - AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); - } - } - - return Result; - } -public: - - /// getOrCreate - Return the specified constant from the map, creating it if - /// necessary. - ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - MapKey Lookup(Ty, V); - ConstantClass* Result = 0; - - typename MapTy::iterator I = Map.find(Lookup); - // Is it in the map? - if (I != Map.end()) - Result = static_cast<ConstantClass *>(I->second); - - if (!Result) { - // If no preexisting value, create one now... - Result = Create(Ty, V, I); - } - - return Result; - } - - void remove(ConstantClass *CP) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - typename MapTy::iterator I = FindExistingElement(CP); - assert(I != Map.end() && "Constant not found in constant table!"); - assert(I->second == CP && "Didn't find correct element?"); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.erase(CP); - - // Now that we found the entry, make sure this isn't the entry that - // the AbstractTypeMap points to. - const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); - if (Ty->isAbstract()) { - assert(AbstractTypeMap.count(Ty) && - "Abstract type not in AbstractTypeMap?"); - typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; - if (ATMEntryIt == I) { - // Yes, we are removing the representative entry for this type. - // See if there are any other entries of the same type. - typename MapTy::iterator TmpIt = ATMEntryIt; - - // First check the entry before this one... - if (TmpIt != Map.begin()) { - --TmpIt; - if (TmpIt->first.first != Ty) // Not the same type, move back... - ++TmpIt; - } - - // If we didn't find the same type, try to move forward... - if (TmpIt == ATMEntryIt) { - ++TmpIt; - if (TmpIt == Map.end() || TmpIt->first.first != Ty) - --TmpIt; // No entry afterwards with the same type - } - - // If there is another entry in the map of the same abstract type, - // update the AbstractTypeMap entry now. - if (TmpIt != ATMEntryIt) { - ATMEntryIt = TmpIt; - } else { - // Otherwise, we are removing the last instance of this type - // from the table. Remove from the ATM, and from user list. - cast<DerivedType>(Ty)->removeAbstractTypeUser(this); - AbstractTypeMap.erase(Ty); - } - } - } - - Map.erase(I); - } - - - /// MoveConstantToNewSlot - If we are about to change C to be the element - /// specified by I, update our internal data structures to reflect this - /// fact. - /// NOTE: This function is not locked. It is the responsibility of the - /// caller to enforce proper synchronization if using this method. - void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { - // First, remove the old location of the specified constant in the map. - typename MapTy::iterator OldI = FindExistingElement(C); - assert(OldI != Map.end() && "Constant not found in constant table!"); - assert(OldI->second == C && "Didn't find correct element?"); - - // If this constant is the representative element for its abstract type, - // update the AbstractTypeMap so that the representative element is I. - if (C->getType()->isAbstract()) { - typename AbstractTypeMapTy::iterator ATI = - AbstractTypeMap.find(C->getType()); - assert(ATI != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - if (ATI->second == OldI) - ATI->second = I; - } - - // Remove the old entry from the map. - Map.erase(OldI); - - // Update the inverse map so that we know that this constant is now - // located at descriptor I. - if (HasLargeKey) { - assert(I->second == C && "Bad inversemap entry!"); - InverseMap[C] = I; - } - } - - void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast<Type>(OldTy)); - - assert(I != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - - // Convert a constant at a time until the last one is gone. The last one - // leaving will remove() itself, causing the AbstractTypeMapEntry to be - // eliminated eventually. - do { - ConvertConstantType<ConstantClass, - TypeClass>::convert( - static_cast<ConstantClass *>(I->second->second), - cast<TypeClass>(NewTy)); - - I = AbstractTypeMap.find(cast<Type>(OldTy)); - } while (I != AbstractTypeMap.end()); - } - - // If the type became concrete without being refined to any other existing - // type, we just remove ourselves from the ATU list. - void typeBecameConcrete(const DerivedType *AbsTy) { - AbsTy->removeAbstractTypeUser(this); - } - - void dump() const { - DOUT << "Constant.cpp: ValueMap\n"; - } - }; -} - /// destroyConstant - Remove the constant from the constant table... /// void ConstantAggregateZero::destroyConstant() { |