diff options
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r-- | lib/VMCore/Dominators.cpp | 345 |
1 files changed, 345 insertions, 0 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp new file mode 100644 index 0000000..3441750 --- /dev/null +++ b/lib/VMCore/Dominators.cpp @@ -0,0 +1,345 @@ +//===- Dominators.cpp - Dominator Calculation -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements simple dominator construction algorithms for finding +// forward dominators. Postdominators are available in libanalysis, but are not +// included in libvmcore, because it's not needed. Forward dominators are +// needed to support the Verifier pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Dominators.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/DominatorInternals.h" +#include "llvm/Instructions.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +using namespace llvm; + +// Always verify dominfo if expensive checking is enabled. +#ifdef XDEBUG +bool VerifyDomInfo = true; +#else +bool VerifyDomInfo = false; +#endif +static cl::opt<bool,true> +VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), + cl::desc("Verify dominator info (time consuming)")); + +//===----------------------------------------------------------------------===// +// DominatorTree Implementation +//===----------------------------------------------------------------------===// +// +// Provide public access to DominatorTree information. Implementation details +// can be found in DominatorCalculation.h. +// +//===----------------------------------------------------------------------===// + +TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>); +TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>); + +char DominatorTree::ID = 0; +static RegisterPass<DominatorTree> +E("domtree", "Dominator Tree Construction", true, true); + +bool DominatorTree::runOnFunction(Function &F) { + DT->recalculate(F); + return false; +} + +void DominatorTree::verifyAnalysis() const { + if (!VerifyDomInfo) return; + + Function &F = *getRoot()->getParent(); + + DominatorTree OtherDT; + OtherDT.getBase().recalculate(F); + assert(!compare(OtherDT) && "Invalid DominatorTree info!"); +} + +void DominatorTree::print(raw_ostream &OS, const Module *) const { + DT->print(OS); +} + +// dominates - Return true if A dominates a use in B. This performs the +// special checks necessary if A and B are in the same basic block. +bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{ + const BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); + + // If A is an invoke instruction, its value is only available in this normal + // successor block. + if (const InvokeInst *II = dyn_cast<InvokeInst>(A)) + BBA = II->getNormalDest(); + + if (BBA != BBB) return dominates(BBA, BBB); + + // It is not possible to determine dominance between two PHI nodes + // based on their ordering. + if (isa<PHINode>(A) && isa<PHINode>(B)) + return false; + + // Loop through the basic block until we find A or B. + BasicBlock::const_iterator I = BBA->begin(); + for (; &*I != A && &*I != B; ++I) + /*empty*/; + + return &*I == A; +} + + + +//===----------------------------------------------------------------------===// +// DominanceFrontier Implementation +//===----------------------------------------------------------------------===// + +char DominanceFrontier::ID = 0; +static RegisterPass<DominanceFrontier> +G("domfrontier", "Dominance Frontier Construction", true, true); + +void DominanceFrontier::verifyAnalysis() const { + if (!VerifyDomInfo) return; + + DominatorTree &DT = getAnalysis<DominatorTree>(); + + DominanceFrontier OtherDF; + const std::vector<BasicBlock*> &DTRoots = DT.getRoots(); + OtherDF.calculate(DT, DT.getNode(DTRoots[0])); + assert(!compare(OtherDF) && "Invalid DominanceFrontier info!"); +} + +// NewBB is split and now it has one successor. Update dominace frontier to +// reflect this change. +void DominanceFrontier::splitBlock(BasicBlock *NewBB) { + assert(NewBB->getTerminator()->getNumSuccessors() == 1 + && "NewBB should have a single successor!"); + BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); + + SmallVector<BasicBlock*, 8> PredBlocks; + for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); + PI != PE; ++PI) + PredBlocks.push_back(*PI); + + if (PredBlocks.empty()) + // If NewBB does not have any predecessors then it is a entry block. + // In this case, NewBB and its successor NewBBSucc dominates all + // other blocks. + return; + + // NewBBSucc inherits original NewBB frontier. + DominanceFrontier::iterator NewBBI = find(NewBB); + if (NewBBI != end()) { + DominanceFrontier::DomSetType NewBBSet = NewBBI->second; + DominanceFrontier::DomSetType NewBBSuccSet; + NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end()); + addBasicBlock(NewBBSucc, NewBBSuccSet); + } + + // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the + // DF(PredBlocks[0]) without the stuff that the new block does not dominate + // a predecessor of. + DominatorTree &DT = getAnalysis<DominatorTree>(); + if (DT.dominates(NewBB, NewBBSucc)) { + DominanceFrontier::iterator DFI = find(PredBlocks[0]); + if (DFI != end()) { + DominanceFrontier::DomSetType Set = DFI->second; + // Filter out stuff in Set that we do not dominate a predecessor of. + for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), + E = Set.end(); SetI != E;) { + bool DominatesPred = false; + for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); + PI != E; ++PI) + if (DT.dominates(NewBB, *PI)) + DominatesPred = true; + if (!DominatesPred) + Set.erase(SetI++); + else + ++SetI; + } + + if (NewBBI != end()) { + for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), + E = Set.end(); SetI != E; ++SetI) { + BasicBlock *SB = *SetI; + addToFrontier(NewBBI, SB); + } + } else + addBasicBlock(NewBB, Set); + } + + } else { + // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate + // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> + // NewBBSucc)). NewBBSucc is the single successor of NewBB. + DominanceFrontier::DomSetType NewDFSet; + NewDFSet.insert(NewBBSucc); + addBasicBlock(NewBB, NewDFSet); + } + + // Now we must loop over all of the dominance frontiers in the function, + // replacing occurrences of NewBBSucc with NewBB in some cases. All + // blocks that dominate a block in PredBlocks and contained NewBBSucc in + // their dominance frontier must be updated to contain NewBB instead. + // + for (Function::iterator FI = NewBB->getParent()->begin(), + FE = NewBB->getParent()->end(); FI != FE; ++FI) { + DominanceFrontier::iterator DFI = find(FI); + if (DFI == end()) continue; // unreachable block. + + // Only consider nodes that have NewBBSucc in their dominator frontier. + if (!DFI->second.count(NewBBSucc)) continue; + + // Verify whether this block dominates a block in predblocks. If not, do + // not update it. + bool BlockDominatesAny = false; + for (SmallVectorImpl<BasicBlock*>::const_iterator BI = PredBlocks.begin(), + BE = PredBlocks.end(); BI != BE; ++BI) { + if (DT.dominates(FI, *BI)) { + BlockDominatesAny = true; + break; + } + } + + // If NewBBSucc should not stay in our dominator frontier, remove it. + // We remove it unless there is a predecessor of NewBBSucc that we + // dominate, but we don't strictly dominate NewBBSucc. + bool ShouldRemove = true; + if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) { + // Okay, we know that PredDom does not strictly dominate NewBBSucc. + // Check to see if it dominates any predecessors of NewBBSucc. + for (pred_iterator PI = pred_begin(NewBBSucc), + E = pred_end(NewBBSucc); PI != E; ++PI) + if (DT.dominates(FI, *PI)) { + ShouldRemove = false; + break; + } + } + + if (ShouldRemove) + removeFromFrontier(DFI, NewBBSucc); + if (BlockDominatesAny && (&*FI == NewBB || !DT.dominates(FI, NewBB))) + addToFrontier(DFI, NewBB); + } +} + +namespace { + class DFCalculateWorkObject { + public: + DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, + const DomTreeNode *N, + const DomTreeNode *PN) + : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} + BasicBlock *currentBB; + BasicBlock *parentBB; + const DomTreeNode *Node; + const DomTreeNode *parentNode; + }; +} + +const DominanceFrontier::DomSetType & +DominanceFrontier::calculate(const DominatorTree &DT, + const DomTreeNode *Node) { + BasicBlock *BB = Node->getBlock(); + DomSetType *Result = NULL; + + std::vector<DFCalculateWorkObject> workList; + SmallPtrSet<BasicBlock *, 32> visited; + + workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); + do { + DFCalculateWorkObject *currentW = &workList.back(); + assert (currentW && "Missing work object."); + + BasicBlock *currentBB = currentW->currentBB; + BasicBlock *parentBB = currentW->parentBB; + const DomTreeNode *currentNode = currentW->Node; + const DomTreeNode *parentNode = currentW->parentNode; + assert (currentBB && "Invalid work object. Missing current Basic Block"); + assert (currentNode && "Invalid work object. Missing current Node"); + DomSetType &S = Frontiers[currentBB]; + + // Visit each block only once. + if (visited.count(currentBB) == 0) { + visited.insert(currentBB); + + // Loop over CFG successors to calculate DFlocal[currentNode] + for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); + SI != SE; ++SI) { + // Does Node immediately dominate this successor? + if (DT[*SI]->getIDom() != currentNode) + S.insert(*SI); + } + } + + // At this point, S is DFlocal. Now we union in DFup's of our children... + // Loop through and visit the nodes that Node immediately dominates (Node's + // children in the IDomTree) + bool visitChild = false; + for (DomTreeNode::const_iterator NI = currentNode->begin(), + NE = currentNode->end(); NI != NE; ++NI) { + DomTreeNode *IDominee = *NI; + BasicBlock *childBB = IDominee->getBlock(); + if (visited.count(childBB) == 0) { + workList.push_back(DFCalculateWorkObject(childBB, currentBB, + IDominee, currentNode)); + visitChild = true; + } + } + + // If all children are visited or there is any child then pop this block + // from the workList. + if (!visitChild) { + + if (!parentBB) { + Result = &S; + break; + } + + DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); + DomSetType &parentSet = Frontiers[parentBB]; + for (; CDFI != CDFE; ++CDFI) { + if (!DT.properlyDominates(parentNode, DT[*CDFI])) + parentSet.insert(*CDFI); + } + workList.pop_back(); + } + + } while (!workList.empty()); + + return *Result; +} + +void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + OS << " DomFrontier for BB "; + if (I->first) + WriteAsOperand(OS, I->first, false); + else + OS << " <<exit node>>"; + OS << " is:\t"; + + const std::set<BasicBlock*> &BBs = I->second; + + for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end(); + I != E; ++I) { + OS << ' '; + if (*I) + WriteAsOperand(OS, *I, false); + else + OS << "<<exit node>>"; + } + OS << "\n"; + } +} + |