aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Instructions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/Instructions.cpp')
-rw-r--r--lib/VMCore/Instructions.cpp2617
1 files changed, 2617 insertions, 0 deletions
diff --git a/lib/VMCore/Instructions.cpp b/lib/VMCore/Instructions.cpp
new file mode 100644
index 0000000..acb2e35
--- /dev/null
+++ b/lib/VMCore/Instructions.cpp
@@ -0,0 +1,2617 @@
+//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements all of the non-inline methods for the LLVM instruction
+// classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/BasicBlock.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+unsigned CallSite::getCallingConv() const {
+ if (CallInst *CI = dyn_cast<CallInst>(I))
+ return CI->getCallingConv();
+ else
+ return cast<InvokeInst>(I)->getCallingConv();
+}
+void CallSite::setCallingConv(unsigned CC) {
+ if (CallInst *CI = dyn_cast<CallInst>(I))
+ CI->setCallingConv(CC);
+ else
+ cast<InvokeInst>(I)->setCallingConv(CC);
+}
+
+
+
+
+//===----------------------------------------------------------------------===//
+// TerminatorInst Class
+//===----------------------------------------------------------------------===//
+
+// Out of line virtual method, so the vtable, etc has a home.
+TerminatorInst::~TerminatorInst() {
+}
+
+// Out of line virtual method, so the vtable, etc has a home.
+UnaryInstruction::~UnaryInstruction() {
+}
+
+
+//===----------------------------------------------------------------------===//
+// PHINode Class
+//===----------------------------------------------------------------------===//
+
+PHINode::PHINode(const PHINode &PN)
+ : Instruction(PN.getType(), Instruction::PHI,
+ new Use[PN.getNumOperands()], PN.getNumOperands()),
+ ReservedSpace(PN.getNumOperands()) {
+ Use *OL = OperandList;
+ for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
+ OL[i].init(PN.getOperand(i), this);
+ OL[i+1].init(PN.getOperand(i+1), this);
+ }
+}
+
+PHINode::~PHINode() {
+ delete [] OperandList;
+}
+
+// removeIncomingValue - Remove an incoming value. This is useful if a
+// predecessor basic block is deleted.
+Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
+ unsigned NumOps = getNumOperands();
+ Use *OL = OperandList;
+ assert(Idx*2 < NumOps && "BB not in PHI node!");
+ Value *Removed = OL[Idx*2];
+
+ // Move everything after this operand down.
+ //
+ // FIXME: we could just swap with the end of the list, then erase. However,
+ // client might not expect this to happen. The code as it is thrashes the
+ // use/def lists, which is kinda lame.
+ for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
+ OL[i-2] = OL[i];
+ OL[i-2+1] = OL[i+1];
+ }
+
+ // Nuke the last value.
+ OL[NumOps-2].set(0);
+ OL[NumOps-2+1].set(0);
+ NumOperands = NumOps-2;
+
+ // If the PHI node is dead, because it has zero entries, nuke it now.
+ if (NumOps == 2 && DeletePHIIfEmpty) {
+ // If anyone is using this PHI, make them use a dummy value instead...
+ replaceAllUsesWith(UndefValue::get(getType()));
+ eraseFromParent();
+ }
+ return Removed;
+}
+
+/// resizeOperands - resize operands - This adjusts the length of the operands
+/// list according to the following behavior:
+/// 1. If NumOps == 0, grow the operand list in response to a push_back style
+/// of operation. This grows the number of ops by 1.5 times.
+/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
+/// 3. If NumOps == NumOperands, trim the reserved space.
+///
+void PHINode::resizeOperands(unsigned NumOps) {
+ if (NumOps == 0) {
+ NumOps = (getNumOperands())*3/2;
+ if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
+ } else if (NumOps*2 > NumOperands) {
+ // No resize needed.
+ if (ReservedSpace >= NumOps) return;
+ } else if (NumOps == NumOperands) {
+ if (ReservedSpace == NumOps) return;
+ } else {
+ return;
+ }
+
+ ReservedSpace = NumOps;
+ Use *NewOps = new Use[NumOps];
+ Use *OldOps = OperandList;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ NewOps[i].init(OldOps[i], this);
+ OldOps[i].set(0);
+ }
+ delete [] OldOps;
+ OperandList = NewOps;
+}
+
+/// hasConstantValue - If the specified PHI node always merges together the same
+/// value, return the value, otherwise return null.
+///
+Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
+ // If the PHI node only has one incoming value, eliminate the PHI node...
+ if (getNumIncomingValues() == 1)
+ if (getIncomingValue(0) != this) // not X = phi X
+ return getIncomingValue(0);
+ else
+ return UndefValue::get(getType()); // Self cycle is dead.
+
+ // Otherwise if all of the incoming values are the same for the PHI, replace
+ // the PHI node with the incoming value.
+ //
+ Value *InVal = 0;
+ bool HasUndefInput = false;
+ for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
+ if (isa<UndefValue>(getIncomingValue(i)))
+ HasUndefInput = true;
+ else if (getIncomingValue(i) != this) // Not the PHI node itself...
+ if (InVal && getIncomingValue(i) != InVal)
+ return 0; // Not the same, bail out.
+ else
+ InVal = getIncomingValue(i);
+
+ // The only case that could cause InVal to be null is if we have a PHI node
+ // that only has entries for itself. In this case, there is no entry into the
+ // loop, so kill the PHI.
+ //
+ if (InVal == 0) InVal = UndefValue::get(getType());
+
+ // If we have a PHI node like phi(X, undef, X), where X is defined by some
+ // instruction, we cannot always return X as the result of the PHI node. Only
+ // do this if X is not an instruction (thus it must dominate the PHI block),
+ // or if the client is prepared to deal with this possibility.
+ if (HasUndefInput && !AllowNonDominatingInstruction)
+ if (Instruction *IV = dyn_cast<Instruction>(InVal))
+ // If it's in the entry block, it dominates everything.
+ if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
+ isa<InvokeInst>(IV))
+ return 0; // Cannot guarantee that InVal dominates this PHINode.
+
+ // All of the incoming values are the same, return the value now.
+ return InVal;
+}
+
+
+//===----------------------------------------------------------------------===//
+// CallInst Implementation
+//===----------------------------------------------------------------------===//
+
+CallInst::~CallInst() {
+ delete [] OperandList;
+ if (ParamAttrs)
+ ParamAttrs->dropRef();
+}
+
+void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
+ ParamAttrs = 0;
+ NumOperands = NumParams+1;
+ Use *OL = OperandList = new Use[NumParams+1];
+ OL[0].init(Func, this);
+
+ const FunctionType *FTy =
+ cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ FTy = FTy; // silence warning.
+
+ assert((NumParams == FTy->getNumParams() ||
+ (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
+ "Calling a function with bad signature!");
+ for (unsigned i = 0; i != NumParams; ++i) {
+ assert((i >= FTy->getNumParams() ||
+ FTy->getParamType(i) == Params[i]->getType()) &&
+ "Calling a function with a bad signature!");
+ OL[i+1].init(Params[i], this);
+ }
+}
+
+void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
+ ParamAttrs = 0;
+ NumOperands = 3;
+ Use *OL = OperandList = new Use[3];
+ OL[0].init(Func, this);
+ OL[1].init(Actual1, this);
+ OL[2].init(Actual2, this);
+
+ const FunctionType *FTy =
+ cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ FTy = FTy; // silence warning.
+
+ assert((FTy->getNumParams() == 2 ||
+ (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
+ "Calling a function with bad signature");
+ assert((0 >= FTy->getNumParams() ||
+ FTy->getParamType(0) == Actual1->getType()) &&
+ "Calling a function with a bad signature!");
+ assert((1 >= FTy->getNumParams() ||
+ FTy->getParamType(1) == Actual2->getType()) &&
+ "Calling a function with a bad signature!");
+}
+
+void CallInst::init(Value *Func, Value *Actual) {
+ ParamAttrs = 0;
+ NumOperands = 2;
+ Use *OL = OperandList = new Use[2];
+ OL[0].init(Func, this);
+ OL[1].init(Actual, this);
+
+ const FunctionType *FTy =
+ cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ FTy = FTy; // silence warning.
+
+ assert((FTy->getNumParams() == 1 ||
+ (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
+ "Calling a function with bad signature");
+ assert((0 == FTy->getNumParams() ||
+ FTy->getParamType(0) == Actual->getType()) &&
+ "Calling a function with a bad signature!");
+}
+
+void CallInst::init(Value *Func) {
+ ParamAttrs = 0;
+ NumOperands = 1;
+ Use *OL = OperandList = new Use[1];
+ OL[0].init(Func, this);
+
+ const FunctionType *FTy =
+ cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ FTy = FTy; // silence warning.
+
+ assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
+}
+
+CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
+ const std::string &Name, BasicBlock *InsertAtEnd)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertAtEnd) {
+ init(Func, Args, NumArgs);
+ setName(Name);
+}
+CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
+ const std::string &Name, Instruction *InsertBefore)
+: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertBefore) {
+ init(Func, Args, NumArgs);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
+ const std::string &Name, Instruction *InsertBefore)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertBefore) {
+ init(Func, Actual1, Actual2);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
+ const std::string &Name, BasicBlock *InsertAtEnd)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertAtEnd) {
+ init(Func, Actual1, Actual2);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+ Instruction *InsertBefore)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertBefore) {
+ init(Func, Actual);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+ BasicBlock *InsertAtEnd)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertAtEnd) {
+ init(Func, Actual);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, const std::string &Name,
+ Instruction *InsertBefore)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertBefore) {
+ init(Func);
+ setName(Name);
+}
+
+CallInst::CallInst(Value *Func, const std::string &Name,
+ BasicBlock *InsertAtEnd)
+ : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Call, 0, 0, InsertAtEnd) {
+ init(Func);
+ setName(Name);
+}
+
+CallInst::CallInst(const CallInst &CI)
+ : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
+ CI.getNumOperands()) {
+ ParamAttrs = 0;
+ SubclassData = CI.SubclassData;
+ Use *OL = OperandList;
+ Use *InOL = CI.OperandList;
+ for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
+ OL[i].init(InOL[i], this);
+}
+
+void CallInst::setParamAttrs(ParamAttrsList *newAttrs) {
+ if (ParamAttrs)
+ ParamAttrs->dropRef();
+
+ if (newAttrs)
+ newAttrs->addRef();
+
+ ParamAttrs = newAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// InvokeInst Implementation
+//===----------------------------------------------------------------------===//
+
+InvokeInst::~InvokeInst() {
+ delete [] OperandList;
+ if (ParamAttrs)
+ ParamAttrs->dropRef();
+}
+
+void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
+ Value* const *Args, unsigned NumArgs) {
+ ParamAttrs = 0;
+ NumOperands = 3+NumArgs;
+ Use *OL = OperandList = new Use[3+NumArgs];
+ OL[0].init(Fn, this);
+ OL[1].init(IfNormal, this);
+ OL[2].init(IfException, this);
+ const FunctionType *FTy =
+ cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
+ FTy = FTy; // silence warning.
+
+ assert((NumArgs == FTy->getNumParams()) ||
+ (FTy->isVarArg() && NumArgs > FTy->getNumParams()) &&
+ "Calling a function with bad signature");
+
+ for (unsigned i = 0, e = NumArgs; i != e; i++) {
+ assert((i >= FTy->getNumParams() ||
+ FTy->getParamType(i) == Args[i]->getType()) &&
+ "Invoking a function with a bad signature!");
+
+ OL[i+3].init(Args[i], this);
+ }
+}
+
+InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
+ BasicBlock *IfException,
+ Value* const *Args, unsigned NumArgs,
+ const std::string &Name, Instruction *InsertBefore)
+ : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Invoke, 0, 0, InsertBefore) {
+ init(Fn, IfNormal, IfException, Args, NumArgs);
+ setName(Name);
+}
+
+InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
+ BasicBlock *IfException,
+ Value* const *Args, unsigned NumArgs,
+ const std::string &Name, BasicBlock *InsertAtEnd)
+ : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
+ ->getElementType())->getReturnType(),
+ Instruction::Invoke, 0, 0, InsertAtEnd) {
+ init(Fn, IfNormal, IfException, Args, NumArgs);
+ setName(Name);
+}
+
+InvokeInst::InvokeInst(const InvokeInst &II)
+ : TerminatorInst(II.getType(), Instruction::Invoke,
+ new Use[II.getNumOperands()], II.getNumOperands()) {
+ ParamAttrs = 0;
+ SubclassData = II.SubclassData;
+ Use *OL = OperandList, *InOL = II.OperandList;
+ for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
+ OL[i].init(InOL[i], this);
+}
+
+BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
+ return getSuccessor(idx);
+}
+unsigned InvokeInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+ return setSuccessor(idx, B);
+}
+
+void InvokeInst::setParamAttrs(ParamAttrsList *newAttrs) {
+ if (ParamAttrs)
+ ParamAttrs->dropRef();
+
+ if (newAttrs)
+ newAttrs->addRef();
+
+ ParamAttrs = newAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// ReturnInst Implementation
+//===----------------------------------------------------------------------===//
+
+ReturnInst::ReturnInst(const ReturnInst &RI)
+ : TerminatorInst(Type::VoidTy, Instruction::Ret,
+ &RetVal, RI.getNumOperands()) {
+ if (RI.getNumOperands())
+ RetVal.init(RI.RetVal, this);
+}
+
+ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
+ : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertBefore) {
+ init(retVal);
+}
+ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
+ init(retVal);
+}
+ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
+}
+
+
+
+void ReturnInst::init(Value *retVal) {
+ if (retVal && retVal->getType() != Type::VoidTy) {
+ assert(!isa<BasicBlock>(retVal) &&
+ "Cannot return basic block. Probably using the incorrect ctor");
+ NumOperands = 1;
+ RetVal.init(retVal, this);
+ }
+}
+
+unsigned ReturnInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+
+// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
+// emit the vtable for the class in this translation unit.
+void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+ assert(0 && "ReturnInst has no successors!");
+}
+
+BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
+ assert(0 && "ReturnInst has no successors!");
+ abort();
+ return 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// UnwindInst Implementation
+//===----------------------------------------------------------------------===//
+
+UnwindInst::UnwindInst(Instruction *InsertBefore)
+ : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
+}
+UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
+}
+
+
+unsigned UnwindInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+
+void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+ assert(0 && "UnwindInst has no successors!");
+}
+
+BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
+ assert(0 && "UnwindInst has no successors!");
+ abort();
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// UnreachableInst Implementation
+//===----------------------------------------------------------------------===//
+
+UnreachableInst::UnreachableInst(Instruction *InsertBefore)
+ : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
+}
+UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
+}
+
+unsigned UnreachableInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+
+void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+ assert(0 && "UnwindInst has no successors!");
+}
+
+BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
+ assert(0 && "UnwindInst has no successors!");
+ abort();
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// BranchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void BranchInst::AssertOK() {
+ if (isConditional())
+ assert(getCondition()->getType() == Type::Int1Ty &&
+ "May only branch on boolean predicates!");
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
+ : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertBefore) {
+ assert(IfTrue != 0 && "Branch destination may not be null!");
+ Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
+}
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+ Instruction *InsertBefore)
+: TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertBefore) {
+ Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
+ Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
+ Ops[2].init(Cond, this);
+#ifndef NDEBUG
+ AssertOK();
+#endif
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertAtEnd) {
+ assert(IfTrue != 0 && "Branch destination may not be null!");
+ Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+ BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertAtEnd) {
+ Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
+ Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
+ Ops[2].init(Cond, this);
+#ifndef NDEBUG
+ AssertOK();
+#endif
+}
+
+
+BranchInst::BranchInst(const BranchInst &BI) :
+ TerminatorInst(Type::VoidTy, Instruction::Br, Ops, BI.getNumOperands()) {
+ OperandList[0].init(BI.getOperand(0), this);
+ if (BI.getNumOperands() != 1) {
+ assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
+ OperandList[1].init(BI.getOperand(1), this);
+ OperandList[2].init(BI.getOperand(2), this);
+ }
+}
+
+BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
+ return getSuccessor(idx);
+}
+unsigned BranchInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+ setSuccessor(idx, B);
+}
+
+
+//===----------------------------------------------------------------------===//
+// AllocationInst Implementation
+//===----------------------------------------------------------------------===//
+
+static Value *getAISize(Value *Amt) {
+ if (!Amt)
+ Amt = ConstantInt::get(Type::Int32Ty, 1);
+ else {
+ assert(!isa<BasicBlock>(Amt) &&
+ "Passed basic block into allocation size parameter! Ue other ctor");
+ assert(Amt->getType() == Type::Int32Ty &&
+ "Malloc/Allocation array size is not a 32-bit integer!");
+ }
+ return Amt;
+}
+
+AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
+ unsigned Align, const std::string &Name,
+ Instruction *InsertBefore)
+ : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
+ InsertBefore), Alignment(Align) {
+ assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+ assert(Ty != Type::VoidTy && "Cannot allocate void!");
+ setName(Name);
+}
+
+AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
+ unsigned Align, const std::string &Name,
+ BasicBlock *InsertAtEnd)
+ : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
+ InsertAtEnd), Alignment(Align) {
+ assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+ assert(Ty != Type::VoidTy && "Cannot allocate void!");
+ setName(Name);
+}
+
+// Out of line virtual method, so the vtable, etc has a home.
+AllocationInst::~AllocationInst() {
+}
+
+bool AllocationInst::isArrayAllocation() const {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
+ return CI->getZExtValue() != 1;
+ return true;
+}
+
+const Type *AllocationInst::getAllocatedType() const {
+ return getType()->getElementType();
+}
+
+AllocaInst::AllocaInst(const AllocaInst &AI)
+ : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
+ Instruction::Alloca, AI.getAlignment()) {
+}
+
+MallocInst::MallocInst(const MallocInst &MI)
+ : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
+ Instruction::Malloc, MI.getAlignment()) {
+}
+
+//===----------------------------------------------------------------------===//
+// FreeInst Implementation
+//===----------------------------------------------------------------------===//
+
+void FreeInst::AssertOK() {
+ assert(isa<PointerType>(getOperand(0)->getType()) &&
+ "Can not free something of nonpointer type!");
+}
+
+FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
+ : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
+ AssertOK();
+}
+
+FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
+ : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
+ AssertOK();
+}
+
+
+//===----------------------------------------------------------------------===//
+// LoadInst Implementation
+//===----------------------------------------------------------------------===//
+
+void LoadInst::AssertOK() {
+ assert(isa<PointerType>(getOperand(0)->getType()) &&
+ "Ptr must have pointer type.");
+}
+
+LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertBef) {
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+ setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertAE) {
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+ setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+ Instruction *InsertBef)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertBef) {
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+ setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+ unsigned Align, Instruction *InsertBef)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertBef) {
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ AssertOK();
+ setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+ BasicBlock *InsertAE)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertAE) {
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+ setName(Name);
+}
+
+
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertBef) {
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+ if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertAE) {
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+ if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
+ Instruction *InsertBef)
+: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertBef) {
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+ if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
+ BasicBlock *InsertAE)
+ : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+ Load, Ptr, InsertAE) {
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+ if (Name && Name[0]) setName(Name);
+}
+
+void LoadInst::setAlignment(unsigned Align) {
+ assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+ SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
+}
+
+//===----------------------------------------------------------------------===//
+// StoreInst Implementation
+//===----------------------------------------------------------------------===//
+
+void StoreInst::AssertOK() {
+ assert(isa<PointerType>(getOperand(1)->getType()) &&
+ "Ptr must have pointer type!");
+ assert(getOperand(0)->getType() ==
+ cast<PointerType>(getOperand(1)->getType())->getElementType()
+ && "Ptr must be a pointer to Val type!");
+}
+
+
+StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
+ : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
+ Ops[0].init(val, this);
+ Ops[1].init(addr, this);
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
+ : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
+ Ops[0].init(val, this);
+ Ops[1].init(addr, this);
+ setVolatile(false);
+ setAlignment(0);
+ AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+ Instruction *InsertBefore)
+ : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
+ Ops[0].init(val, this);
+ Ops[1].init(addr, this);
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+ unsigned Align, Instruction *InsertBefore)
+ : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
+ Ops[0].init(val, this);
+ Ops[1].init(addr, this);
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
+ Ops[0].init(val, this);
+ Ops[1].init(addr, this);
+ setVolatile(isVolatile);
+ setAlignment(0);
+ AssertOK();
+}
+
+void StoreInst::setAlignment(unsigned Align) {
+ assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+ SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
+}
+
+//===----------------------------------------------------------------------===//
+// GetElementPtrInst Implementation
+//===----------------------------------------------------------------------===//
+
+// checkType - Simple wrapper function to give a better assertion failure
+// message on bad indexes for a gep instruction.
+//
+static inline const Type *checkType(const Type *Ty) {
+ assert(Ty && "Invalid GetElementPtrInst indices for type!");
+ return Ty;
+}
+
+void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx) {
+ NumOperands = 1+NumIdx;
+ Use *OL = OperandList = new Use[NumOperands];
+ OL[0].init(Ptr, this);
+
+ for (unsigned i = 0; i != NumIdx; ++i)
+ OL[i+1].init(Idx[i], this);
+}
+
+void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
+ NumOperands = 3;
+ Use *OL = OperandList = new Use[3];
+ OL[0].init(Ptr, this);
+ OL[1].init(Idx0, this);
+ OL[2].init(Idx1, this);
+}
+
+void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
+ NumOperands = 2;
+ Use *OL = OperandList = new Use[2];
+ OL[0].init(Ptr, this);
+ OL[1].init(Idx, this);
+}
+
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value* const *Idx,
+ unsigned NumIdx,
+ const std::string &Name, Instruction *InBe)
+: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+ Idx, NumIdx, true))),
+ GetElementPtr, 0, 0, InBe) {
+ init(Ptr, Idx, NumIdx);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value* const *Idx,
+ unsigned NumIdx,
+ const std::string &Name, BasicBlock *IAE)
+: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+ Idx, NumIdx, true))),
+ GetElementPtr, 0, 0, IAE) {
+ init(Ptr, Idx, NumIdx);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
+ const std::string &Name, Instruction *InBe)
+ : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
+ GetElementPtr, 0, 0, InBe) {
+ init(Ptr, Idx);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
+ const std::string &Name, BasicBlock *IAE)
+ : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
+ GetElementPtr, 0, 0, IAE) {
+ init(Ptr, Idx);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
+ const std::string &Name, Instruction *InBe)
+ : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+ Idx0, Idx1, true))),
+ GetElementPtr, 0, 0, InBe) {
+ init(Ptr, Idx0, Idx1);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
+ const std::string &Name, BasicBlock *IAE)
+ : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+ Idx0, Idx1, true))),
+ GetElementPtr, 0, 0, IAE) {
+ init(Ptr, Idx0, Idx1);
+ setName(Name);
+}
+
+GetElementPtrInst::~GetElementPtrInst() {
+ delete[] OperandList;
+}
+
+// getIndexedType - Returns the type of the element that would be loaded with
+// a load instruction with the specified parameters.
+//
+// A null type is returned if the indices are invalid for the specified
+// pointer type.
+//
+const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
+ Value* const *Idxs,
+ unsigned NumIdx,
+ bool AllowCompositeLeaf) {
+ if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
+
+ // Handle the special case of the empty set index set...
+ if (NumIdx == 0)
+ if (AllowCompositeLeaf ||
+ cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
+ return cast<PointerType>(Ptr)->getElementType();
+ else
+ return 0;
+
+ unsigned CurIdx = 0;
+ while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
+ if (NumIdx == CurIdx) {
+ if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
+ return 0; // Can't load a whole structure or array!?!?
+ }
+
+ Value *Index = Idxs[CurIdx++];
+ if (isa<PointerType>(CT) && CurIdx != 1)
+ return 0; // Can only index into pointer types at the first index!
+ if (!CT->indexValid(Index)) return 0;
+ Ptr = CT->getTypeAtIndex(Index);
+
+ // If the new type forwards to another type, then it is in the middle
+ // of being refined to another type (and hence, may have dropped all
+ // references to what it was using before). So, use the new forwarded
+ // type.
+ if (const Type * Ty = Ptr->getForwardedType()) {
+ Ptr = Ty;
+ }
+ }
+ return CurIdx == NumIdx ? Ptr : 0;
+}
+
+const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
+ Value *Idx0, Value *Idx1,
+ bool AllowCompositeLeaf) {
+ const PointerType *PTy = dyn_cast<PointerType>(Ptr);
+ if (!PTy) return 0; // Type isn't a pointer type!
+
+ // Check the pointer index.
+ if (!PTy->indexValid(Idx0)) return 0;
+
+ const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
+ if (!CT || !CT->indexValid(Idx1)) return 0;
+
+ const Type *ElTy = CT->getTypeAtIndex(Idx1);
+ if (AllowCompositeLeaf || ElTy->isFirstClassType())
+ return ElTy;
+ return 0;
+}
+
+const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
+ const PointerType *PTy = dyn_cast<PointerType>(Ptr);
+ if (!PTy) return 0; // Type isn't a pointer type!
+
+ // Check the pointer index.
+ if (!PTy->indexValid(Idx)) return 0;
+
+ return PTy->getElementType();
+}
+
+
+/// hasAllZeroIndices - Return true if all of the indices of this GEP are
+/// zeros. If so, the result pointer and the first operand have the same
+/// value, just potentially different types.
+bool GetElementPtrInst::hasAllZeroIndices() const {
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
+ if (!CI->isZero()) return false;
+ } else {
+ return false;
+ }
+ }
+ return true;
+}
+
+/// hasAllConstantIndices - Return true if all of the indices of this GEP are
+/// constant integers. If so, the result pointer and the first operand have
+/// a constant offset between them.
+bool GetElementPtrInst::hasAllConstantIndices() const {
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ if (!isa<ConstantInt>(getOperand(i)))
+ return false;
+ }
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// ExtractElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+ const std::string &Name,
+ Instruction *InsertBef)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement, Ops, 2, InsertBef) {
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+ Ops[0].init(Val, this);
+ Ops[1].init(Index, this);
+ setName(Name);
+}
+
+ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
+ const std::string &Name,
+ Instruction *InsertBef)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement, Ops, 2, InsertBef) {
+ Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+ Ops[0].init(Val, this);
+ Ops[1].init(Index, this);
+ setName(Name);
+}
+
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+ const std::string &Name,
+ BasicBlock *InsertAE)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement, Ops, 2, InsertAE) {
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+
+ Ops[0].init(Val, this);
+ Ops[1].init(Index, this);
+ setName(Name);
+}
+
+ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
+ const std::string &Name,
+ BasicBlock *InsertAE)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement, Ops, 2, InsertAE) {
+ Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+
+ Ops[0].init(Val, this);
+ Ops[1].init(Index, this);
+ setName(Name);
+}
+
+
+bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
+ if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
+ return false;
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// InsertElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+InsertElementInst::InsertElementInst(const InsertElementInst &IE)
+ : Instruction(IE.getType(), InsertElement, Ops, 3) {
+ Ops[0].init(IE.Ops[0], this);
+ Ops[1].init(IE.Ops[1], this);
+ Ops[2].init(IE.Ops[2], this);
+}
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+ const std::string &Name,
+ Instruction *InsertBef)
+ : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+ Ops[0].init(Vec, this);
+ Ops[1].init(Elt, this);
+ Ops[2].init(Index, this);
+ setName(Name);
+}
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
+ const std::string &Name,
+ Instruction *InsertBef)
+ : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
+ Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+ Ops[0].init(Vec, this);
+ Ops[1].init(Elt, this);
+ Ops[2].init(Index, this);
+ setName(Name);
+}
+
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+ const std::string &Name,
+ BasicBlock *InsertAE)
+ : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+
+ Ops[0].init(Vec, this);
+ Ops[1].init(Elt, this);
+ Ops[2].init(Index, this);
+ setName(Name);
+}
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
+ const std::string &Name,
+ BasicBlock *InsertAE)
+: Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
+ Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+
+ Ops[0].init(Vec, this);
+ Ops[1].init(Elt, this);
+ Ops[2].init(Index, this);
+ setName(Name);
+}
+
+bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
+ const Value *Index) {
+ if (!isa<VectorType>(Vec->getType()))
+ return false; // First operand of insertelement must be vector type.
+
+ if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
+ return false;// Second operand of insertelement must be vector element type.
+
+ if (Index->getType() != Type::Int32Ty)
+ return false; // Third operand of insertelement must be uint.
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// ShuffleVectorInst Implementation
+//===----------------------------------------------------------------------===//
+
+ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
+ : Instruction(SV.getType(), ShuffleVector, Ops, 3) {
+ Ops[0].init(SV.Ops[0], this);
+ Ops[1].init(SV.Ops[1], this);
+ Ops[2].init(SV.Ops[2], this);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+ const std::string &Name,
+ Instruction *InsertBefore)
+ : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertBefore) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+ Ops[0].init(V1, this);
+ Ops[1].init(V2, this);
+ Ops[2].init(Mask, this);
+ setName(Name);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd)
+ : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertAtEnd) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+
+ Ops[0].init(V1, this);
+ Ops[1].init(V2, this);
+ Ops[2].init(Mask, this);
+ setName(Name);
+}
+
+bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
+ const Value *Mask) {
+ if (!isa<VectorType>(V1->getType())) return false;
+ if (V1->getType() != V2->getType()) return false;
+ if (!isa<VectorType>(Mask->getType()) ||
+ cast<VectorType>(Mask->getType())->getElementType() != Type::Int32Ty ||
+ cast<VectorType>(Mask->getType())->getNumElements() !=
+ cast<VectorType>(V1->getType())->getNumElements())
+ return false;
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// BinaryOperator Class
+//===----------------------------------------------------------------------===//
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
+ const Type *Ty, const std::string &Name,
+ Instruction *InsertBefore)
+ : Instruction(Ty, iType, Ops, 2, InsertBefore) {
+ Ops[0].init(S1, this);
+ Ops[1].init(S2, this);
+ init(iType);
+ setName(Name);
+}
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
+ const Type *Ty, const std::string &Name,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Ty, iType, Ops, 2, InsertAtEnd) {
+ Ops[0].init(S1, this);
+ Ops[1].init(S2, this);
+ init(iType);
+ setName(Name);
+}
+
+
+void BinaryOperator::init(BinaryOps iType) {
+ Value *LHS = getOperand(0), *RHS = getOperand(1);
+ LHS = LHS; RHS = RHS; // Silence warnings.
+ assert(LHS->getType() == RHS->getType() &&
+ "Binary operator operand types must match!");
+#ifndef NDEBUG
+ switch (iType) {
+ case Add: case Sub:
+ case Mul:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert((getType()->isInteger() || getType()->isFloatingPoint() ||
+ isa<VectorType>(getType())) &&
+ "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case UDiv:
+ case SDiv:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
+ cast<VectorType>(getType())->getElementType()->isInteger())) &&
+ "Incorrect operand type (not integer) for S/UDIV");
+ break;
+ case FDiv:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
+ cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
+ && "Incorrect operand type (not floating point) for FDIV");
+ break;
+ case URem:
+ case SRem:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
+ cast<VectorType>(getType())->getElementType()->isInteger())) &&
+ "Incorrect operand type (not integer) for S/UREM");
+ break;
+ case FRem:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
+ cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
+ && "Incorrect operand type (not floating point) for FREM");
+ break;
+ case Shl:
+ case LShr:
+ case AShr:
+ assert(getType() == LHS->getType() &&
+ "Shift operation should return same type as operands!");
+ assert(getType()->isInteger() &&
+ "Shift operation requires integer operands");
+ break;
+ case And: case Or:
+ case Xor:
+ assert(getType() == LHS->getType() &&
+ "Logical operation should return same type as operands!");
+ assert((getType()->isInteger() ||
+ (isa<VectorType>(getType()) &&
+ cast<VectorType>(getType())->getElementType()->isInteger())) &&
+ "Tried to create a logical operation on a non-integral type!");
+ break;
+ default:
+ break;
+ }
+#endif
+}
+
+BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ assert(S1->getType() == S2->getType() &&
+ "Cannot create binary operator with two operands of differing type!");
+ return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ BinaryOperator *Res = create(Op, S1, S2, Name);
+ InsertAtEnd->getInstList().push_back(Res);
+ return Res;
+}
+
+BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
+ Instruction *InsertBefore) {
+ Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ return new BinaryOperator(Instruction::Sub,
+ zero, Op,
+ Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ return new BinaryOperator(Instruction::Sub,
+ zero, Op,
+ Op->getType(), Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
+ Instruction *InsertBefore) {
+ Constant *C;
+ if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
+ C = ConstantInt::getAllOnesValue(PTy->getElementType());
+ C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
+ } else {
+ C = ConstantInt::getAllOnesValue(Op->getType());
+ }
+
+ return new BinaryOperator(Instruction::Xor, Op, C,
+ Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ Constant *AllOnes;
+ if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
+ // Create a vector of all ones values.
+ Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
+ AllOnes =
+ ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
+ } else {
+ AllOnes = ConstantInt::getAllOnesValue(Op->getType());
+ }
+
+ return new BinaryOperator(Instruction::Xor, Op, AllOnes,
+ Op->getType(), Name, InsertAtEnd);
+}
+
+
+// isConstantAllOnes - Helper function for several functions below
+static inline bool isConstantAllOnes(const Value *V) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return CI->isAllOnesValue();
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
+ return CV->isAllOnesValue();
+ return false;
+}
+
+bool BinaryOperator::isNeg(const Value *V) {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+ if (Bop->getOpcode() == Instruction::Sub)
+ return Bop->getOperand(0) ==
+ ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
+ return false;
+}
+
+bool BinaryOperator::isNot(const Value *V) {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+ return (Bop->getOpcode() == Instruction::Xor &&
+ (isConstantAllOnes(Bop->getOperand(1)) ||
+ isConstantAllOnes(Bop->getOperand(0))));
+ return false;
+}
+
+Value *BinaryOperator::getNegArgument(Value *BinOp) {
+ assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
+ return cast<BinaryOperator>(BinOp)->getOperand(1);
+}
+
+const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
+ return getNegArgument(const_cast<Value*>(BinOp));
+}
+
+Value *BinaryOperator::getNotArgument(Value *BinOp) {
+ assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
+ BinaryOperator *BO = cast<BinaryOperator>(BinOp);
+ Value *Op0 = BO->getOperand(0);
+ Value *Op1 = BO->getOperand(1);
+ if (isConstantAllOnes(Op0)) return Op1;
+
+ assert(isConstantAllOnes(Op1));
+ return Op0;
+}
+
+const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
+ return getNotArgument(const_cast<Value*>(BinOp));
+}
+
+
+// swapOperands - Exchange the two operands to this instruction. This
+// instruction is safe to use on any binary instruction and does not
+// modify the semantics of the instruction. If the instruction is
+// order dependent (SetLT f.e.) the opcode is changed.
+//
+bool BinaryOperator::swapOperands() {
+ if (!isCommutative())
+ return true; // Can't commute operands
+ std::swap(Ops[0], Ops[1]);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// CastInst Class
+//===----------------------------------------------------------------------===//
+
+// Just determine if this cast only deals with integral->integral conversion.
+bool CastInst::isIntegerCast() const {
+ switch (getOpcode()) {
+ default: return false;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::Trunc:
+ return true;
+ case Instruction::BitCast:
+ return getOperand(0)->getType()->isInteger() && getType()->isInteger();
+ }
+}
+
+bool CastInst::isLosslessCast() const {
+ // Only BitCast can be lossless, exit fast if we're not BitCast
+ if (getOpcode() != Instruction::BitCast)
+ return false;
+
+ // Identity cast is always lossless
+ const Type* SrcTy = getOperand(0)->getType();
+ const Type* DstTy = getType();
+ if (SrcTy == DstTy)
+ return true;
+
+ // Pointer to pointer is always lossless.
+ if (isa<PointerType>(SrcTy))
+ return isa<PointerType>(DstTy);
+ return false; // Other types have no identity values
+}
+
+/// This function determines if the CastInst does not require any bits to be
+/// changed in order to effect the cast. Essentially, it identifies cases where
+/// no code gen is necessary for the cast, hence the name no-op cast. For
+/// example, the following are all no-op casts:
+/// # bitcast uint %X, int
+/// # bitcast uint* %x, sbyte*
+/// # bitcast vector< 2 x int > %x, vector< 4 x short>
+/// # ptrtoint uint* %x, uint ; on 32-bit plaforms only
+/// @brief Determine if a cast is a no-op.
+bool CastInst::isNoopCast(const Type *IntPtrTy) const {
+ switch (getOpcode()) {
+ default:
+ assert(!"Invalid CastOp");
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ return false; // These always modify bits
+ case Instruction::BitCast:
+ return true; // BitCast never modifies bits.
+ case Instruction::PtrToInt:
+ return IntPtrTy->getPrimitiveSizeInBits() ==
+ getType()->getPrimitiveSizeInBits();
+ case Instruction::IntToPtr:
+ return IntPtrTy->getPrimitiveSizeInBits() ==
+ getOperand(0)->getType()->getPrimitiveSizeInBits();
+ }
+}
+
+/// This function determines if a pair of casts can be eliminated and what
+/// opcode should be used in the elimination. This assumes that there are two
+/// instructions like this:
+/// * %F = firstOpcode SrcTy %x to MidTy
+/// * %S = secondOpcode MidTy %F to DstTy
+/// The function returns a resultOpcode so these two casts can be replaced with:
+/// * %Replacement = resultOpcode %SrcTy %x to DstTy
+/// If no such cast is permited, the function returns 0.
+unsigned CastInst::isEliminableCastPair(
+ Instruction::CastOps firstOp, Instruction::CastOps secondOp,
+ const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
+{
+ // Define the 144 possibilities for these two cast instructions. The values
+ // in this matrix determine what to do in a given situation and select the
+ // case in the switch below. The rows correspond to firstOp, the columns
+ // correspond to secondOp. In looking at the table below, keep in mind
+ // the following cast properties:
+ //
+ // Size Compare Source Destination
+ // Operator Src ? Size Type Sign Type Sign
+ // -------- ------------ ------------------- ---------------------
+ // TRUNC > Integer Any Integral Any
+ // ZEXT < Integral Unsigned Integer Any
+ // SEXT < Integral Signed Integer Any
+ // FPTOUI n/a FloatPt n/a Integral Unsigned
+ // FPTOSI n/a FloatPt n/a Integral Signed
+ // UITOFP n/a Integral Unsigned FloatPt n/a
+ // SITOFP n/a Integral Signed FloatPt n/a
+ // FPTRUNC > FloatPt n/a FloatPt n/a
+ // FPEXT < FloatPt n/a FloatPt n/a
+ // PTRTOINT n/a Pointer n/a Integral Unsigned
+ // INTTOPTR n/a Integral Unsigned Pointer n/a
+ // BITCONVERT = FirstClass n/a FirstClass n/a
+ //
+ // NOTE: some transforms are safe, but we consider them to be non-profitable.
+ // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
+ // into "fptoui double to ulong", but this loses information about the range
+ // of the produced value (we no longer know the top-part is all zeros).
+ // Further this conversion is often much more expensive for typical hardware,
+ // and causes issues when building libgcc. We disallow fptosi+sext for the
+ // same reason.
+ const unsigned numCastOps =
+ Instruction::CastOpsEnd - Instruction::CastOpsBegin;
+ static const uint8_t CastResults[numCastOps][numCastOps] = {
+ // T F F U S F F P I B -+
+ // R Z S P P I I T P 2 N T |
+ // U E E 2 2 2 2 R E I T C +- secondOp
+ // N X X U S F F N X N 2 V |
+ // C T T I I P P C T T P T -+
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
+ { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
+ { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
+ { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
+ { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
+ { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
+ { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
+ { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
+ { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
+ };
+
+ int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
+ [secondOp-Instruction::CastOpsBegin];
+ switch (ElimCase) {
+ case 0:
+ // categorically disallowed
+ return 0;
+ case 1:
+ // allowed, use first cast's opcode
+ return firstOp;
+ case 2:
+ // allowed, use second cast's opcode
+ return secondOp;
+ case 3:
+ // no-op cast in second op implies firstOp as long as the DestTy
+ // is integer
+ if (DstTy->isInteger())
+ return firstOp;
+ return 0;
+ case 4:
+ // no-op cast in second op implies firstOp as long as the DestTy
+ // is floating point
+ if (DstTy->isFloatingPoint())
+ return firstOp;
+ return 0;
+ case 5:
+ // no-op cast in first op implies secondOp as long as the SrcTy
+ // is an integer
+ if (SrcTy->isInteger())
+ return secondOp;
+ return 0;
+ case 6:
+ // no-op cast in first op implies secondOp as long as the SrcTy
+ // is a floating point
+ if (SrcTy->isFloatingPoint())
+ return secondOp;
+ return 0;
+ case 7: {
+ // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
+ unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+ unsigned MidSize = MidTy->getPrimitiveSizeInBits();
+ if (MidSize >= PtrSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 8: {
+ // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
+ // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
+ // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
+ unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+ if (SrcSize == DstSize)
+ return Instruction::BitCast;
+ else if (SrcSize < DstSize)
+ return firstOp;
+ return secondOp;
+ }
+ case 9: // zext, sext -> zext, because sext can't sign extend after zext
+ return Instruction::ZExt;
+ case 10:
+ // fpext followed by ftrunc is allowed if the bit size returned to is
+ // the same as the original, in which case its just a bitcast
+ if (SrcTy == DstTy)
+ return Instruction::BitCast;
+ return 0; // If the types are not the same we can't eliminate it.
+ case 11:
+ // bitcast followed by ptrtoint is allowed as long as the bitcast
+ // is a pointer to pointer cast.
+ if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
+ return secondOp;
+ return 0;
+ case 12:
+ // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
+ if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
+ return firstOp;
+ return 0;
+ case 13: {
+ // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+ unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+ unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+ if (SrcSize <= PtrSize && SrcSize == DstSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 99:
+ // cast combination can't happen (error in input). This is for all cases
+ // where the MidTy is not the same for the two cast instructions.
+ assert(!"Invalid Cast Combination");
+ return 0;
+ default:
+ assert(!"Error in CastResults table!!!");
+ return 0;
+ }
+ return 0;
+}
+
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
+ const std::string &Name, Instruction *InsertBefore) {
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
+ case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
+ default:
+ assert(!"Invalid opcode provided");
+ }
+ return 0;
+}
+
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
+ const std::string &Name, BasicBlock *InsertAtEnd) {
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
+ case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
+ default:
+ assert(!"Invalid opcode provided");
+ }
+ return 0;
+}
+
+CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return create(Instruction::ZExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return create(Instruction::SExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return create(Instruction::Trunc, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(isa<PointerType>(S->getType()) && "Invalid cast");
+ assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
+ "Invalid cast");
+
+ if (Ty->isInteger())
+ return create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
+ return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+}
+
+/// @brief Create a BitCast or a PtrToInt cast instruction
+CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ assert(isa<PointerType>(S->getType()) && "Invalid cast");
+ assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
+ "Invalid cast");
+
+ if (Ty->isInteger())
+ return create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
+ return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
+ bool isSigned, const std::string &Name,
+ Instruction *InsertBefore) {
+ assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::Trunc :
+ (isSigned ? Instruction::SExt : Instruction::ZExt)));
+ return create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
+ bool isSigned, const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::Trunc :
+ (isSigned ? Instruction::SExt : Instruction::ZExt)));
+ return create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
+ const std::string &Name,
+ Instruction *InsertBefore) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+ return create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
+ const std::string &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+ return create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+// Provide a way to get a "cast" where the cast opcode is inferred from the
+// types and size of the operand. This, basically, is a parallel of the
+// logic in the castIsValid function below. This axiom should hold:
+// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
+// should not assert in castIsValid. In other words, this produces a "correct"
+// casting opcode for the arguments passed to it.
+Instruction::CastOps
+CastInst::getCastOpcode(
+ const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
+ // Get the bit sizes, we'll need these
+ const Type *SrcTy = Src->getType();
+ unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
+ unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
+
+ // Run through the possibilities ...
+ if (DestTy->isInteger()) { // Casting to integral
+ if (SrcTy->isInteger()) { // Casting from integral
+ if (DestBits < SrcBits)
+ return Trunc; // int -> smaller int
+ else if (DestBits > SrcBits) { // its an extension
+ if (SrcIsSigned)
+ return SExt; // signed -> SEXT
+ else
+ return ZExt; // unsigned -> ZEXT
+ } else {
+ return BitCast; // Same size, No-op cast
+ }
+ } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
+ if (DestIsSigned)
+ return FPToSI; // FP -> sint
+ else
+ return FPToUI; // FP -> uint
+ } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
+ assert(DestBits == PTy->getBitWidth() &&
+ "Casting vector to integer of different width");
+ return BitCast; // Same size, no-op cast
+ } else {
+ assert(isa<PointerType>(SrcTy) &&
+ "Casting from a value that is not first-class type");
+ return PtrToInt; // ptr -> int
+ }
+ } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
+ if (SrcTy->isInteger()) { // Casting from integral
+ if (SrcIsSigned)
+ return SIToFP; // sint -> FP
+ else
+ return UIToFP; // uint -> FP
+ } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
+ if (DestBits < SrcBits) {
+ return FPTrunc; // FP -> smaller FP
+ } else if (DestBits > SrcBits) {
+ return FPExt; // FP -> larger FP
+ } else {
+ return BitCast; // same size, no-op cast
+ }
+ } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
+ assert(DestBits == PTy->getBitWidth() &&
+ "Casting vector to floating point of different width");
+ return BitCast; // same size, no-op cast
+ } else {
+ assert(0 && "Casting pointer or non-first class to float");
+ }
+ } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
+ if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
+ assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
+ "Casting vector to vector of different widths");
+ return BitCast; // vector -> vector
+ } else if (DestPTy->getBitWidth() == SrcBits) {
+ return BitCast; // float/int -> vector
+ } else {
+ assert(!"Illegal cast to vector (wrong type or size)");
+ }
+ } else if (isa<PointerType>(DestTy)) {
+ if (isa<PointerType>(SrcTy)) {
+ return BitCast; // ptr -> ptr
+ } else if (SrcTy->isInteger()) {
+ return IntToPtr; // int -> ptr
+ } else {
+ assert(!"Casting pointer to other than pointer or int");
+ }
+ } else {
+ assert(!"Casting to type that is not first-class");
+ }
+
+ // If we fall through to here we probably hit an assertion cast above
+ // and assertions are not turned on. Anything we return is an error, so
+ // BitCast is as good a choice as any.
+ return BitCast;
+}
+
+//===----------------------------------------------------------------------===//
+// CastInst SubClass Constructors
+//===----------------------------------------------------------------------===//
+
+/// Check that the construction parameters for a CastInst are correct. This
+/// could be broken out into the separate constructors but it is useful to have
+/// it in one place and to eliminate the redundant code for getting the sizes
+/// of the types involved.
+bool
+CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
+
+ // Check for type sanity on the arguments
+ const Type *SrcTy = S->getType();
+ if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
+ return false;
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+
+ // Switch on the opcode provided
+ switch (op) {
+ default: return false; // This is an input error
+ case Instruction::Trunc:
+ return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize > DstBitSize;
+ case Instruction::ZExt:
+ return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
+ case Instruction::SExt:
+ return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
+ case Instruction::FPTrunc:
+ return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
+ SrcBitSize > DstBitSize;
+ case Instruction::FPExt:
+ return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
+ SrcBitSize < DstBitSize;
+ case Instruction::UIToFP:
+ return SrcTy->isInteger() && DstTy->isFloatingPoint();
+ case Instruction::SIToFP:
+ return SrcTy->isInteger() && DstTy->isFloatingPoint();
+ case Instruction::FPToUI:
+ return SrcTy->isFloatingPoint() && DstTy->isInteger();
+ case Instruction::FPToSI:
+ return SrcTy->isFloatingPoint() && DstTy->isInteger();
+ case Instruction::PtrToInt:
+ return isa<PointerType>(SrcTy) && DstTy->isInteger();
+ case Instruction::IntToPtr:
+ return SrcTy->isInteger() && isa<PointerType>(DstTy);
+ case Instruction::BitCast:
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
+ return false;
+
+ // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
+ // these cases, the cast is okay if the source and destination bit widths
+ // are identical.
+ return SrcBitSize == DstBitSize;
+ }
+}
+
+TruncInst::TruncInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+TruncInst::TruncInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+SExtInst::SExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+SExtInst::SExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+//===----------------------------------------------------------------------===//
+// CmpInst Classes
+//===----------------------------------------------------------------------===//
+
+CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
+ const std::string &Name, Instruction *InsertBefore)
+ : Instruction(Type::Int1Ty, op, Ops, 2, InsertBefore) {
+ Ops[0].init(LHS, this);
+ Ops[1].init(RHS, this);
+ SubclassData = predicate;
+ setName(Name);
+ if (op == Instruction::ICmp) {
+ assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
+ "Invalid ICmp predicate value");
+ const Type* Op0Ty = getOperand(0)->getType();
+ const Type* Op1Ty = getOperand(1)->getType();
+ assert(Op0Ty == Op1Ty &&
+ "Both operands to ICmp instruction are not of the same type!");
+ // Check that the operands are the right type
+ assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
+ "Invalid operand types for ICmp instruction");
+ return;
+ }
+ assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
+ assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
+ "Invalid FCmp predicate value");
+ const Type* Op0Ty = getOperand(0)->getType();
+ const Type* Op1Ty = getOperand(1)->getType();
+ assert(Op0Ty == Op1Ty &&
+ "Both operands to FCmp instruction are not of the same type!");
+ // Check that the operands are the right type
+ assert(Op0Ty->isFloatingPoint() &&
+ "Invalid operand types for FCmp instruction");
+}
+
+CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
+ const std::string &Name, BasicBlock *InsertAtEnd)
+ : Instruction(Type::Int1Ty, op, Ops, 2, InsertAtEnd) {
+ Ops[0].init(LHS, this);
+ Ops[1].init(RHS, this);
+ SubclassData = predicate;
+ setName(Name);
+ if (op == Instruction::ICmp) {
+ assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
+ "Invalid ICmp predicate value");
+
+ const Type* Op0Ty = getOperand(0)->getType();
+ const Type* Op1Ty = getOperand(1)->getType();
+ assert(Op0Ty == Op1Ty &&
+ "Both operands to ICmp instruction are not of the same type!");
+ // Check that the operands are the right type
+ assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) &&
+ "Invalid operand types for ICmp instruction");
+ return;
+ }
+ assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
+ assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
+ "Invalid FCmp predicate value");
+ const Type* Op0Ty = getOperand(0)->getType();
+ const Type* Op1Ty = getOperand(1)->getType();
+ assert(Op0Ty == Op1Ty &&
+ "Both operands to FCmp instruction are not of the same type!");
+ // Check that the operands are the right type
+ assert(Op0Ty->isFloatingPoint() &&
+ "Invalid operand types for FCmp instruction");
+}
+
+CmpInst *
+CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
+ const std::string &Name, Instruction *InsertBefore) {
+ if (Op == Instruction::ICmp) {
+ return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
+ InsertBefore);
+ }
+ return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
+ InsertBefore);
+}
+
+CmpInst *
+CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
+ const std::string &Name, BasicBlock *InsertAtEnd) {
+ if (Op == Instruction::ICmp) {
+ return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
+ InsertAtEnd);
+ }
+ return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
+ InsertAtEnd);
+}
+
+void CmpInst::swapOperands() {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
+ IC->swapOperands();
+ else
+ cast<FCmpInst>(this)->swapOperands();
+}
+
+bool CmpInst::isCommutative() {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
+ return IC->isCommutative();
+ return cast<FCmpInst>(this)->isCommutative();
+}
+
+bool CmpInst::isEquality() {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
+ return IC->isEquality();
+ return cast<FCmpInst>(this)->isEquality();
+}
+
+
+ICmpInst::Predicate ICmpInst::getInversePredicate(Predicate pred) {
+ switch (pred) {
+ default:
+ assert(!"Unknown icmp predicate!");
+ case ICMP_EQ: return ICMP_NE;
+ case ICMP_NE: return ICMP_EQ;
+ case ICMP_UGT: return ICMP_ULE;
+ case ICMP_ULT: return ICMP_UGE;
+ case ICMP_UGE: return ICMP_ULT;
+ case ICMP_ULE: return ICMP_UGT;
+ case ICMP_SGT: return ICMP_SLE;
+ case ICMP_SLT: return ICMP_SGE;
+ case ICMP_SGE: return ICMP_SLT;
+ case ICMP_SLE: return ICMP_SGT;
+ }
+}
+
+ICmpInst::Predicate ICmpInst::getSwappedPredicate(Predicate pred) {
+ switch (pred) {
+ default: assert(! "Unknown icmp predicate!");
+ case ICMP_EQ: case ICMP_NE:
+ return pred;
+ case ICMP_SGT: return ICMP_SLT;
+ case ICMP_SLT: return ICMP_SGT;
+ case ICMP_SGE: return ICMP_SLE;
+ case ICMP_SLE: return ICMP_SGE;
+ case ICMP_UGT: return ICMP_ULT;
+ case ICMP_ULT: return ICMP_UGT;
+ case ICMP_UGE: return ICMP_ULE;
+ case ICMP_ULE: return ICMP_UGE;
+ }
+}
+
+ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
+ switch (pred) {
+ default: assert(! "Unknown icmp predicate!");
+ case ICMP_EQ: case ICMP_NE:
+ case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
+ return pred;
+ case ICMP_UGT: return ICMP_SGT;
+ case ICMP_ULT: return ICMP_SLT;
+ case ICMP_UGE: return ICMP_SGE;
+ case ICMP_ULE: return ICMP_SLE;
+ }
+}
+
+bool ICmpInst::isSignedPredicate(Predicate pred) {
+ switch (pred) {
+ default: assert(! "Unknown icmp predicate!");
+ case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
+ return true;
+ case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
+ case ICMP_UGE: case ICMP_ULE:
+ return false;
+ }
+}
+
+/// Initialize a set of values that all satisfy the condition with C.
+///
+ConstantRange
+ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
+ APInt Lower(C);
+ APInt Upper(C);
+ uint32_t BitWidth = C.getBitWidth();
+ switch (pred) {
+ default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
+ case ICmpInst::ICMP_EQ: Upper++; break;
+ case ICmpInst::ICMP_NE: Lower++; break;
+ case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
+ case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
+ case ICmpInst::ICMP_UGT:
+ Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
+ break;
+ case ICmpInst::ICMP_SGT:
+ Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
+ break;
+ case ICmpInst::ICMP_ULE:
+ Lower = APInt::getMinValue(BitWidth); Upper++;
+ break;
+ case ICmpInst::ICMP_SLE:
+ Lower = APInt::getSignedMinValue(BitWidth); Upper++;
+ break;
+ case ICmpInst::ICMP_UGE:
+ Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
+ break;
+ case ICmpInst::ICMP_SGE:
+ Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
+ break;
+ }
+ return ConstantRange(Lower, Upper);
+}
+
+FCmpInst::Predicate FCmpInst::getInversePredicate(Predicate pred) {
+ switch (pred) {
+ default:
+ assert(!"Unknown icmp predicate!");
+ case FCMP_OEQ: return FCMP_UNE;
+ case FCMP_ONE: return FCMP_UEQ;
+ case FCMP_OGT: return FCMP_ULE;
+ case FCMP_OLT: return FCMP_UGE;
+ case FCMP_OGE: return FCMP_ULT;
+ case FCMP_OLE: return FCMP_UGT;
+ case FCMP_UEQ: return FCMP_ONE;
+ case FCMP_UNE: return FCMP_OEQ;
+ case FCMP_UGT: return FCMP_OLE;
+ case FCMP_ULT: return FCMP_OGE;
+ case FCMP_UGE: return FCMP_OLT;
+ case FCMP_ULE: return FCMP_OGT;
+ case FCMP_ORD: return FCMP_UNO;
+ case FCMP_UNO: return FCMP_ORD;
+ case FCMP_TRUE: return FCMP_FALSE;
+ case FCMP_FALSE: return FCMP_TRUE;
+ }
+}
+
+FCmpInst::Predicate FCmpInst::getSwappedPredicate(Predicate pred) {
+ switch (pred) {
+ default: assert(!"Unknown fcmp predicate!");
+ case FCMP_FALSE: case FCMP_TRUE:
+ case FCMP_OEQ: case FCMP_ONE:
+ case FCMP_UEQ: case FCMP_UNE:
+ case FCMP_ORD: case FCMP_UNO:
+ return pred;
+ case FCMP_OGT: return FCMP_OLT;
+ case FCMP_OLT: return FCMP_OGT;
+ case FCMP_OGE: return FCMP_OLE;
+ case FCMP_OLE: return FCMP_OGE;
+ case FCMP_UGT: return FCMP_ULT;
+ case FCMP_ULT: return FCMP_UGT;
+ case FCMP_UGE: return FCMP_ULE;
+ case FCMP_ULE: return FCMP_UGE;
+ }
+}
+
+bool CmpInst::isUnsigned(unsigned short predicate) {
+ switch (predicate) {
+ default: return false;
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return true;
+ }
+}
+
+bool CmpInst::isSigned(unsigned short predicate){
+ switch (predicate) {
+ default: return false;
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return true;
+ }
+}
+
+bool CmpInst::isOrdered(unsigned short predicate) {
+ switch (predicate) {
+ default: return false;
+ case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
+ case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
+ case FCmpInst::FCMP_ORD: return true;
+ }
+}
+
+bool CmpInst::isUnordered(unsigned short predicate) {
+ switch (predicate) {
+ default: return false;
+ case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_UNO: return true;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// SwitchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
+ assert(Value && Default);
+ ReservedSpace = 2+NumCases*2;
+ NumOperands = 2;
+ OperandList = new Use[ReservedSpace];
+
+ OperandList[0].init(Value, this);
+ OperandList[1].init(Default, this);
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination. The number of additional cases can
+/// be specified here to make memory allocation more efficient. This
+/// constructor can also autoinsert before another instruction.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+ Instruction *InsertBefore)
+ : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
+ init(Value, Default, NumCases);
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination. The number of additional cases can
+/// be specified here to make memory allocation more efficient. This
+/// constructor also autoinserts at the end of the specified BasicBlock.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+ BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
+ init(Value, Default, NumCases);
+}
+
+SwitchInst::SwitchInst(const SwitchInst &SI)
+ : TerminatorInst(Type::VoidTy, Instruction::Switch,
+ new Use[SI.getNumOperands()], SI.getNumOperands()) {
+ Use *OL = OperandList, *InOL = SI.OperandList;
+ for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
+ OL[i].init(InOL[i], this);
+ OL[i+1].init(InOL[i+1], this);
+ }
+}
+
+SwitchInst::~SwitchInst() {
+ delete [] OperandList;
+}
+
+
+/// addCase - Add an entry to the switch instruction...
+///
+void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
+ unsigned OpNo = NumOperands;
+ if (OpNo+2 > ReservedSpace)
+ resizeOperands(0); // Get more space!
+ // Initialize some new operands.
+ assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
+ NumOperands = OpNo+2;
+ OperandList[OpNo].init(OnVal, this);
+ OperandList[OpNo+1].init(Dest, this);
+}
+
+/// removeCase - This method removes the specified successor from the switch
+/// instruction. Note that this cannot be used to remove the default
+/// destination (successor #0).
+///
+void SwitchInst::removeCase(unsigned idx) {
+ assert(idx != 0 && "Cannot remove the default case!");
+ assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
+
+ unsigned NumOps = getNumOperands();
+ Use *OL = OperandList;
+
+ // Move everything after this operand down.
+ //
+ // FIXME: we could just swap with the end of the list, then erase. However,
+ // client might not expect this to happen. The code as it is thrashes the
+ // use/def lists, which is kinda lame.
+ for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
+ OL[i-2] = OL[i];
+ OL[i-2+1] = OL[i+1];
+ }
+
+ // Nuke the last value.
+ OL[NumOps-2].set(0);
+ OL[NumOps-2+1].set(0);
+ NumOperands = NumOps-2;
+}
+
+/// resizeOperands - resize operands - This adjusts the length of the operands
+/// list according to the following behavior:
+/// 1. If NumOps == 0, grow the operand list in response to a push_back style
+/// of operation. This grows the number of ops by 1.5 times.
+/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
+/// 3. If NumOps == NumOperands, trim the reserved space.
+///
+void SwitchInst::resizeOperands(unsigned NumOps) {
+ if (NumOps == 0) {
+ NumOps = getNumOperands()/2*6;
+ } else if (NumOps*2 > NumOperands) {
+ // No resize needed.
+ if (ReservedSpace >= NumOps) return;
+ } else if (NumOps == NumOperands) {
+ if (ReservedSpace == NumOps) return;
+ } else {
+ return;
+ }
+
+ ReservedSpace = NumOps;
+ Use *NewOps = new Use[NumOps];
+ Use *OldOps = OperandList;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ NewOps[i].init(OldOps[i], this);
+ OldOps[i].set(0);
+ }
+ delete [] OldOps;
+ OperandList = NewOps;
+}
+
+
+BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
+ return getSuccessor(idx);
+}
+unsigned SwitchInst::getNumSuccessorsV() const {
+ return getNumSuccessors();
+}
+void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+ setSuccessor(idx, B);
+}
+
+
+// Define these methods here so vtables don't get emitted into every translation
+// unit that uses these classes.
+
+GetElementPtrInst *GetElementPtrInst::clone() const {
+ return new GetElementPtrInst(*this);
+}
+
+BinaryOperator *BinaryOperator::clone() const {
+ return create(getOpcode(), Ops[0], Ops[1]);
+}
+
+CmpInst* CmpInst::clone() const {
+ return create(getOpcode(), getPredicate(), Ops[0], Ops[1]);
+}
+
+MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
+AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
+FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
+LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
+StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
+CastInst *TruncInst::clone() const { return new TruncInst(*this); }
+CastInst *ZExtInst::clone() const { return new ZExtInst(*this); }
+CastInst *SExtInst::clone() const { return new SExtInst(*this); }
+CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); }
+CastInst *FPExtInst::clone() const { return new FPExtInst(*this); }
+CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); }
+CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); }
+CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); }
+CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); }
+CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
+CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
+CastInst *BitCastInst::clone() const { return new BitCastInst(*this); }
+CallInst *CallInst::clone() const { return new CallInst(*this); }
+SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
+VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
+
+ExtractElementInst *ExtractElementInst::clone() const {
+ return new ExtractElementInst(*this);
+}
+InsertElementInst *InsertElementInst::clone() const {
+ return new InsertElementInst(*this);
+}
+ShuffleVectorInst *ShuffleVectorInst::clone() const {
+ return new ShuffleVectorInst(*this);
+}
+PHINode *PHINode::clone() const { return new PHINode(*this); }
+ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
+BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
+SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
+InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
+UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
+UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}