diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Analysis/SparsePropagation.cpp | 320 |
1 files changed, 320 insertions, 0 deletions
diff --git a/lib/Analysis/SparsePropagation.cpp b/lib/Analysis/SparsePropagation.cpp new file mode 100644 index 0000000..9c18751 --- /dev/null +++ b/lib/Analysis/SparsePropagation.cpp @@ -0,0 +1,320 @@ +//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an abstract sparse conditional propagation algorithm, +// modeled after SCCP, but with a customizable lattice function. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "sparseprop" +#include "llvm/Analysis/SparsePropagation.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Streams.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// AbstractLatticeFunction Implementation +//===----------------------------------------------------------------------===// + +AbstractLatticeFunction::~AbstractLatticeFunction() {} + +/// PrintValue - Render the specified lattice value to the specified stream. +void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) { + if (V == UndefVal) + OS << "undefined"; + else if (V == OverdefinedVal) + OS << "overdefined"; + else if (V == UntrackedVal) + OS << "untracked"; + else + OS << "unknown lattice value"; +} + +//===----------------------------------------------------------------------===// +// SparseSolver Implementation +//===----------------------------------------------------------------------===// + +/// getOrInitValueState - Return the LatticeVal object that corresponds to the +/// value, initializing the value's state if it hasn't been entered into the +/// map yet. This function is necessary because not all values should start +/// out in the underdefined state... Arguments should be overdefined, and +/// constants should be marked as constants. +/// +SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { + DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); + if (I != ValueState.end()) return I->second; // Common case, in the map + + LatticeVal LV; + if (LatticeFunc->IsUntrackedValue(V)) + return LatticeFunc->getUntrackedVal(); + else if (Constant *C = dyn_cast<Constant>(V)) + LV = LatticeFunc->ComputeConstant(C); + else if (!isa<Instruction>(V)) + // Non-instructions (e.g. formal arguments) are overdefined. + LV = LatticeFunc->getOverdefinedVal(); + else + // All instructions are underdefined by default. + LV = LatticeFunc->getUndefVal(); + + // If this value is untracked, don't add it to the map. + if (LV == LatticeFunc->getUntrackedVal()) + return LV; + return ValueState[V] = LV; +} + +/// UpdateState - When the state for some instruction is potentially updated, +/// this function notices and adds I to the worklist if needed. +void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { + DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); + if (I != ValueState.end() && I->second == V) + return; // No change. + + // An update. Visit uses of I. + ValueState[&Inst] = V; + InstWorkList.push_back(&Inst); +} + +/// MarkBlockExecutable - This method can be used by clients to mark all of +/// the blocks that are known to be intrinsically live in the processed unit. +void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { + DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; + BBExecutable.insert(BB); // Basic block is executable! + BBWorkList.push_back(BB); // Add the block to the work list! +} + +/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB +/// work list if it is not already executable... +void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { + if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) + return; // This edge is already known to be executable! + + if (BBExecutable.count(Dest)) { + DOUT << "Marking Edge Executable: " << Source->getNameStart() + << " -> " << Dest->getNameStart() << "\n"; + + // The destination is already executable, but we just made an edge + // feasible that wasn't before. Revisit the PHI nodes in the block + // because they have potentially new operands. + for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) + visitPHINode(*cast<PHINode>(I)); + + } else { + MarkBlockExecutable(Dest); + } +} + + +/// getFeasibleSuccessors - Return a vector of booleans to indicate which +/// successors are reachable from a given terminator instruction. +void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, + SmallVectorImpl<bool> &Succs) { + Succs.resize(TI.getNumSuccessors()); + if (TI.getNumSuccessors() == 0) return; + + if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { + if (BI->isUnconditional()) { + Succs[0] = true; + return; + } + + LatticeVal BCValue = getOrInitValueState(BI->getCondition()); + if (BCValue == LatticeFunc->getOverdefinedVal() || + BCValue == LatticeFunc->getUntrackedVal()) { + // Overdefined condition variables can branch either way. + Succs[0] = Succs[1] = true; + return; + } + + // If undefined, neither is feasible yet. + if (BCValue == LatticeFunc->getUndefVal()) + return; + + Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); + if (C == 0 || !isa<ConstantInt>(C)) { + // Non-constant values can go either way. + Succs[0] = Succs[1] = true; + return; + } + + // Constant condition variables mean the branch can only go a single way + Succs[C == ConstantInt::getFalse()] = true; + return; + } + + if (isa<InvokeInst>(TI)) { + // Invoke instructions successors are always executable. + // TODO: Could ask the lattice function if the value can throw. + Succs[0] = Succs[1] = true; + return; + } + + SwitchInst &SI = cast<SwitchInst>(TI); + LatticeVal SCValue = getOrInitValueState(SI.getCondition()); + if (SCValue == LatticeFunc->getOverdefinedVal() || + SCValue == LatticeFunc->getUntrackedVal()) { + // All destinations are executable! + Succs.assign(TI.getNumSuccessors(), true); + return; + } + + // If undefined, neither is feasible yet. + if (SCValue == LatticeFunc->getUndefVal()) + return; + + Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); + if (C == 0 || !isa<ConstantInt>(C)) { + // All destinations are executable! + Succs.assign(TI.getNumSuccessors(), true); + return; + } + + Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; +} + + +/// isEdgeFeasible - Return true if the control flow edge from the 'From' +/// basic block to the 'To' basic block is currently feasible... +bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { + SmallVector<bool, 16> SuccFeasible; + TerminatorInst *TI = From->getTerminator(); + getFeasibleSuccessors(*TI, SuccFeasible); + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + if (TI->getSuccessor(i) == To && SuccFeasible[i]) + return true; + + return false; +} + +void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { + SmallVector<bool, 16> SuccFeasible; + getFeasibleSuccessors(TI, SuccFeasible); + + BasicBlock *BB = TI.getParent(); + + // Mark all feasible successors executable... + for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) + if (SuccFeasible[i]) + markEdgeExecutable(BB, TI.getSuccessor(i)); +} + +void SparseSolver::visitPHINode(PHINode &PN) { + LatticeVal PNIV = getOrInitValueState(&PN); + LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); + + // If this value is already overdefined (common) just return. + if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) + return; // Quick exit + + // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, + // and slow us down a lot. Just mark them overdefined. + if (PN.getNumIncomingValues() > 64) { + UpdateState(PN, Overdefined); + return; + } + + // Look at all of the executable operands of the PHI node. If any of them + // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the + // transfer function to give us the merge of the incoming values. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + // If the edge is not yet known to be feasible, it doesn't impact the PHI. + if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) + continue; + + // Merge in this value. + LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); + if (OpVal != PNIV) + PNIV = LatticeFunc->MergeValues(PNIV, OpVal); + + if (PNIV == Overdefined) + break; // Rest of input values don't matter. + } + + // Update the PHI with the compute value, which is the merge of the inputs. + UpdateState(PN, PNIV); +} + + +void SparseSolver::visitInst(Instruction &I) { + // PHIs are handled by the propagation logic, they are never passed into the + // transfer functions. + if (PHINode *PN = dyn_cast<PHINode>(&I)) + return visitPHINode(*PN); + + // Otherwise, ask the transfer function what the result is. If this is + // something that we care about, remember it. + LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); + if (IV != LatticeFunc->getUntrackedVal()) + UpdateState(I, IV); + + if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) + visitTerminatorInst(*TI); +} + +void SparseSolver::Solve(Function &F) { + MarkBlockExecutable(F.begin()); + + // Process the work lists until they are empty! + while (!BBWorkList.empty() || !InstWorkList.empty()) { + // Process the instruction work list. + while (!InstWorkList.empty()) { + Instruction *I = InstWorkList.back(); + InstWorkList.pop_back(); + + DOUT << "\nPopped off I-WL: " << *I; + + // "I" got into the work list because it made a transition. See if any + // users are both live and in need of updating. + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + Instruction *U = cast<Instruction>(*UI); + if (BBExecutable.count(U->getParent())) // Inst is executable? + visitInst(*U); + } + } + + // Process the basic block work list. + while (!BBWorkList.empty()) { + BasicBlock *BB = BBWorkList.back(); + BBWorkList.pop_back(); + + DOUT << "\nPopped off BBWL: " << *BB; + + // Notify all instructions in this basic block that they are newly + // executable. + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + visitInst(*I); + } + } +} + +void SparseSolver::Print(Function &F, std::ostream &OS) { + OS << "\nFUNCTION: " << F.getNameStr() << "\n"; + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (!BBExecutable.count(BB)) + OS << "INFEASIBLE: "; + OS << "\t"; + if (BB->hasName()) + OS << BB->getNameStr() << ":\n"; + else + OS << "; anon bb\n"; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + LatticeFunc->PrintValue(getLatticeState(I), OS); + OS << *I; + } + + OS << "\n"; + } +} + |