aboutsummaryrefslogtreecommitdiffstats
path: root/tools/llvm2cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/llvm2cpp')
-rw-r--r--tools/llvm2cpp/CppWriter.cpp1884
-rw-r--r--tools/llvm2cpp/CppWriter.h18
-rw-r--r--tools/llvm2cpp/Makefile15
-rw-r--r--tools/llvm2cpp/llvm2cpp.cpp122
4 files changed, 2039 insertions, 0 deletions
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp
new file mode 100644
index 0000000..b1ba001
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.cpp
@@ -0,0 +1,1884 @@
+//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the writing of the LLVM IR as a set of C++ calls to the
+// LLVM IR interface. The input module is assumed to be verified.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Config/config.h"
+#include <algorithm>
+#include <iostream>
+#include <set>
+
+using namespace llvm;
+
+static cl::opt<std::string>
+FuncName("funcname", cl::desc("Specify the name of the generated function"),
+ cl::value_desc("function name"));
+
+enum WhatToGenerate {
+ GenProgram,
+ GenModule,
+ GenContents,
+ GenFunction,
+ GenInline,
+ GenVariable,
+ GenType
+};
+
+static cl::opt<WhatToGenerate> GenerationType(cl::Optional,
+ cl::desc("Choose what kind of output to generate"),
+ cl::init(GenProgram),
+ cl::values(
+ clEnumValN(GenProgram, "gen-program", "Generate a complete program"),
+ clEnumValN(GenModule, "gen-module", "Generate a module definition"),
+ clEnumValN(GenContents,"gen-contents", "Generate contents of a module"),
+ clEnumValN(GenFunction,"gen-function", "Generate a function definition"),
+ clEnumValN(GenInline, "gen-inline", "Generate an inline function"),
+ clEnumValN(GenVariable,"gen-variable", "Generate a variable definition"),
+ clEnumValN(GenType, "gen-type", "Generate a type definition"),
+ clEnumValEnd
+ )
+);
+
+static cl::opt<std::string> NameToGenerate("for", cl::Optional,
+ cl::desc("Specify the name of the thing to generate"),
+ cl::init("!bad!"));
+
+namespace {
+typedef std::vector<const Type*> TypeList;
+typedef std::map<const Type*,std::string> TypeMap;
+typedef std::map<const Value*,std::string> ValueMap;
+typedef std::set<std::string> NameSet;
+typedef std::set<const Type*> TypeSet;
+typedef std::set<const Value*> ValueSet;
+typedef std::map<const Value*,std::string> ForwardRefMap;
+
+class CppWriter {
+ const char* progname;
+ std::ostream &Out;
+ const Module *TheModule;
+ uint64_t uniqueNum;
+ TypeMap TypeNames;
+ ValueMap ValueNames;
+ TypeMap UnresolvedTypes;
+ TypeList TypeStack;
+ NameSet UsedNames;
+ TypeSet DefinedTypes;
+ ValueSet DefinedValues;
+ ForwardRefMap ForwardRefs;
+ bool is_inline;
+
+public:
+ inline CppWriter(std::ostream &o, const Module *M, const char* pn="llvm2cpp")
+ : progname(pn), Out(o), TheModule(M), uniqueNum(0), TypeNames(),
+ ValueNames(), UnresolvedTypes(), TypeStack(), is_inline(false) { }
+
+ const Module* getModule() { return TheModule; }
+
+ void printProgram(const std::string& fname, const std::string& modName );
+ void printModule(const std::string& fname, const std::string& modName );
+ void printContents(const std::string& fname, const std::string& modName );
+ void printFunction(const std::string& fname, const std::string& funcName );
+ void printInline(const std::string& fname, const std::string& funcName );
+ void printVariable(const std::string& fname, const std::string& varName );
+ void printType(const std::string& fname, const std::string& typeName );
+
+ void error(const std::string& msg);
+
+private:
+ void printLinkageType(GlobalValue::LinkageTypes LT);
+ void printCallingConv(unsigned cc);
+ void printEscapedString(const std::string& str);
+ void printCFP(const ConstantFP* CFP);
+
+ std::string getCppName(const Type* val);
+ inline void printCppName(const Type* val);
+
+ std::string getCppName(const Value* val);
+ inline void printCppName(const Value* val);
+
+ bool printTypeInternal(const Type* Ty);
+ inline void printType(const Type* Ty);
+ void printTypes(const Module* M);
+
+ void printConstant(const Constant *CPV);
+ void printConstants(const Module* M);
+
+ void printVariableUses(const GlobalVariable *GV);
+ void printVariableHead(const GlobalVariable *GV);
+ void printVariableBody(const GlobalVariable *GV);
+
+ void printFunctionUses(const Function *F);
+ void printFunctionHead(const Function *F);
+ void printFunctionBody(const Function *F);
+ void printInstruction(const Instruction *I, const std::string& bbname);
+ std::string getOpName(Value*);
+
+ void printModuleBody();
+
+};
+
+static unsigned indent_level = 0;
+inline std::ostream& nl(std::ostream& Out, int delta = 0) {
+ Out << "\n";
+ if (delta >= 0 || indent_level >= unsigned(-delta))
+ indent_level += delta;
+ for (unsigned i = 0; i < indent_level; ++i)
+ Out << " ";
+ return Out;
+}
+
+inline void in() { indent_level++; }
+inline void out() { if (indent_level >0) indent_level--; }
+
+inline void
+sanitize(std::string& str) {
+ for (size_t i = 0; i < str.length(); ++i)
+ if (!isalnum(str[i]) && str[i] != '_')
+ str[i] = '_';
+}
+
+inline std::string
+getTypePrefix(const Type* Ty ) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return "void_";
+ case Type::IntegerTyID:
+ return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
+ "_";
+ case Type::FloatTyID: return "float_";
+ case Type::DoubleTyID: return "double_";
+ case Type::LabelTyID: return "label_";
+ case Type::FunctionTyID: return "func_";
+ case Type::StructTyID: return "struct_";
+ case Type::ArrayTyID: return "array_";
+ case Type::PointerTyID: return "ptr_";
+ case Type::VectorTyID: return "packed_";
+ case Type::OpaqueTyID: return "opaque_";
+ default: return "other_";
+ }
+ return "unknown_";
+}
+
+// Looks up the type in the symbol table and returns a pointer to its name or
+// a null pointer if it wasn't found. Note that this isn't the same as the
+// Mode::getTypeName function which will return an empty string, not a null
+// pointer if the name is not found.
+inline const std::string*
+findTypeName(const TypeSymbolTable& ST, const Type* Ty)
+{
+ TypeSymbolTable::const_iterator TI = ST.begin();
+ TypeSymbolTable::const_iterator TE = ST.end();
+ for (;TI != TE; ++TI)
+ if (TI->second == Ty)
+ return &(TI->first);
+ return 0;
+}
+
+void
+CppWriter::error(const std::string& msg) {
+ std::cerr << progname << ": " << msg << "\n";
+ exit(2);
+}
+
+// printCFP - Print a floating point constant .. very carefully :)
+// This makes sure that conversion to/from floating yields the same binary
+// result so that we don't lose precision.
+void
+CppWriter::printCFP(const ConstantFP *CFP) {
+ Out << "ConstantFP::get(";
+ if (CFP->getType() == Type::DoubleTy)
+ Out << "Type::DoubleTy, ";
+ else
+ Out << "Type::FloatTy, ";
+#if HAVE_PRINTF_A
+ char Buffer[100];
+ sprintf(Buffer, "%A", CFP->getValue());
+ if ((!strncmp(Buffer, "0x", 2) ||
+ !strncmp(Buffer, "-0x", 3) ||
+ !strncmp(Buffer, "+0x", 3)) &&
+ (atof(Buffer) == CFP->getValue()))
+ if (CFP->getType() == Type::DoubleTy)
+ Out << "BitsToDouble(" << Buffer << ")";
+ else
+ Out << "BitsToFloat(" << Buffer << ")";
+ else {
+#endif
+ std::string StrVal = ftostr(CFP->getValue());
+
+ while (StrVal[0] == ' ')
+ StrVal.erase(StrVal.begin());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
+ if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
+ (atof(StrVal.c_str()) == CFP->getValue()))
+ if (CFP->getType() == Type::DoubleTy)
+ Out << StrVal;
+ else
+ Out << StrVal;
+ else if (CFP->getType() == Type::DoubleTy)
+ Out << "BitsToDouble(0x" << std::hex << DoubleToBits(CFP->getValue())
+ << std::dec << "ULL) /* " << StrVal << " */";
+ else
+ Out << "BitsToFloat(0x" << std::hex << FloatToBits(CFP->getValue())
+ << std::dec << "U) /* " << StrVal << " */";
+#if HAVE_PRINTF_A
+ }
+#endif
+ Out << ")";
+}
+
+void
+CppWriter::printCallingConv(unsigned cc){
+ // Print the calling convention.
+ switch (cc) {
+ case CallingConv::C: Out << "CallingConv::C"; break;
+ case CallingConv::Fast: Out << "CallingConv::Fast"; break;
+ case CallingConv::Cold: Out << "CallingConv::Cold"; break;
+ case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+ default: Out << cc; break;
+ }
+}
+
+void
+CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+ switch (LT) {
+ case GlobalValue::InternalLinkage:
+ Out << "GlobalValue::InternalLinkage"; break;
+ case GlobalValue::LinkOnceLinkage:
+ Out << "GlobalValue::LinkOnceLinkage "; break;
+ case GlobalValue::WeakLinkage:
+ Out << "GlobalValue::WeakLinkage"; break;
+ case GlobalValue::AppendingLinkage:
+ Out << "GlobalValue::AppendingLinkage"; break;
+ case GlobalValue::ExternalLinkage:
+ Out << "GlobalValue::ExternalLinkage"; break;
+ case GlobalValue::DLLImportLinkage:
+ Out << "GlobalValue::DLLImportLinkage"; break;
+ case GlobalValue::DLLExportLinkage:
+ Out << "GlobalValue::DLLExportLinkage"; break;
+ case GlobalValue::ExternalWeakLinkage:
+ Out << "GlobalValue::ExternalWeakLinkage"; break;
+ case GlobalValue::GhostLinkage:
+ Out << "GlobalValue::GhostLinkage"; break;
+ }
+}
+
+// printEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void
+CppWriter::printEscapedString(const std::string &Str) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '"' && C != '\\') {
+ Out << C;
+ } else {
+ Out << "\\x"
+ << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+ << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ }
+ }
+}
+
+std::string
+CppWriter::getCppName(const Type* Ty)
+{
+ // First, handle the primitive types .. easy
+ if (Ty->isPrimitiveType() || Ty->isInteger()) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return "Type::VoidTy";
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
+ return "IntegerType::get(" + utostr(BitWidth) + ")";
+ }
+ case Type::FloatTyID: return "Type::FloatTy";
+ case Type::DoubleTyID: return "Type::DoubleTy";
+ case Type::LabelTyID: return "Type::LabelTy";
+ default:
+ error("Invalid primitive type");
+ break;
+ }
+ return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+ }
+
+ // Now, see if we've seen the type before and return that
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end())
+ return I->second;
+
+ // Okay, let's build a new name for this type. Start with a prefix
+ const char* prefix = 0;
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: prefix = "FuncTy_"; break;
+ case Type::StructTyID: prefix = "StructTy_"; break;
+ case Type::ArrayTyID: prefix = "ArrayTy_"; break;
+ case Type::PointerTyID: prefix = "PointerTy_"; break;
+ case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
+ case Type::VectorTyID: prefix = "VectorTy_"; break;
+ default: prefix = "OtherTy_"; break; // prevent breakage
+ }
+
+ // See if the type has a name in the symboltable and build accordingly
+ const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
+ std::string name;
+ if (tName)
+ name = std::string(prefix) + *tName;
+ else
+ name = std::string(prefix) + utostr(uniqueNum++);
+ sanitize(name);
+
+ // Save the name
+ return TypeNames[Ty] = name;
+}
+
+void
+CppWriter::printCppName(const Type* Ty)
+{
+ printEscapedString(getCppName(Ty));
+}
+
+std::string
+CppWriter::getCppName(const Value* val) {
+ std::string name;
+ ValueMap::iterator I = ValueNames.find(val);
+ if (I != ValueNames.end() && I->first == val)
+ return I->second;
+
+ if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
+ name = std::string("gvar_") +
+ getTypePrefix(GV->getType()->getElementType());
+ } else if (isa<Function>(val)) {
+ name = std::string("func_");
+ } else if (const Constant* C = dyn_cast<Constant>(val)) {
+ name = std::string("const_") + getTypePrefix(C->getType());
+ } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
+ if (is_inline) {
+ unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
+ Function::const_arg_iterator(Arg)) + 1;
+ name = std::string("arg_") + utostr(argNum);
+ NameSet::iterator NI = UsedNames.find(name);
+ if (NI != UsedNames.end())
+ name += std::string("_") + utostr(uniqueNum++);
+ UsedNames.insert(name);
+ return ValueNames[val] = name;
+ } else {
+ name = getTypePrefix(val->getType());
+ }
+ } else {
+ name = getTypePrefix(val->getType());
+ }
+ name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
+ sanitize(name);
+ NameSet::iterator NI = UsedNames.find(name);
+ if (NI != UsedNames.end())
+ name += std::string("_") + utostr(uniqueNum++);
+ UsedNames.insert(name);
+ return ValueNames[val] = name;
+}
+
+void
+CppWriter::printCppName(const Value* val) {
+ printEscapedString(getCppName(val));
+}
+
+bool
+CppWriter::printTypeInternal(const Type* Ty) {
+ // We don't print definitions for primitive types
+ if (Ty->isPrimitiveType() || Ty->isInteger())
+ return false;
+
+ // If we already defined this type, we don't need to define it again.
+ if (DefinedTypes.find(Ty) != DefinedTypes.end())
+ return false;
+
+ // Everything below needs the name for the type so get it now.
+ std::string typeName(getCppName(Ty));
+
+ // Search the type stack for recursion. If we find it, then generate this
+ // as an OpaqueType, but make sure not to do this multiple times because
+ // the type could appear in multiple places on the stack. Once the opaque
+ // definition is issued, it must not be re-issued. Consequently we have to
+ // check the UnresolvedTypes list as well.
+ TypeList::const_iterator TI = std::find(TypeStack.begin(),TypeStack.end(),Ty);
+ if (TI != TypeStack.end()) {
+ TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
+ if (I == UnresolvedTypes.end()) {
+ Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
+ nl(Out);
+ UnresolvedTypes[Ty] = typeName;
+ }
+ return true;
+ }
+
+ // We're going to print a derived type which, by definition, contains other
+ // types. So, push this one we're printing onto the type stack to assist with
+ // recursive definitions.
+ TypeStack.push_back(Ty);
+
+ // Print the type definition
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType* FT = cast<FunctionType>(Ty);
+ Out << "std::vector<const Type*>" << typeName << "_args;";
+ nl(Out);
+ FunctionType::param_iterator PI = FT->param_begin();
+ FunctionType::param_iterator PE = FT->param_end();
+ for (; PI != PE; ++PI) {
+ const Type* argTy = static_cast<const Type*>(*PI);
+ bool isForward = printTypeInternal(argTy);
+ std::string argName(getCppName(argTy));
+ Out << typeName << "_args.push_back(" << argName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ");";
+ nl(Out);
+ }
+ const ParamAttrsList *PAL = FT->getParamAttrs();
+ Out << "ParamAttrsList *" << typeName << "_PAL = 0;";
+ nl(Out);
+ if (PAL) {
+ Out << '{'; in(); nl(Out);
+ Out << "ParamAttrsVector Attrs;"; nl(Out);
+ Out << "ParamAttrsWithIndex PAWI;"; nl(Out);
+ for (unsigned i = 0; i < PAL->size(); ++i) {
+ uint16_t index = PAL->getParamIndex(i);
+ uint16_t attrs = PAL->getParamAttrs(index);
+ Out << "PAWI.index = " << index << "; PAWI.attrs = 0 ";
+ if (attrs & ParamAttr::SExt)
+ Out << " | ParamAttr::SExt";
+ if (attrs & ParamAttr::ZExt)
+ Out << " | ParamAttr::ZExt";
+ if (attrs & ParamAttr::NoAlias)
+ Out << " | ParamAttr::NoAlias";
+ if (attrs & ParamAttr::StructRet)
+ Out << " | ParamAttr::StructRet";
+ if (attrs & ParamAttr::InReg)
+ Out << " | ParamAttr::InReg";
+ if (attrs & ParamAttr::NoReturn)
+ Out << " | ParamAttr::NoReturn";
+ if (attrs & ParamAttr::NoUnwind)
+ Out << " | ParamAttr::NoUnwind";
+ Out << ";";
+ nl(Out);
+ Out << "Attrs.push_back(PAWI);";
+ nl(Out);
+ }
+ Out << typeName << "_PAL = ParamAttrsList::get(Attrs);";
+ nl(Out);
+ out(); nl(Out);
+ Out << '}'; nl(Out);
+ }
+ bool isForward = printTypeInternal(FT->getReturnType());
+ std::string retTypeName(getCppName(FT->getReturnType()));
+ Out << "FunctionType* " << typeName << " = FunctionType::get(";
+ in(); nl(Out) << "/*Result=*/" << retTypeName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ",";
+ nl(Out) << "/*Params=*/" << typeName << "_args,";
+ nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true," : "false,") ;
+ nl(Out) << "/*ParamAttrs=*/" << typeName << "_PAL" << ");";
+ out();
+ nl(Out);
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType* ST = cast<StructType>(Ty);
+ Out << "std::vector<const Type*>" << typeName << "_fields;";
+ nl(Out);
+ StructType::element_iterator EI = ST->element_begin();
+ StructType::element_iterator EE = ST->element_end();
+ for (; EI != EE; ++EI) {
+ const Type* fieldTy = static_cast<const Type*>(*EI);
+ bool isForward = printTypeInternal(fieldTy);
+ std::string fieldName(getCppName(fieldTy));
+ Out << typeName << "_fields.push_back(" << fieldName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ");";
+ nl(Out);
+ }
+ Out << "StructType* " << typeName << " = StructType::get("
+ << typeName << "_fields, /*isPacked=*/"
+ << (ST->isPacked() ? "true" : "false") << ");";
+ nl(Out);
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType* AT = cast<ArrayType>(Ty);
+ const Type* ET = AT->getElementType();
+ bool isForward = printTypeInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "ArrayType* " << typeName << " = ArrayType::get("
+ << elemName << (isForward ? "_fwd" : "")
+ << ", " << utostr(AT->getNumElements()) << ");";
+ nl(Out);
+ break;
+ }
+ case Type::PointerTyID: {
+ const PointerType* PT = cast<PointerType>(Ty);
+ const Type* ET = PT->getElementType();
+ bool isForward = printTypeInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "PointerType* " << typeName << " = PointerType::get("
+ << elemName << (isForward ? "_fwd" : "") << ");";
+ nl(Out);
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType* PT = cast<VectorType>(Ty);
+ const Type* ET = PT->getElementType();
+ bool isForward = printTypeInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "VectorType* " << typeName << " = VectorType::get("
+ << elemName << (isForward ? "_fwd" : "")
+ << ", " << utostr(PT->getNumElements()) << ");";
+ nl(Out);
+ break;
+ }
+ case Type::OpaqueTyID: {
+ Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
+ nl(Out);
+ break;
+ }
+ default:
+ error("Invalid TypeID");
+ }
+
+ // If the type had a name, make sure we recreate it.
+ const std::string* progTypeName =
+ findTypeName(TheModule->getTypeSymbolTable(),Ty);
+ if (progTypeName) {
+ Out << "mod->addTypeName(\"" << *progTypeName << "\", "
+ << typeName << ");";
+ nl(Out);
+ }
+
+ // Pop us off the type stack
+ TypeStack.pop_back();
+
+ // Indicate that this type is now defined.
+ DefinedTypes.insert(Ty);
+
+ // Early resolve as many unresolved types as possible. Search the unresolved
+ // types map for the type we just printed. Now that its definition is complete
+ // we can resolve any previous references to it. This prevents a cascade of
+ // unresolved types.
+ TypeMap::iterator I = UnresolvedTypes.find(Ty);
+ if (I != UnresolvedTypes.end()) {
+ Out << "cast<OpaqueType>(" << I->second
+ << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
+ nl(Out);
+ Out << I->second << " = cast<";
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: Out << "FunctionType"; break;
+ case Type::ArrayTyID: Out << "ArrayType"; break;
+ case Type::StructTyID: Out << "StructType"; break;
+ case Type::VectorTyID: Out << "VectorType"; break;
+ case Type::PointerTyID: Out << "PointerType"; break;
+ case Type::OpaqueTyID: Out << "OpaqueType"; break;
+ default: Out << "NoSuchDerivedType"; break;
+ }
+ Out << ">(" << I->second << "_fwd.get());";
+ nl(Out); nl(Out);
+ UnresolvedTypes.erase(I);
+ }
+
+ // Finally, separate the type definition from other with a newline.
+ nl(Out);
+
+ // We weren't a recursive type
+ return false;
+}
+
+// Prints a type definition. Returns true if it could not resolve all the types
+// in the definition but had to use a forward reference.
+void
+CppWriter::printType(const Type* Ty) {
+ assert(TypeStack.empty());
+ TypeStack.clear();
+ printTypeInternal(Ty);
+ assert(TypeStack.empty());
+}
+
+void
+CppWriter::printTypes(const Module* M) {
+
+ // Walk the symbol table and print out all its types
+ const TypeSymbolTable& symtab = M->getTypeSymbolTable();
+ for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
+ TI != TE; ++TI) {
+
+ // For primitive types and types already defined, just add a name
+ TypeMap::const_iterator TNI = TypeNames.find(TI->second);
+ if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
+ TNI != TypeNames.end()) {
+ Out << "mod->addTypeName(\"";
+ printEscapedString(TI->first);
+ Out << "\", " << getCppName(TI->second) << ");";
+ nl(Out);
+ // For everything else, define the type
+ } else {
+ printType(TI->second);
+ }
+ }
+
+ // Add all of the global variables to the value table...
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ if (I->hasInitializer())
+ printType(I->getInitializer()->getType());
+ printType(I->getType());
+ }
+
+ // Add all the functions to the table
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ printType(FI->getReturnType());
+ printType(FI->getFunctionType());
+ // Add all the function arguments
+ for(Function::const_arg_iterator AI = FI->arg_begin(),
+ AE = FI->arg_end(); AI != AE; ++AI) {
+ printType(AI->getType());
+ }
+
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ printType(BB->getType());
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ printType(I->getType());
+ for (unsigned i = 0; i < I->getNumOperands(); ++i)
+ printType(I->getOperand(i)->getType());
+ }
+ }
+ }
+}
+
+
+// printConstant - Print out a constant pool entry...
+void CppWriter::printConstant(const Constant *CV) {
+ // First, if the constant is actually a GlobalValue (variable or function) or
+ // its already in the constant list then we've printed it already and we can
+ // just return.
+ if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
+ return;
+
+ std::string constName(getCppName(CV));
+ std::string typeName(getCppName(CV->getType()));
+ if (CV->isNullValue()) {
+ Out << "Constant* " << constName << " = Constant::getNullValue("
+ << typeName << ");";
+ nl(Out);
+ return;
+ }
+ if (isa<GlobalValue>(CV)) {
+ // Skip variables and functions, we emit them elsewhere
+ return;
+ }
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
+ << cast<IntegerType>(CI->getType())->getBitWidth() << ", "
+ << " \"" << CI->getValue().toStringSigned(10) << "\", 10));";
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ Out << "ConstantAggregateZero* " << constName
+ << " = ConstantAggregateZero::get(" << typeName << ");";
+ } else if (isa<ConstantPointerNull>(CV)) {
+ Out << "ConstantPointerNull* " << constName
+ << " = ConstanPointerNull::get(" << typeName << ");";
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ Out << "ConstantFP* " << constName << " = ";
+ printCFP(CFP);
+ Out << ";";
+ } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
+ Out << "Constant* " << constName << " = ConstantArray::get(\"";
+ std::string tmp = CA->getAsString();
+ bool nullTerminate = false;
+ if (tmp[tmp.length()-1] == 0) {
+ tmp.erase(tmp.length()-1);
+ nullTerminate = true;
+ }
+ printEscapedString(tmp);
+ // Determine if we want null termination or not.
+ if (nullTerminate)
+ Out << "\", true"; // Indicate that the null terminator should be added.
+ else
+ Out << "\", false";// No null terminator
+ Out << ");";
+ } else {
+ Out << "std::vector<Constant*> " << constName << "_elems;";
+ nl(Out);
+ unsigned N = CA->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CA->getOperand(i)); // recurse to print operands
+ Out << constName << "_elems.push_back("
+ << getCppName(CA->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantArray::get("
+ << typeName << ", " << constName << "_elems);";
+ }
+ } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_fields;";
+ nl(Out);
+ unsigned N = CS->getNumOperands();
+ for (unsigned i = 0; i < N; i++) {
+ printConstant(CS->getOperand(i));
+ Out << constName << "_fields.push_back("
+ << getCppName(CS->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantStruct::get("
+ << typeName << ", " << constName << "_fields);";
+ } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_elems;";
+ nl(Out);
+ unsigned N = CP->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CP->getOperand(i));
+ Out << constName << "_elems.push_back("
+ << getCppName(CP->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantVector::get("
+ << typeName << ", " << constName << "_elems);";
+ } else if (isa<UndefValue>(CV)) {
+ Out << "UndefValue* " << constName << " = UndefValue::get("
+ << typeName << ");";
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ Out << "std::vector<Constant*> " << constName << "_indices;";
+ nl(Out);
+ printConstant(CE->getOperand(0));
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
+ printConstant(CE->getOperand(i));
+ Out << constName << "_indices.push_back("
+ << getCppName(CE->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName
+ << " = ConstantExpr::getGetElementPtr("
+ << getCppName(CE->getOperand(0)) << ", "
+ << "&" << constName << "_indices[0], " << CE->getNumOperands() - 1
+ << " );";
+ } else if (CE->isCast()) {
+ printConstant(CE->getOperand(0));
+ Out << "Constant* " << constName << " = ConstantExpr::getCast(";
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid cast opcode");
+ case Instruction::Trunc: Out << "Instruction::Trunc"; break;
+ case Instruction::ZExt: Out << "Instruction::ZExt"; break;
+ case Instruction::SExt: Out << "Instruction::SExt"; break;
+ case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
+ case Instruction::FPExt: Out << "Instruction::FPExt"; break;
+ case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
+ case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
+ case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
+ case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
+ case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
+ case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
+ case Instruction::BitCast: Out << "Instruction::BitCast"; break;
+ }
+ Out << ", " << getCppName(CE->getOperand(0)) << ", "
+ << getCppName(CE->getType()) << ");";
+ } else {
+ unsigned N = CE->getNumOperands();
+ for (unsigned i = 0; i < N; ++i ) {
+ printConstant(CE->getOperand(i));
+ }
+ Out << "Constant* " << constName << " = ConstantExpr::";
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Out << "getAdd("; break;
+ case Instruction::Sub: Out << "getSub("; break;
+ case Instruction::Mul: Out << "getMul("; break;
+ case Instruction::UDiv: Out << "getUDiv("; break;
+ case Instruction::SDiv: Out << "getSDiv("; break;
+ case Instruction::FDiv: Out << "getFDiv("; break;
+ case Instruction::URem: Out << "getURem("; break;
+ case Instruction::SRem: Out << "getSRem("; break;
+ case Instruction::FRem: Out << "getFRem("; break;
+ case Instruction::And: Out << "getAnd("; break;
+ case Instruction::Or: Out << "getOr("; break;
+ case Instruction::Xor: Out << "getXor("; break;
+ case Instruction::ICmp:
+ Out << "getICmp(ICmpInst::ICMP_";
+ switch (CE->getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << "EQ"; break;
+ case ICmpInst::ICMP_NE: Out << "NE"; break;
+ case ICmpInst::ICMP_SLT: Out << "SLT"; break;
+ case ICmpInst::ICMP_ULT: Out << "ULT"; break;
+ case ICmpInst::ICMP_SGT: Out << "SGT"; break;
+ case ICmpInst::ICMP_UGT: Out << "UGT"; break;
+ case ICmpInst::ICMP_SLE: Out << "SLE"; break;
+ case ICmpInst::ICMP_ULE: Out << "ULE"; break;
+ case ICmpInst::ICMP_SGE: Out << "SGE"; break;
+ case ICmpInst::ICMP_UGE: Out << "UGE"; break;
+ default: error("Invalid ICmp Predicate");
+ }
+ break;
+ case Instruction::FCmp:
+ Out << "getFCmp(FCmpInst::FCMP_";
+ switch (CE->getPredicate()) {
+ case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
+ case FCmpInst::FCMP_ORD: Out << "ORD"; break;
+ case FCmpInst::FCMP_UNO: Out << "UNO"; break;
+ case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
+ case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
+ case FCmpInst::FCMP_ONE: Out << "ONE"; break;
+ case FCmpInst::FCMP_UNE: Out << "UNE"; break;
+ case FCmpInst::FCMP_OLT: Out << "OLT"; break;
+ case FCmpInst::FCMP_ULT: Out << "ULT"; break;
+ case FCmpInst::FCMP_OGT: Out << "OGT"; break;
+ case FCmpInst::FCMP_UGT: Out << "UGT"; break;
+ case FCmpInst::FCMP_OLE: Out << "OLE"; break;
+ case FCmpInst::FCMP_ULE: Out << "ULE"; break;
+ case FCmpInst::FCMP_OGE: Out << "OGE"; break;
+ case FCmpInst::FCMP_UGE: Out << "UGE"; break;
+ case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
+ default: error("Invalid FCmp Predicate");
+ }
+ break;
+ case Instruction::Shl: Out << "getShl("; break;
+ case Instruction::LShr: Out << "getLShr("; break;
+ case Instruction::AShr: Out << "getAShr("; break;
+ case Instruction::Select: Out << "getSelect("; break;
+ case Instruction::ExtractElement: Out << "getExtractElement("; break;
+ case Instruction::InsertElement: Out << "getInsertElement("; break;
+ case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
+ default:
+ error("Invalid constant expression");
+ break;
+ }
+ Out << getCppName(CE->getOperand(0));
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i)
+ Out << ", " << getCppName(CE->getOperand(i));
+ Out << ");";
+ }
+ } else {
+ error("Bad Constant");
+ Out << "Constant* " << constName << " = 0; ";
+ }
+ nl(Out);
+}
+
+void
+CppWriter::printConstants(const Module* M) {
+ // Traverse all the global variables looking for constant initializers
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ printConstant(I->getInitializer());
+
+ // Traverse the LLVM functions looking for constants
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
+ printConstant(C);
+ }
+ }
+ }
+ }
+ }
+}
+
+void CppWriter::printVariableUses(const GlobalVariable *GV) {
+ nl(Out) << "// Type Definitions";
+ nl(Out);
+ printType(GV->getType());
+ if (GV->hasInitializer()) {
+ Constant* Init = GV->getInitializer();
+ printType(Init->getType());
+ if (Function* F = dyn_cast<Function>(Init)) {
+ nl(Out)<< "/ Function Declarations"; nl(Out);
+ printFunctionHead(F);
+ } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
+ nl(Out) << "// Global Variable Declarations"; nl(Out);
+ printVariableHead(gv);
+ } else {
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ printConstant(gv);
+ }
+ if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ printVariableBody(gv);
+ }
+ }
+}
+
+void CppWriter::printVariableHead(const GlobalVariable *GV) {
+ nl(Out) << "GlobalVariable* " << getCppName(GV);
+ if (is_inline) {
+ Out << " = mod->getGlobalVariable(";
+ printEscapedString(GV->getName());
+ Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
+ nl(Out) << "if (!" << getCppName(GV) << ") {";
+ in(); nl(Out) << getCppName(GV);
+ }
+ Out << " = new GlobalVariable(";
+ nl(Out) << "/*Type=*/";
+ printCppName(GV->getType()->getElementType());
+ Out << ",";
+ nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
+ Out << ",";
+ nl(Out) << "/*Linkage=*/";
+ printLinkageType(GV->getLinkage());
+ Out << ",";
+ nl(Out) << "/*Initializer=*/0, ";
+ if (GV->hasInitializer()) {
+ Out << "// has initializer, specified below";
+ }
+ nl(Out) << "/*Name=*/\"";
+ printEscapedString(GV->getName());
+ Out << "\",";
+ nl(Out) << "mod);";
+ nl(Out);
+
+ if (GV->hasSection()) {
+ printCppName(GV);
+ Out << "->setSection(\"";
+ printEscapedString(GV->getSection());
+ Out << "\");";
+ nl(Out);
+ }
+ if (GV->getAlignment()) {
+ printCppName(GV);
+ Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
+ nl(Out);
+ };
+ if (is_inline) {
+ out(); Out << "}"; nl(Out);
+ }
+}
+
+void
+CppWriter::printVariableBody(const GlobalVariable *GV) {
+ if (GV->hasInitializer()) {
+ printCppName(GV);
+ Out << "->setInitializer(";
+ //if (!isa<GlobalValue(GV->getInitializer()))
+ //else
+ Out << getCppName(GV->getInitializer()) << ");";
+ nl(Out);
+ }
+}
+
+std::string
+CppWriter::getOpName(Value* V) {
+ if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
+ return getCppName(V);
+
+ // See if its alread in the map of forward references, if so just return the
+ // name we already set up for it
+ ForwardRefMap::const_iterator I = ForwardRefs.find(V);
+ if (I != ForwardRefs.end())
+ return I->second;
+
+ // This is a new forward reference. Generate a unique name for it
+ std::string result(std::string("fwdref_") + utostr(uniqueNum++));
+
+ // Yes, this is a hack. An Argument is the smallest instantiable value that
+ // we can make as a placeholder for the real value. We'll replace these
+ // Argument instances later.
+ Out << "Argument* " << result << " = new Argument("
+ << getCppName(V->getType()) << ");";
+ nl(Out);
+ ForwardRefs[V] = result;
+ return result;
+}
+
+// printInstruction - This member is called for each Instruction in a function.
+void
+CppWriter::printInstruction(const Instruction *I, const std::string& bbname) {
+ std::string iName(getCppName(I));
+
+ // Before we emit this instruction, we need to take care of generating any
+ // forward references. So, we get the names of all the operands in advance
+ std::string* opNames = new std::string[I->getNumOperands()];
+ for (unsigned i = 0; i < I->getNumOperands(); i++) {
+ opNames[i] = getOpName(I->getOperand(i));
+ }
+
+ switch (I->getOpcode()) {
+ case Instruction::Ret: {
+ const ReturnInst* ret = cast<ReturnInst>(I);
+ Out << "new ReturnInst("
+ << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
+ break;
+ }
+ case Instruction::Br: {
+ const BranchInst* br = cast<BranchInst>(I);
+ Out << "new BranchInst(" ;
+ if (br->getNumOperands() == 3 ) {
+ Out << opNames[0] << ", "
+ << opNames[1] << ", "
+ << opNames[2] << ", ";
+
+ } else if (br->getNumOperands() == 1) {
+ Out << opNames[0] << ", ";
+ } else {
+ error("Branch with 2 operands?");
+ }
+ Out << bbname << ");";
+ break;
+ }
+ case Instruction::Switch: {
+ const SwitchInst* sw = cast<SwitchInst>(I);
+ Out << "SwitchInst* " << iName << " = new SwitchInst("
+ << opNames[0] << ", "
+ << opNames[1] << ", "
+ << sw->getNumCases() << ", " << bbname << ");";
+ nl(Out);
+ for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
+ Out << iName << "->addCase("
+ << opNames[i] << ", "
+ << opNames[i+1] << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Instruction::Invoke: {
+ const InvokeInst* inv = cast<InvokeInst>(I);
+ Out << "std::vector<Value*> " << iName << "_params;";
+ nl(Out);
+ for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
+ Out << iName << "_params.push_back("
+ << opNames[i] << ");";
+ nl(Out);
+ }
+ Out << "InvokeInst *" << iName << " = new InvokeInst("
+ << opNames[0] << ", "
+ << opNames[1] << ", "
+ << opNames[2] << ", "
+ << "&" << iName << "_params[0], " << inv->getNumOperands() - 3
+ << ", \"";
+ printEscapedString(inv->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->setCallingConv(";
+ printCallingConv(inv->getCallingConv());
+ Out << ");";
+ break;
+ }
+ case Instruction::Unwind: {
+ Out << "new UnwindInst("
+ << bbname << ");";
+ break;
+ }
+ case Instruction::Unreachable:{
+ Out << "new UnreachableInst("
+ << bbname << ");";
+ break;
+ }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:{
+ Out << "BinaryOperator* " << iName << " = BinaryOperator::create(";
+ switch (I->getOpcode()) {
+ case Instruction::Add: Out << "Instruction::Add"; break;
+ case Instruction::Sub: Out << "Instruction::Sub"; break;
+ case Instruction::Mul: Out << "Instruction::Mul"; break;
+ case Instruction::UDiv:Out << "Instruction::UDiv"; break;
+ case Instruction::SDiv:Out << "Instruction::SDiv"; break;
+ case Instruction::FDiv:Out << "Instruction::FDiv"; break;
+ case Instruction::URem:Out << "Instruction::URem"; break;
+ case Instruction::SRem:Out << "Instruction::SRem"; break;
+ case Instruction::FRem:Out << "Instruction::FRem"; break;
+ case Instruction::And: Out << "Instruction::And"; break;
+ case Instruction::Or: Out << "Instruction::Or"; break;
+ case Instruction::Xor: Out << "Instruction::Xor"; break;
+ case Instruction::Shl: Out << "Instruction::Shl"; break;
+ case Instruction::LShr:Out << "Instruction::LShr"; break;
+ case Instruction::AShr:Out << "Instruction::AShr"; break;
+ default: Out << "Instruction::BadOpCode"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::FCmp: {
+ Out << "FCmpInst* " << iName << " = new FCmpInst(";
+ switch (cast<FCmpInst>(I)->getPredicate()) {
+ case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
+ case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
+ case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
+ case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
+ case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
+ case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
+ case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
+ case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
+ case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
+ case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
+ case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
+ case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
+ case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
+ case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
+ case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
+ case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
+ default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ICmp: {
+ Out << "ICmpInst* " << iName << " = new ICmpInst(";
+ switch (cast<ICmpInst>(I)->getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
+ case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
+ case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
+ case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
+ case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
+ case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
+ case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
+ case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
+ case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
+ case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
+ default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::Malloc: {
+ const MallocInst* mallocI = cast<MallocInst>(I);
+ Out << "MallocInst* " << iName << " = new MallocInst("
+ << getCppName(mallocI->getAllocatedType()) << ", ";
+ if (mallocI->isArrayAllocation())
+ Out << opNames[0] << ", " ;
+ Out << "\"";
+ printEscapedString(mallocI->getName());
+ Out << "\", " << bbname << ");";
+ if (mallocI->getAlignment())
+ nl(Out) << iName << "->setAlignment("
+ << mallocI->getAlignment() << ");";
+ break;
+ }
+ case Instruction::Free: {
+ Out << "FreeInst* " << iName << " = new FreeInst("
+ << getCppName(I->getOperand(0)) << ", " << bbname << ");";
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst* allocaI = cast<AllocaInst>(I);
+ Out << "AllocaInst* " << iName << " = new AllocaInst("
+ << getCppName(allocaI->getAllocatedType()) << ", ";
+ if (allocaI->isArrayAllocation())
+ Out << opNames[0] << ", ";
+ Out << "\"";
+ printEscapedString(allocaI->getName());
+ Out << "\", " << bbname << ");";
+ if (allocaI->getAlignment())
+ nl(Out) << iName << "->setAlignment("
+ << allocaI->getAlignment() << ");";
+ break;
+ }
+ case Instruction::Load:{
+ const LoadInst* load = cast<LoadInst>(I);
+ Out << "LoadInst* " << iName << " = new LoadInst("
+ << opNames[0] << ", \"";
+ printEscapedString(load->getName());
+ Out << "\", " << (load->isVolatile() ? "true" : "false" )
+ << ", " << bbname << ");";
+ break;
+ }
+ case Instruction::Store: {
+ const StoreInst* store = cast<StoreInst>(I);
+ Out << "StoreInst* " << iName << " = new StoreInst("
+ << opNames[0] << ", "
+ << opNames[1] << ", "
+ << (store->isVolatile() ? "true" : "false")
+ << ", " << bbname << ");";
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
+ if (gep->getNumOperands() <= 2) {
+ Out << "GetElementPtrInst* " << iName << " = new GetElementPtrInst("
+ << opNames[0];
+ if (gep->getNumOperands() == 2)
+ Out << ", " << opNames[1];
+ } else {
+ Out << "std::vector<Value*> " << iName << "_indices;";
+ nl(Out);
+ for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
+ Out << iName << "_indices.push_back("
+ << opNames[i] << ");";
+ nl(Out);
+ }
+ Out << "Instruction* " << iName << " = new GetElementPtrInst("
+ << opNames[0] << ", &" << iName << "_indices[0], "
+ << gep->getNumOperands() - 1;
+ }
+ Out << ", \"";
+ printEscapedString(gep->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::PHI: {
+ const PHINode* phi = cast<PHINode>(I);
+
+ Out << "PHINode* " << iName << " = new PHINode("
+ << getCppName(phi->getType()) << ", \"";
+ printEscapedString(phi->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->reserveOperandSpace("
+ << phi->getNumIncomingValues()
+ << ");";
+ nl(Out);
+ for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
+ Out << iName << "->addIncoming("
+ << opNames[i] << ", " << opNames[i+1] << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast: {
+ const CastInst* cst = cast<CastInst>(I);
+ Out << "CastInst* " << iName << " = new ";
+ switch (I->getOpcode()) {
+ case Instruction::Trunc: Out << "TruncInst"; break;
+ case Instruction::ZExt: Out << "ZExtInst"; break;
+ case Instruction::SExt: Out << "SExtInst"; break;
+ case Instruction::FPTrunc: Out << "FPTruncInst"; break;
+ case Instruction::FPExt: Out << "FPExtInst"; break;
+ case Instruction::FPToUI: Out << "FPToUIInst"; break;
+ case Instruction::FPToSI: Out << "FPToSIInst"; break;
+ case Instruction::UIToFP: Out << "UIToFPInst"; break;
+ case Instruction::SIToFP: Out << "SIToFPInst"; break;
+ case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
+ case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
+ case Instruction::BitCast: Out << "BitCastInst"; break;
+ default: assert(!"Unreachable"); break;
+ }
+ Out << "(" << opNames[0] << ", "
+ << getCppName(cst->getType()) << ", \"";
+ printEscapedString(cst->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::Call:{
+ const CallInst* call = cast<CallInst>(I);
+ if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
+ Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
+ << getCppName(ila->getFunctionType()) << ", \""
+ << ila->getAsmString() << "\", \""
+ << ila->getConstraintString() << "\","
+ << (ila->hasSideEffects() ? "true" : "false") << ");";
+ nl(Out);
+ }
+ if (call->getNumOperands() > 3) {
+ Out << "std::vector<Value*> " << iName << "_params;";
+ nl(Out);
+ for (unsigned i = 1; i < call->getNumOperands(); ++i) {
+ Out << iName << "_params.push_back(" << opNames[i] << ");";
+ nl(Out);
+ }
+ Out << "CallInst* " << iName << " = new CallInst("
+ << opNames[0] << ", &" << iName << "_params[0], "
+ << call->getNumOperands() - 1 << ", \"";
+ } else if (call->getNumOperands() == 3) {
+ Out << "CallInst* " << iName << " = new CallInst("
+ << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ } else if (call->getNumOperands() == 2) {
+ Out << "CallInst* " << iName << " = new CallInst("
+ << opNames[0] << ", " << opNames[1] << ", \"";
+ } else {
+ Out << "CallInst* " << iName << " = new CallInst(" << opNames[0]
+ << ", \"";
+ }
+ printEscapedString(call->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->setCallingConv(";
+ printCallingConv(call->getCallingConv());
+ Out << ");";
+ nl(Out) << iName << "->setTailCall("
+ << (call->isTailCall() ? "true":"false");
+ Out << ");";
+ break;
+ }
+ case Instruction::Select: {
+ const SelectInst* sel = cast<SelectInst>(I);
+ Out << "SelectInst* " << getCppName(sel) << " = new SelectInst(";
+ Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(sel->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::UserOp1:
+ /// FALL THROUGH
+ case Instruction::UserOp2: {
+ /// FIXME: What should be done here?
+ break;
+ }
+ case Instruction::VAArg: {
+ const VAArgInst* va = cast<VAArgInst>(I);
+ Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
+ << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
+ printEscapedString(va->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ExtractElement: {
+ const ExtractElementInst* eei = cast<ExtractElementInst>(I);
+ Out << "ExtractElementInst* " << getCppName(eei)
+ << " = new ExtractElementInst(" << opNames[0]
+ << ", " << opNames[1] << ", \"";
+ printEscapedString(eei->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::InsertElement: {
+ const InsertElementInst* iei = cast<InsertElementInst>(I);
+ Out << "InsertElementInst* " << getCppName(iei)
+ << " = new InsertElementInst(" << opNames[0]
+ << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(iei->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
+ Out << "ShuffleVectorInst* " << getCppName(svi)
+ << " = new ShuffleVectorInst(" << opNames[0]
+ << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(svi->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ }
+ DefinedValues.insert(I);
+ nl(Out);
+ delete [] opNames;
+}
+
+// Print out the types, constants and declarations needed by one function
+void CppWriter::printFunctionUses(const Function* F) {
+
+ nl(Out) << "// Type Definitions"; nl(Out);
+ if (!is_inline) {
+ // Print the function's return type
+ printType(F->getReturnType());
+
+ // Print the function's function type
+ printType(F->getFunctionType());
+
+ // Print the types of each of the function's arguments
+ for(Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ printType(AI->getType());
+ }
+ }
+
+ // Print type definitions for every type referenced by an instruction and
+ // make a note of any global values or constants that are referenced
+ SmallPtrSet<GlobalValue*,64> gvs;
+ SmallPtrSet<Constant*,64> consts;
+ for (Function::const_iterator BB = F->begin(), BE = F->end(); BB != BE; ++BB){
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ // Print the type of the instruction itself
+ printType(I->getType());
+
+ // Print the type of each of the instruction's operands
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value* operand = I->getOperand(i);
+ printType(operand->getType());
+
+ // If the operand references a GVal or Constant, make a note of it
+ if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
+ gvs.insert(GV);
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->hasInitializer())
+ consts.insert(GVar->getInitializer());
+ } else if (Constant* C = dyn_cast<Constant>(operand))
+ consts.insert(C);
+ }
+ }
+ }
+
+ // Print the function declarations for any functions encountered
+ nl(Out) << "// Function Declarations"; nl(Out);
+ for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
+ I != E; ++I) {
+ if (Function* Fun = dyn_cast<Function>(*I)) {
+ if (!is_inline || Fun != F)
+ printFunctionHead(Fun);
+ }
+ }
+
+ // Print the global variable declarations for any variables encountered
+ nl(Out) << "// Global Variable Declarations"; nl(Out);
+ for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
+ I != E; ++I) {
+ if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
+ printVariableHead(F);
+ }
+
+ // Print the constants found
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(), E = consts.end();
+ I != E; ++I) {
+ printConstant(*I);
+ }
+
+ // Process the global variables definitions now that all the constants have
+ // been emitted. These definitions just couple the gvars with their constant
+ // initializers.
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
+ I != E; ++I) {
+ if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
+ printVariableBody(GV);
+ }
+}
+
+void CppWriter::printFunctionHead(const Function* F) {
+ nl(Out) << "Function* " << getCppName(F);
+ if (is_inline) {
+ Out << " = mod->getFunction(\"";
+ printEscapedString(F->getName());
+ Out << "\", " << getCppName(F->getFunctionType()) << ");";
+ nl(Out) << "if (!" << getCppName(F) << ") {";
+ nl(Out) << getCppName(F);
+ }
+ Out<< " = new Function(";
+ nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
+ nl(Out) << "/*Linkage=*/";
+ printLinkageType(F->getLinkage());
+ Out << ",";
+ nl(Out) << "/*Name=*/\"";
+ printEscapedString(F->getName());
+ Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
+ nl(Out,-1);
+ printCppName(F);
+ Out << "->setCallingConv(";
+ printCallingConv(F->getCallingConv());
+ Out << ");";
+ nl(Out);
+ if (F->hasSection()) {
+ printCppName(F);
+ Out << "->setSection(\"" << F->getSection() << "\");";
+ nl(Out);
+ }
+ if (F->getAlignment()) {
+ printCppName(F);
+ Out << "->setAlignment(" << F->getAlignment() << ");";
+ nl(Out);
+ }
+ if (is_inline) {
+ Out << "}";
+ nl(Out);
+ }
+}
+
+void CppWriter::printFunctionBody(const Function *F) {
+ if (F->isDeclaration())
+ return; // external functions have no bodies.
+
+ // Clear the DefinedValues and ForwardRefs maps because we can't have
+ // cross-function forward refs
+ ForwardRefs.clear();
+ DefinedValues.clear();
+
+ // Create all the argument values
+ if (!is_inline) {
+ if (!F->arg_empty()) {
+ Out << "Function::arg_iterator args = " << getCppName(F)
+ << "->arg_begin();";
+ nl(Out);
+ }
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ Out << "Value* " << getCppName(AI) << " = args++;";
+ nl(Out);
+ if (AI->hasName()) {
+ Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
+ nl(Out);
+ }
+ }
+ }
+
+ // Create all the basic blocks
+ nl(Out);
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ std::string bbname(getCppName(BI));
+ Out << "BasicBlock* " << bbname << " = new BasicBlock(\"";
+ if (BI->hasName())
+ printEscapedString(BI->getName());
+ Out << "\"," << getCppName(BI->getParent()) << ",0);";
+ nl(Out);
+ }
+
+ // Output all of its basic blocks... for the function
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ std::string bbname(getCppName(BI));
+ nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
+ nl(Out);
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
+ I != E; ++I) {
+ printInstruction(I,bbname);
+ }
+ }
+
+ // Loop over the ForwardRefs and resolve them now that all instructions
+ // are generated.
+ if (!ForwardRefs.empty()) {
+ nl(Out) << "// Resolve Forward References";
+ nl(Out);
+ }
+
+ while (!ForwardRefs.empty()) {
+ ForwardRefMap::iterator I = ForwardRefs.begin();
+ Out << I->second << "->replaceAllUsesWith("
+ << getCppName(I->first) << "); delete " << I->second << ";";
+ nl(Out);
+ ForwardRefs.erase(I);
+ }
+}
+
+void CppWriter::printInline(const std::string& fname, const std::string& func) {
+ const Function* F = TheModule->getFunction(func);
+ if (!F) {
+ error(std::string("Function '") + func + "' not found in input module");
+ return;
+ }
+ if (F->isDeclaration()) {
+ error(std::string("Function '") + func + "' is external!");
+ return;
+ }
+ nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
+ << getCppName(F);
+ unsigned arg_count = 1;
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ Out << ", Value* arg_" << arg_count;
+ }
+ Out << ") {";
+ nl(Out);
+ is_inline = true;
+ printFunctionUses(F);
+ printFunctionBody(F);
+ is_inline = false;
+ Out << "return " << getCppName(F->begin()) << ";";
+ nl(Out) << "}";
+ nl(Out);
+}
+
+void CppWriter::printModuleBody() {
+ // Print out all the type definitions
+ nl(Out) << "// Type Definitions"; nl(Out);
+ printTypes(TheModule);
+
+ // Functions can call each other and global variables can reference them so
+ // define all the functions first before emitting their function bodies.
+ nl(Out) << "// Function Declarations"; nl(Out);
+ for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
+ I != E; ++I)
+ printFunctionHead(I);
+
+ // Process the global variables declarations. We can't initialze them until
+ // after the constants are printed so just print a header for each global
+ nl(Out) << "// Global Variable Declarations\n"; nl(Out);
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ printVariableHead(I);
+ }
+
+ // Print out all the constants definitions. Constants don't recurse except
+ // through GlobalValues. All GlobalValues have been declared at this point
+ // so we can proceed to generate the constants.
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ printConstants(TheModule);
+
+ // Process the global variables definitions now that all the constants have
+ // been emitted. These definitions just couple the gvars with their constant
+ // initializers.
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ printVariableBody(I);
+ }
+
+ // Finally, we can safely put out all of the function bodies.
+ nl(Out) << "// Function Definitions"; nl(Out);
+ for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
+ << ")";
+ nl(Out) << "{";
+ nl(Out,1);
+ printFunctionBody(I);
+ nl(Out,-1) << "}";
+ nl(Out);
+ }
+ }
+}
+
+void CppWriter::printProgram(
+ const std::string& fname,
+ const std::string& mName
+) {
+ Out << "#include <llvm/Module.h>\n";
+ Out << "#include <llvm/DerivedTypes.h>\n";
+ Out << "#include <llvm/Constants.h>\n";
+ Out << "#include <llvm/GlobalVariable.h>\n";
+ Out << "#include <llvm/Function.h>\n";
+ Out << "#include <llvm/CallingConv.h>\n";
+ Out << "#include <llvm/BasicBlock.h>\n";
+ Out << "#include <llvm/Instructions.h>\n";
+ Out << "#include <llvm/InlineAsm.h>\n";
+ Out << "#include <llvm/ParameterAttributes.h>\n";
+ Out << "#include <llvm/Support/MathExtras.h>\n";
+ Out << "#include <llvm/Pass.h>\n";
+ Out << "#include <llvm/PassManager.h>\n";
+ Out << "#include <llvm/Analysis/Verifier.h>\n";
+ Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
+ Out << "#include <algorithm>\n";
+ Out << "#include <iostream>\n\n";
+ Out << "using namespace llvm;\n\n";
+ Out << "Module* " << fname << "();\n\n";
+ Out << "int main(int argc, char**argv) {\n";
+ Out << " Module* Mod = " << fname << "();\n";
+ Out << " verifyModule(*Mod, PrintMessageAction);\n";
+ Out << " std::cerr.flush();\n";
+ Out << " std::cout.flush();\n";
+ Out << " PassManager PM;\n";
+ Out << " PM.add(new PrintModulePass(&llvm::cout));\n";
+ Out << " PM.run(*Mod);\n";
+ Out << " return 0;\n";
+ Out << "}\n\n";
+ printModule(fname,mName);
+}
+
+void CppWriter::printModule(
+ const std::string& fname,
+ const std::string& mName
+) {
+ nl(Out) << "Module* " << fname << "() {";
+ nl(Out,1) << "// Module Construction";
+ nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
+ if (!TheModule->getTargetTriple().empty()) {
+ nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
+ }
+ if (!TheModule->getTargetTriple().empty()) {
+ nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
+ << "\");";
+ }
+
+ if (!TheModule->getModuleInlineAsm().empty()) {
+ nl(Out) << "mod->setModuleInlineAsm(\"";
+ printEscapedString(TheModule->getModuleInlineAsm());
+ Out << "\");";
+ }
+ nl(Out);
+
+ // Loop over the dependent libraries and emit them.
+ Module::lib_iterator LI = TheModule->lib_begin();
+ Module::lib_iterator LE = TheModule->lib_end();
+ while (LI != LE) {
+ Out << "mod->addLibrary(\"" << *LI << "\");";
+ nl(Out);
+ ++LI;
+ }
+ printModuleBody();
+ nl(Out) << "return mod;";
+ nl(Out,-1) << "}";
+ nl(Out);
+}
+
+void CppWriter::printContents(
+ const std::string& fname, // Name of generated function
+ const std::string& mName // Name of module generated module
+) {
+ Out << "\nModule* " << fname << "(Module *mod) {\n";
+ Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
+ printModuleBody();
+ Out << "\nreturn mod;\n";
+ Out << "\n}\n";
+}
+
+void CppWriter::printFunction(
+ const std::string& fname, // Name of generated function
+ const std::string& funcName // Name of function to generate
+) {
+ const Function* F = TheModule->getFunction(funcName);
+ if (!F) {
+ error(std::string("Function '") + funcName + "' not found in input module");
+ return;
+ }
+ Out << "\nFunction* " << fname << "(Module *mod) {\n";
+ printFunctionUses(F);
+ printFunctionHead(F);
+ printFunctionBody(F);
+ Out << "return " << getCppName(F) << ";\n";
+ Out << "}\n";
+}
+
+void CppWriter::printVariable(
+ const std::string& fname, /// Name of generated function
+ const std::string& varName // Name of variable to generate
+) {
+ const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
+
+ if (!GV) {
+ error(std::string("Variable '") + varName + "' not found in input module");
+ return;
+ }
+ Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
+ printVariableUses(GV);
+ printVariableHead(GV);
+ printVariableBody(GV);
+ Out << "return " << getCppName(GV) << ";\n";
+ Out << "}\n";
+}
+
+void CppWriter::printType(
+ const std::string& fname, /// Name of generated function
+ const std::string& typeName // Name of type to generate
+) {
+ const Type* Ty = TheModule->getTypeByName(typeName);
+ if (!Ty) {
+ error(std::string("Type '") + typeName + "' not found in input module");
+ return;
+ }
+ Out << "\nType* " << fname << "(Module *mod) {\n";
+ printType(Ty);
+ Out << "return " << getCppName(Ty) << ";\n";
+ Out << "}\n";
+}
+
+} // end anonymous llvm
+
+namespace llvm {
+
+void WriteModuleToCppFile(Module* mod, std::ostream& o) {
+ // Initialize a CppWriter for us to use
+ CppWriter W(o, mod);
+
+ // Emit a header
+ o << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
+
+ // Get the name of the function we're supposed to generate
+ std::string fname = FuncName.getValue();
+
+ // Get the name of the thing we are to generate
+ std::string tgtname = NameToGenerate.getValue();
+ if (GenerationType == GenModule ||
+ GenerationType == GenContents ||
+ GenerationType == GenProgram) {
+ if (tgtname == "!bad!") {
+ if (mod->getModuleIdentifier() == "-")
+ tgtname = "<stdin>";
+ else
+ tgtname = mod->getModuleIdentifier();
+ }
+ } else if (tgtname == "!bad!") {
+ W.error("You must use the -for option with -gen-{function,variable,type}");
+ }
+
+ switch (WhatToGenerate(GenerationType)) {
+ case GenProgram:
+ if (fname.empty())
+ fname = "makeLLVMModule";
+ W.printProgram(fname,tgtname);
+ break;
+ case GenModule:
+ if (fname.empty())
+ fname = "makeLLVMModule";
+ W.printModule(fname,tgtname);
+ break;
+ case GenContents:
+ if (fname.empty())
+ fname = "makeLLVMModuleContents";
+ W.printContents(fname,tgtname);
+ break;
+ case GenFunction:
+ if (fname.empty())
+ fname = "makeLLVMFunction";
+ W.printFunction(fname,tgtname);
+ break;
+ case GenInline:
+ if (fname.empty())
+ fname = "makeLLVMInline";
+ W.printInline(fname,tgtname);
+ break;
+ case GenVariable:
+ if (fname.empty())
+ fname = "makeLLVMVariable";
+ W.printVariable(fname,tgtname);
+ break;
+ case GenType:
+ if (fname.empty())
+ fname = "makeLLVMType";
+ W.printType(fname,tgtname);
+ break;
+ default:
+ W.error("Invalid generation option");
+ }
+}
+
+}
diff --git a/tools/llvm2cpp/CppWriter.h b/tools/llvm2cpp/CppWriter.h
new file mode 100644
index 0000000..16ba30e
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.h
@@ -0,0 +1,18 @@
+//===--- CppWriter.h - Generate C++ IR to C++ Source Interface ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares a function, WriteModuleToCppFile that will convert a
+// Module into the corresponding C++ code to construct the same module.
+//
+//===------------------------------------------------------------------------===
+#include <ostream>
+namespace llvm {
+class Module;
+void WriteModuleToCppFile(Module* mod, std::ostream& out);
+}
diff --git a/tools/llvm2cpp/Makefile b/tools/llvm2cpp/Makefile
new file mode 100644
index 0000000..3bb68b8
--- /dev/null
+++ b/tools/llvm2cpp/Makefile
@@ -0,0 +1,15 @@
+##===- tools/llvm2cpp/Makefile -----------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+TOOLNAME = llvm2cpp
+LINK_COMPONENTS = bitreader
+
+include $(LEVEL)/Makefile.common
+
+CompileCommonOpts := $(CompileCommonOpts) -Wno-format
diff --git a/tools/llvm2cpp/llvm2cpp.cpp b/tools/llvm2cpp/llvm2cpp.cpp
new file mode 100644
index 0000000..2db7543
--- /dev/null
+++ b/tools/llvm2cpp/llvm2cpp.cpp
@@ -0,0 +1,122 @@
+//===--- llvm2cpp.cpp - LLVM IR to C++ Translator -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This program converts an input LLVM assembly file (.ll) into a C++ source
+// file that makes calls to the LLVM C++ API to produce the same module. The
+// generated program verifies what it built and then runs the PrintAssemblyPass
+// to reproduce the input originally given to llvm2cpp.
+//
+// Use the --help option for help with command line options.
+//
+//===------------------------------------------------------------------------===
+
+#include "llvm/Module.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/SystemUtils.h"
+#include "llvm/System/Signals.h"
+#include "CppWriter.h"
+#include <fstream>
+#include <iostream>
+#include <memory>
+using namespace llvm;
+
+static cl::opt<std::string>
+InputFilename(cl::Positional, cl::desc("<input LLVM bitcode file>"),
+ cl::init("-"));
+
+static cl::opt<std::string>
+OutputFilename("o", cl::desc("Override output filename"),
+ cl::value_desc("filename"));
+
+static cl::opt<bool>
+Force("f", cl::desc("Overwrite output files"));
+
+int main(int argc, char **argv) {
+ llvm_shutdown_obj X; // Call llvm_shutdown() on exit.
+ cl::ParseCommandLineOptions(argc, argv, " llvm .ll -> .cpp assembler\n");
+ sys::PrintStackTraceOnErrorSignal();
+
+ int exitCode = 0;
+ std::ostream *Out = 0;
+ std::string ErrorMessage;
+
+ std::auto_ptr<Module> M;
+ std::auto_ptr<MemoryBuffer> Buffer(
+ MemoryBuffer::getFileOrSTDIN(InputFilename, &ErrorMessage));
+ if (Buffer.get())
+ M.reset(ParseBitcodeFile(Buffer.get(), &ErrorMessage));
+ if (M.get() == 0) {
+ std::cerr << argv[0] << ": ";
+ if (ErrorMessage.size())
+ std::cerr << ErrorMessage << "\n";
+ else
+ std::cerr << "bitcode didn't read correctly.\n";
+ return 1;
+ }
+
+ if (OutputFilename != "") { // Specified an output filename?
+ if (OutputFilename != "-") { // Not stdout?
+ if (!Force && std::ifstream(OutputFilename.c_str())) {
+ // If force is not specified, make sure not to overwrite a file!
+ std::cerr << argv[0] << ": error opening '" << OutputFilename
+ << "': file exists!\n"
+ << "Use -f command line argument to force output\n";
+ return 1;
+ }
+ Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+ std::ios::trunc | std::ios::binary);
+ } else { // Specified stdout
+ Out = &std::cout;
+ }
+ } else {
+ if (InputFilename == "-") {
+ OutputFilename = "-";
+ Out = &std::cout;
+ } else {
+ std::string IFN = InputFilename;
+ int Len = IFN.length();
+ if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
+ // Source ends in .ll
+ OutputFilename = std::string(IFN.begin(), IFN.end()-3);
+ } else {
+ OutputFilename = IFN; // Append a .cpp to it
+ }
+ OutputFilename += ".cpp";
+
+ if (!Force && std::ifstream(OutputFilename.c_str())) {
+ // If force is not specified, make sure not to overwrite a file!
+ std::cerr << argv[0] << ": error opening '" << OutputFilename
+ << "': file exists!\n"
+ << "Use -f command line argument to force output\n";
+ return 1;
+ }
+
+ Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+ std::ios::trunc | std::ios::binary);
+ // Make sure that the Out file gets unlinked from the disk if we get a
+ // SIGINT
+ sys::RemoveFileOnSignal(sys::Path(OutputFilename));
+ }
+ }
+
+ if (!Out->good()) {
+ std::cerr << argv[0] << ": error opening " << OutputFilename << "!\n";
+ return 1;
+ }
+
+ WriteModuleToCppFile(M.get(), *Out);
+
+ if (Out != &std::cout) delete Out;
+ return exitCode;
+}
+