aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/CodeGenDAGPatterns.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r--utils/TableGen/CodeGenDAGPatterns.cpp1712
1 files changed, 1047 insertions, 665 deletions
diff --git a/utils/TableGen/CodeGenDAGPatterns.cpp b/utils/TableGen/CodeGenDAGPatterns.cpp
index ce737bf..a0bccfc 100644
--- a/utils/TableGen/CodeGenDAGPatterns.cpp
+++ b/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -15,90 +15,427 @@
#include "CodeGenDAGPatterns.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include <set>
#include <algorithm>
-#include <iostream>
using namespace llvm;
//===----------------------------------------------------------------------===//
-// Helpers for working with extended types.
+// EEVT::TypeSet Implementation
+//===----------------------------------------------------------------------===//
-/// FilterVTs - Filter a list of VT's according to a predicate.
-///
-template<typename T>
-static std::vector<MVT::SimpleValueType>
-FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
- std::vector<MVT::SimpleValueType> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- if (Filter(InVTs[i]))
- Result.push_back(InVTs[i]);
- return Result;
+static inline bool isInteger(MVT::SimpleValueType VT) {
+ return EVT(VT).isInteger();
+}
+static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
+ return EVT(VT).isFloatingPoint();
+}
+static inline bool isVector(MVT::SimpleValueType VT) {
+ return EVT(VT).isVector();
+}
+static inline bool isScalar(MVT::SimpleValueType VT) {
+ return !EVT(VT).isVector();
}
-template<typename T>
-static std::vector<unsigned char>
-FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
- std::vector<unsigned char> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- if (Filter((MVT::SimpleValueType)InVTs[i]))
- Result.push_back(InVTs[i]);
- return Result;
+EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
+ if (VT == MVT::iAny)
+ EnforceInteger(TP);
+ else if (VT == MVT::fAny)
+ EnforceFloatingPoint(TP);
+ else if (VT == MVT::vAny)
+ EnforceVector(TP);
+ else {
+ assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
+ VT == MVT::iPTRAny) && "Not a concrete type!");
+ TypeVec.push_back(VT);
+ }
}
-static std::vector<unsigned char>
-ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
- std::vector<unsigned char> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- Result.push_back(InVTs[i]);
- return Result;
+
+EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
+ assert(!VTList.empty() && "empty list?");
+ TypeVec.append(VTList.begin(), VTList.end());
+
+ if (!VTList.empty())
+ assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
+ VTList[0] != MVT::fAny);
+
+ // Verify no duplicates.
+ array_pod_sort(TypeVec.begin(), TypeVec.end());
+ assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
+}
+
+/// FillWithPossibleTypes - Set to all legal types and return true, only valid
+/// on completely unknown type sets.
+bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
+ bool (*Pred)(MVT::SimpleValueType),
+ const char *PredicateName) {
+ assert(isCompletelyUnknown());
+ const std::vector<MVT::SimpleValueType> &LegalTypes =
+ TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
+
+ for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
+ if (Pred == 0 || Pred(LegalTypes[i]))
+ TypeVec.push_back(LegalTypes[i]);
+
+ // If we have nothing that matches the predicate, bail out.
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, no " +
+ std::string(PredicateName) + " types found");
+ // No need to sort with one element.
+ if (TypeVec.size() == 1) return true;
+
+ // Remove duplicates.
+ array_pod_sort(TypeVec.begin(), TypeVec.end());
+ TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
+
+ return true;
}
-static inline bool isInteger(MVT::SimpleValueType VT) {
- return EVT(VT).isInteger();
+/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
+/// integer value type.
+bool EEVT::TypeSet::hasIntegerTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isInteger(TypeVec[i]))
+ return true;
+ return false;
+}
+
+/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
+/// a floating point value type.
+bool EEVT::TypeSet::hasFloatingPointTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(TypeVec[i]))
+ return true;
+ return false;
+}
+
+/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
+/// value type.
+bool EEVT::TypeSet::hasVectorTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isVector(TypeVec[i]))
+ return true;
+ return false;
}
-static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
- return EVT(VT).isFloatingPoint();
+
+std::string EEVT::TypeSet::getName() const {
+ if (TypeVec.empty()) return "<empty>";
+
+ std::string Result;
+
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
+ std::string VTName = llvm::getEnumName(TypeVec[i]);
+ // Strip off MVT:: prefix if present.
+ if (VTName.substr(0,5) == "MVT::")
+ VTName = VTName.substr(5);
+ if (i) Result += ':';
+ Result += VTName;
+ }
+
+ if (TypeVec.size() == 1)
+ return Result;
+ return "{" + Result + "}";
}
-static inline bool isVector(MVT::SimpleValueType VT) {
- return EVT(VT).isVector();
+/// MergeInTypeInfo - This merges in type information from the specified
+/// argument. If 'this' changes, it returns true. If the two types are
+/// contradictory (e.g. merge f32 into i32) then this throws an exception.
+bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
+ if (InVT.isCompletelyUnknown() || *this == InVT)
+ return false;
+
+ if (isCompletelyUnknown()) {
+ *this = InVT;
+ return true;
+ }
+
+ assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
+
+ // Handle the abstract cases, seeing if we can resolve them better.
+ switch (TypeVec[0]) {
+ default: break;
+ case MVT::iPTR:
+ case MVT::iPTRAny:
+ if (InVT.hasIntegerTypes()) {
+ EEVT::TypeSet InCopy(InVT);
+ InCopy.EnforceInteger(TP);
+ InCopy.EnforceScalar(TP);
+
+ if (InCopy.isConcrete()) {
+ // If the RHS has one integer type, upgrade iPTR to i32.
+ TypeVec[0] = InVT.TypeVec[0];
+ return true;
+ }
+
+ // If the input has multiple scalar integers, this doesn't add any info.
+ if (!InCopy.isCompletelyUnknown())
+ return false;
+ }
+ break;
+ }
+
+ // If the input constraint is iAny/iPTR and this is an integer type list,
+ // remove non-integer types from the list.
+ if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
+ hasIntegerTypes()) {
+ bool MadeChange = EnforceInteger(TP);
+
+ // If we're merging in iPTR/iPTRAny and the node currently has a list of
+ // multiple different integer types, replace them with a single iPTR.
+ if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
+ TypeVec.size() != 1) {
+ TypeVec.resize(1);
+ TypeVec[0] = InVT.TypeVec[0];
+ MadeChange = true;
+ }
+
+ return MadeChange;
+ }
+
+ // If this is a type list and the RHS is a typelist as well, eliminate entries
+ // from this list that aren't in the other one.
+ bool MadeChange = false;
+ TypeSet InputSet(*this);
+
+ for (unsigned i = 0; i != TypeVec.size(); ++i) {
+ bool InInVT = false;
+ for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
+ if (TypeVec[i] == InVT.TypeVec[j]) {
+ InInVT = true;
+ break;
+ }
+
+ if (InInVT) continue;
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+
+ // If we removed all of our types, we have a type contradiction.
+ if (!TypeVec.empty())
+ return MadeChange;
+
+ // FIXME: Really want an SMLoc here!
+ TP.error("Type inference contradiction found, merging '" +
+ InVT.getName() + "' into '" + InputSet.getName() + "'");
+ return true; // unreachable
}
-static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
- const std::vector<unsigned char> &RHS) {
- if (LHS.size() > RHS.size()) return false;
- for (unsigned i = 0, e = LHS.size(); i != e; ++i)
- if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
- return false;
+/// EnforceInteger - Remove all non-integer types from this set.
+bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isInteger, "integer");
+ if (!hasFloatingPointTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the fp types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isInteger(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be integer");
+ return true;
+}
+
+/// EnforceFloatingPoint - Remove all integer types from this set.
+bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
+
+ if (!hasIntegerTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the fp types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isFloatingPoint(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be floating point");
+ return true;
+}
+
+/// EnforceScalar - Remove all vector types from this.
+bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isScalar, "scalar");
+
+ if (!hasVectorTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the vector types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isScalar(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be scalar");
return true;
}
-namespace llvm {
-namespace EEVT {
-/// isExtIntegerInVTs - Return true if the specified extended value type vector
-/// contains iAny or an integer value type.
-bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
- assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
- return EVTs[0] == MVT::iAny || !(FilterEVTs(EVTs, isInteger).empty());
+/// EnforceVector - Remove all vector types from this.
+bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isVector, "vector");
+
+ TypeSet InputSet(*this);
+ bool MadeChange = false;
+
+ // Filter out all the scalar types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isVector(TypeVec[i])) {
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be a vector");
+ return MadeChange;
}
-/// isExtFloatingPointInVTs - Return true if the specified extended value type
-/// vector contains fAny or a FP value type.
-bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
- assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!");
- return EVTs[0] == MVT::fAny || !(FilterEVTs(EVTs, isFloatingPoint).empty());
+
+
+/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
+/// this an other based on this information.
+bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
+ // Both operands must be integer or FP, but we don't care which.
+ bool MadeChange = false;
+
+ if (isCompletelyUnknown())
+ MadeChange = FillWithPossibleTypes(TP);
+
+ if (Other.isCompletelyUnknown())
+ MadeChange = Other.FillWithPossibleTypes(TP);
+
+ // If one side is known to be integer or known to be FP but the other side has
+ // no information, get at least the type integrality info in there.
+ if (!hasFloatingPointTypes())
+ MadeChange |= Other.EnforceInteger(TP);
+ else if (!hasIntegerTypes())
+ MadeChange |= Other.EnforceFloatingPoint(TP);
+ if (!Other.hasFloatingPointTypes())
+ MadeChange |= EnforceInteger(TP);
+ else if (!Other.hasIntegerTypes())
+ MadeChange |= EnforceFloatingPoint(TP);
+
+ assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
+ "Should have a type list now");
+
+ // If one contains vectors but the other doesn't pull vectors out.
+ if (!hasVectorTypes())
+ MadeChange |= Other.EnforceScalar(TP);
+ if (!hasVectorTypes())
+ MadeChange |= EnforceScalar(TP);
+
+ // This code does not currently handle nodes which have multiple types,
+ // where some types are integer, and some are fp. Assert that this is not
+ // the case.
+ assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
+ !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
+ "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+
+ // Okay, find the smallest type from the current set and remove it from the
+ // largest set.
+ MVT::SimpleValueType Smallest = TypeVec[0];
+ for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
+ if (TypeVec[i] < Smallest)
+ Smallest = TypeVec[i];
+
+ // If this is the only type in the large set, the constraint can never be
+ // satisfied.
+ if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest)
+ TP.error("Type inference contradiction found, '" +
+ Other.getName() + "' has nothing larger than '" + getName() +"'!");
+
+ SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
+ std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest);
+ if (TVI != Other.TypeVec.end()) {
+ Other.TypeVec.erase(TVI);
+ MadeChange = true;
+ }
+
+ // Okay, find the largest type in the Other set and remove it from the
+ // current set.
+ MVT::SimpleValueType Largest = Other.TypeVec[0];
+ for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
+ if (Other.TypeVec[i] > Largest)
+ Largest = Other.TypeVec[i];
+
+ // If this is the only type in the small set, the constraint can never be
+ // satisfied.
+ if (TypeVec.size() == 1 && TypeVec[0] == Largest)
+ TP.error("Type inference contradiction found, '" +
+ getName() + "' has nothing smaller than '" + Other.getName()+"'!");
+
+ TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest);
+ if (TVI != TypeVec.end()) {
+ TypeVec.erase(TVI);
+ MadeChange = true;
+ }
+
+ return MadeChange;
}
-/// isExtVectorInVTs - Return true if the specified extended value type
-/// vector contains vAny or a vector value type.
-bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) {
- assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!");
- return EVTs[0] == MVT::vAny || !(FilterEVTs(EVTs, isVector).empty());
+/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
+/// whose element is specified by VTOperand.
+bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
+ TreePattern &TP) {
+ // "This" must be a vector and "VTOperand" must be a scalar.
+ bool MadeChange = false;
+ MadeChange |= EnforceVector(TP);
+ MadeChange |= VTOperand.EnforceScalar(TP);
+
+ // If we know the vector type, it forces the scalar to agree.
+ if (isConcrete()) {
+ EVT IVT = getConcrete();
+ IVT = IVT.getVectorElementType();
+ return MadeChange |
+ VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
+ }
+
+ // If the scalar type is known, filter out vector types whose element types
+ // disagree.
+ if (!VTOperand.isConcrete())
+ return MadeChange;
+
+ MVT::SimpleValueType VT = VTOperand.getConcrete();
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the types which don't have the right element type.
+ for (unsigned i = 0; i != TypeVec.size(); ++i) {
+ assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
+ if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+ }
+
+ if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
+ TP.error("Type inference contradiction found, forcing '" +
+ InputSet.getName() + "' to have a vector element");
+ return MadeChange;
}
-} // end namespace EEVT.
-} // end namespace llvm.
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
@@ -154,6 +491,59 @@ void DumpDepVars(MultipleUseVarSet &DepVars) {
// PatternToMatch implementation
//
+
+/// getPatternSize - Return the 'size' of this pattern. We want to match large
+/// patterns before small ones. This is used to determine the size of a
+/// pattern.
+static unsigned getPatternSize(const TreePatternNode *P,
+ const CodeGenDAGPatterns &CGP) {
+ unsigned Size = 3; // The node itself.
+ // If the root node is a ConstantSDNode, increases its size.
+ // e.g. (set R32:$dst, 0).
+ if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
+ Size += 2;
+
+ // FIXME: This is a hack to statically increase the priority of patterns
+ // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
+ // Later we can allow complexity / cost for each pattern to be (optionally)
+ // specified. To get best possible pattern match we'll need to dynamically
+ // calculate the complexity of all patterns a dag can potentially map to.
+ const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
+ if (AM)
+ Size += AM->getNumOperands() * 3;
+
+ // If this node has some predicate function that must match, it adds to the
+ // complexity of this node.
+ if (!P->getPredicateFns().empty())
+ ++Size;
+
+ // Count children in the count if they are also nodes.
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = P->getChild(i);
+ if (!Child->isLeaf() && Child->getNumTypes() &&
+ Child->getType(0) != MVT::Other)
+ Size += getPatternSize(Child, CGP);
+ else if (Child->isLeaf()) {
+ if (dynamic_cast<IntInit*>(Child->getLeafValue()))
+ Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
+ else if (Child->getComplexPatternInfo(CGP))
+ Size += getPatternSize(Child, CGP);
+ else if (!Child->getPredicateFns().empty())
+ ++Size;
+ }
+ }
+
+ return Size;
+}
+
+/// Compute the complexity metric for the input pattern. This roughly
+/// corresponds to the number of nodes that are covered.
+unsigned PatternToMatch::
+getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
+ return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
+}
+
+
/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
@@ -187,6 +577,9 @@ SDTypeConstraint::SDTypeConstraint(Record *R) {
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+ if (x.SDTCisVT_Info.VT == MVT::isVoid)
+ throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
+
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
@@ -208,8 +601,7 @@ SDTypeConstraint::SDTypeConstraint(Record *R) {
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
ConstraintType = SDTCisEltOfVec;
- x.SDTCisEltOfVec_Info.OtherOperandNum =
- R->getValueAsInt("OtherOpNum");
+ x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
} else {
errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
exit(1);
@@ -217,24 +609,27 @@ SDTypeConstraint::SDTypeConstraint(Record *R) {
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
-/// N, which has NumResults results.
-TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
- TreePatternNode *N,
- unsigned NumResults) const {
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
+/// N, and the result number in ResNo.
+static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ unsigned &ResNo) {
+ unsigned NumResults = NodeInfo.getNumResults();
+ if (OpNo < NumResults) {
+ ResNo = OpNo;
+ return N;
+ }
- if (OpNo >= (NumResults + N->getNumChildren())) {
- errs() << "Invalid operand number " << OpNo << " ";
+ OpNo -= NumResults;
+
+ if (OpNo >= N->getNumChildren()) {
+ errs() << "Invalid operand number in type constraint "
+ << (OpNo+NumResults) << " ";
N->dump();
errs() << '\n';
exit(1);
}
- if (OpNo < NumResults)
- return N; // FIXME: need value #
- else
- return N->getChild(OpNo-NumResults);
+ return N->getChild(OpNo);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
@@ -244,65 +639,32 @@ TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
- unsigned NumResults = NodeInfo.getNumResults();
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
-
- // Check that the number of operands is sane. Negative operands -> varargs.
- if (NodeInfo.getNumOperands() >= 0) {
- if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
- TP.error(N->getOperator()->getName() + " node requires exactly " +
- itostr(NodeInfo.getNumOperands()) + " operands!");
- }
-
- const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
-
- TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
+ unsigned ResNo = 0; // The result number being referenced.
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
switch (ConstraintType) {
default: assert(0 && "Unknown constraint type!");
case SDTCisVT:
// Operand must be a particular type.
- return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
- case SDTCisPtrTy: {
+ return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
+ case SDTCisPtrTy:
// Operand must be same as target pointer type.
- return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
- }
- case SDTCisInt: {
- // If there is only one integer type supported, this must be it.
- std::vector<MVT::SimpleValueType> IntVTs =
- FilterVTs(CGT.getLegalValueTypes(), isInteger);
-
- // If we found exactly one supported integer type, apply it.
- if (IntVTs.size() == 1)
- return NodeToApply->UpdateNodeType(IntVTs[0], TP);
- return NodeToApply->UpdateNodeType(MVT::iAny, TP);
- }
- case SDTCisFP: {
- // If there is only one FP type supported, this must be it.
- std::vector<MVT::SimpleValueType> FPVTs =
- FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
-
- // If we found exactly one supported FP type, apply it.
- if (FPVTs.size() == 1)
- return NodeToApply->UpdateNodeType(FPVTs[0], TP);
- return NodeToApply->UpdateNodeType(MVT::fAny, TP);
- }
- case SDTCisVec: {
- // If there is only one vector type supported, this must be it.
- std::vector<MVT::SimpleValueType> VecVTs =
- FilterVTs(CGT.getLegalValueTypes(), isVector);
-
- // If we found exactly one supported vector type, apply it.
- if (VecVTs.size() == 1)
- return NodeToApply->UpdateNodeType(VecVTs[0], TP);
- return NodeToApply->UpdateNodeType(MVT::vAny, TP);
- }
+ return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
+ case SDTCisInt:
+ // Require it to be one of the legal integer VTs.
+ return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
+ case SDTCisFP:
+ // Require it to be one of the legal fp VTs.
+ return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
+ case SDTCisVec:
+ // Require it to be one of the legal vector VTs.
+ return NodeToApply->getExtType(ResNo).EnforceVector(TP);
case SDTCisSameAs: {
+ unsigned OResNo = 0;
TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
- return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
- OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
+ return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
+ OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
@@ -314,86 +676,34 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
TP.error(N->getOperator()->getName() + " expects a VT operand!");
MVT::SimpleValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
- if (!isInteger(VT))
- TP.error(N->getOperator()->getName() + " VT operand must be integer!");
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
-
- // It must be integer.
- bool MadeChange = OtherNode->UpdateNodeType(MVT::iAny, TP);
+ EEVT::TypeSet TypeListTmp(VT, TP);
- // This code only handles nodes that have one type set. Assert here so
- // that we can change this if we ever need to deal with multiple value
- // types at this point.
- assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
- if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
- OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
- return MadeChange;
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
+ OResNo);
+
+ return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
}
case SDTCisOpSmallerThanOp: {
+ unsigned BResNo = 0;
TreePatternNode *BigOperand =
- getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
-
- // Both operands must be integer or FP, but we don't care which.
- bool MadeChange = false;
-
- // This code does not currently handle nodes which have multiple types,
- // where some types are integer, and some are fp. Assert that this is not
- // the case.
- assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
- EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
- !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
- EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
- "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
- if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
- MadeChange |= BigOperand->UpdateNodeType(MVT::iAny, TP);
- else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
- MadeChange |= BigOperand->UpdateNodeType(MVT::fAny, TP);
- if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
- MadeChange |= NodeToApply->UpdateNodeType(MVT::iAny, TP);
- else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
- MadeChange |= NodeToApply->UpdateNodeType(MVT::fAny, TP);
-
- std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
-
- if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
- VTs = FilterVTs(VTs, isInteger);
- } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
- VTs = FilterVTs(VTs, isFloatingPoint);
- } else {
- VTs.clear();
- }
-
- switch (VTs.size()) {
- default: // Too many VT's to pick from.
- case 0: break; // No info yet.
- case 1:
- // Only one VT of this flavor. Cannot ever satisfy the constraints.
- return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
- case 2:
- // If we have exactly two possible types, the little operand must be the
- // small one, the big operand should be the big one. Common with
- // float/double for example.
- assert(VTs[0] < VTs[1] && "Should be sorted!");
- MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
- MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
- break;
- }
- return MadeChange;
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
+ BResNo);
+ return NodeToApply->getExtType(ResNo).
+ EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
}
case SDTCisEltOfVec: {
- TreePatternNode *OtherOperand =
- getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
- N, NumResults);
- if (OtherOperand->hasTypeSet()) {
- if (!isVector(OtherOperand->getTypeNum(0)))
- TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
- EVT IVT = OtherOperand->getTypeNum(0);
- IVT = IVT.getVectorElementType();
- return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP);
- }
- return false;
+ unsigned VResNo = 0;
+ TreePatternNode *VecOperand =
+ getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
+ VResNo);
+
+ // Filter vector types out of VecOperand that don't have the right element
+ // type.
+ return VecOperand->getExtType(VResNo).
+ EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
}
}
return false;
@@ -433,6 +743,8 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
+ } else if (PropList[i]->getName() == "SDNPVariadic") {
+ Properties |= 1 << SDNPVariadic;
} else {
errs() << "Unknown SD Node property '" << PropList[i]->getName()
<< "' on node '" << R->getName() << "'!\n";
@@ -449,11 +761,12 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
-/// MVT::SimpleValueType. Otherwise, return EEVT::isUnknown.
-unsigned SDNodeInfo::getKnownType() const {
+/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
+MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
unsigned NumResults = getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
+ assert(ResNo == 0 && "Only handles single result nodes so far");
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
// Make sure that this applies to the correct node result.
@@ -468,7 +781,7 @@ unsigned SDNodeInfo::getKnownType() const {
return MVT::iPTR;
}
}
- return EEVT::isUnknown;
+ return MVT::Other;
}
//===----------------------------------------------------------------------===//
@@ -482,146 +795,61 @@ TreePatternNode::~TreePatternNode() {
#endif
}
-/// UpdateNodeType - Set the node type of N to VT if VT contains
-/// information. If N already contains a conflicting type, then throw an
-/// exception. This returns true if any information was updated.
-///
-bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
- TreePattern &TP) {
- assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
+static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
+ if (Operator->getName() == "set" ||
+ Operator->getName() == "implicit")
+ return 0; // All return nothing.
- if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
- return false;
- if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
- setTypes(ExtVTs);
- return true;
- }
-
- if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
- if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
- ExtVTs[0] == MVT::iAny)
- return false;
- if (EEVT::isExtIntegerInVTs(ExtVTs)) {
- std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
- if (FVTs.size()) {
- setTypes(ExtVTs);
- return true;
- }
- }
- }
-
- // Merge vAny with iAny/fAny. The latter include vector types so keep them
- // as the more specific information.
- if (ExtVTs[0] == MVT::vAny &&
- (getExtTypeNum(0) == MVT::iAny || getExtTypeNum(0) == MVT::fAny))
- return false;
- if (getExtTypeNum(0) == MVT::vAny &&
- (ExtVTs[0] == MVT::iAny || ExtVTs[0] == MVT::fAny)) {
- setTypes(ExtVTs);
- return true;
- }
-
- if (ExtVTs[0] == MVT::iAny &&
- EEVT::isExtIntegerInVTs(getExtTypes())) {
- assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
- if (getExtTypes() == FVTs)
- return false;
- setTypes(FVTs);
- return true;
- }
- if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
- EEVT::isExtIntegerInVTs(getExtTypes())) {
- //assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
- if (getExtTypes() == FVTs)
- return false;
- if (FVTs.size()) {
- setTypes(FVTs);
- return true;
- }
- }
- if (ExtVTs[0] == MVT::fAny &&
- EEVT::isExtFloatingPointInVTs(getExtTypes())) {
- assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs =
- FilterEVTs(getExtTypes(), isFloatingPoint);
- if (getExtTypes() == FVTs)
- return false;
- setTypes(FVTs);
- return true;
- }
- if (ExtVTs[0] == MVT::vAny &&
- EEVT::isExtVectorInVTs(getExtTypes())) {
- assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector);
- if (getExtTypes() == FVTs)
- return false;
- setTypes(FVTs);
- return true;
- }
-
- // If we know this is an int, FP, or vector type, and we are told it is a
- // specific one, take the advice.
- //
- // Similarly, we should probably set the type here to the intersection of
- // {iAny|fAny|vAny} and ExtVTs
- if ((getExtTypeNum(0) == MVT::iAny &&
- EEVT::isExtIntegerInVTs(ExtVTs)) ||
- (getExtTypeNum(0) == MVT::fAny &&
- EEVT::isExtFloatingPointInVTs(ExtVTs)) ||
- (getExtTypeNum(0) == MVT::vAny &&
- EEVT::isExtVectorInVTs(ExtVTs))) {
- setTypes(ExtVTs);
- return true;
- }
- if (getExtTypeNum(0) == MVT::iAny &&
- (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
- setTypes(ExtVTs);
- return true;
- }
-
- if (isLeaf()) {
- dump();
- errs() << " ";
- TP.error("Type inference contradiction found in node!");
- } else {
- TP.error("Type inference contradiction found in node " +
- getOperator()->getName() + "!");
+ if (Operator->isSubClassOf("Intrinsic"))
+ return CDP.getIntrinsic(Operator).IS.RetVTs.size();
+
+ if (Operator->isSubClassOf("SDNode"))
+ return CDP.getSDNodeInfo(Operator).getNumResults();
+
+ if (Operator->isSubClassOf("PatFrag")) {
+ // If we've already parsed this pattern fragment, get it. Otherwise, handle
+ // the forward reference case where one pattern fragment references another
+ // before it is processed.
+ if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
+ return PFRec->getOnlyTree()->getNumTypes();
+
+ // Get the result tree.
+ DagInit *Tree = Operator->getValueAsDag("Fragment");
+ Record *Op = 0;
+ if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
+ Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
+ assert(Op && "Invalid Fragment");
+ return GetNumNodeResults(Op, CDP);
}
- return true; // unreachable
-}
+
+ if (Operator->isSubClassOf("Instruction")) {
+ CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
-static std::string GetTypeName(unsigned char TypeID) {
- switch (TypeID) {
- case MVT::Other: return "Other";
- case MVT::iAny: return "iAny";
- case MVT::fAny: return "fAny";
- case MVT::vAny: return "vAny";
- case EEVT::isUnknown: return "isUnknown";
- case MVT::iPTR: return "iPTR";
- case MVT::iPTRAny: return "iPTRAny";
- default:
- std::string VTName = llvm::getName((MVT::SimpleValueType)TypeID);
- // Strip off EVT:: prefix if present.
- if (VTName.substr(0,5) == "MVT::")
- VTName = VTName.substr(5);
- return VTName;
+ // FIXME: Should allow access to all the results here.
+ unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0;
+
+ // Add on one implicit def if it has a resolvable type.
+ if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
+ ++NumDefsToAdd;
+ return NumDefsToAdd;
}
+
+ if (Operator->isSubClassOf("SDNodeXForm"))
+ return 1; // FIXME: Generalize SDNodeXForm
+
+ Operator->dump();
+ errs() << "Unhandled node in GetNumNodeResults\n";
+ exit(1);
}
-
void TreePatternNode::print(raw_ostream &OS) const {
- if (isLeaf()) {
+ if (isLeaf())
OS << *getLeafValue();
- } else {
+ else
OS << '(' << getOperator()->getName();
- }
-
- // FIXME: At some point we should handle printing all the value types for
- // nodes that are multiply typed.
- if (getExtTypeNum(0) != EEVT::isUnknown)
- OS << ':' << GetTypeName(getExtTypeNum(0));
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ OS << ':' << getExtType(i).getName();
if (!isLeaf()) {
if (getNumChildren() != 0) {
@@ -686,16 +914,16 @@ bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
- New = new TreePatternNode(getLeafValue());
+ New = new TreePatternNode(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
- New = new TreePatternNode(getOperator(), CChildren);
+ New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
}
New->setName(getName());
- New->setTypes(getExtTypes());
+ New->Types = Types;
New->setPredicateFns(getPredicateFns());
New->setTransformFn(getTransformFn());
return New;
@@ -703,7 +931,8 @@ TreePatternNode *TreePatternNode::clone() const {
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
- removeTypes();
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ Types[i] = EEVT::TypeSet(); // Reset to unknown type.
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
@@ -785,7 +1014,8 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
}
FragTree->setName(getName());
- FragTree->UpdateNodeType(getExtTypes(), TP);
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
@@ -803,47 +1033,57 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
-static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
- TreePattern &TP) {
- // Some common return values
- std::vector<unsigned char> Unknown(1, EEVT::isUnknown);
- std::vector<unsigned char> Other(1, MVT::Other);
-
- // Check to see if this is a register or a register class...
+static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
+ bool NotRegisters, TreePattern &TP) {
+ // Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
+ assert(ResNo == 0 && "Regclass ref only has one result!");
if (NotRegisters)
- return Unknown;
- const CodeGenRegisterClass &RC =
- TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
- return ConvertVTs(RC.getValueTypes());
- } else if (R->isSubClassOf("PatFrag")) {
+ return EEVT::TypeSet(); // Unknown.
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
+ }
+
+ if (R->isSubClassOf("PatFrag")) {
+ assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
// Pattern fragment types will be resolved when they are inlined.
- return Unknown;
- } else if (R->isSubClassOf("Register")) {
+ return EEVT::TypeSet(); // Unknown.
+ }
+
+ if (R->isSubClassOf("Register")) {
+ assert(ResNo == 0 && "Registers only produce one result!");
if (NotRegisters)
- return Unknown;
+ return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return T.getRegisterVTs(R);
- } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ return EEVT::TypeSet(T.getRegisterVTs(R));
+ }
+
+ if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ assert(ResNo == 0 && "This node only has one result!");
// Using a VTSDNode or CondCodeSDNode.
- return Other;
- } else if (R->isSubClassOf("ComplexPattern")) {
+ return EEVT::TypeSet(MVT::Other, TP);
+ }
+
+ if (R->isSubClassOf("ComplexPattern")) {
+ assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
if (NotRegisters)
- return Unknown;
- std::vector<unsigned char>
- ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
- return ComplexPat;
- } else if (R->isSubClassOf("PointerLikeRegClass")) {
- Other[0] = MVT::iPTR;
- return Other;
- } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
- R->getName() == "zero_reg") {
+ return EEVT::TypeSet(); // Unknown.
+ return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
+ TP);
+ }
+ if (R->isSubClassOf("PointerLikeRegClass")) {
+ assert(ResNo == 0 && "Regclass can only have one result!");
+ return EEVT::TypeSet(MVT::iPTR, TP);
+ }
+
+ if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg") {
// Placeholder.
- return Unknown;
+ return EEVT::TypeSet(); // Unknown.
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
- return Other;
+ return EEVT::TypeSet(MVT::Other, TP);
}
@@ -922,45 +1162,44 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
- return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
+ bool MadeChange = false;
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
+ NotRegisters, TP), TP);
+ return MadeChange;
}
if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+ assert(Types.size() == 1 && "Invalid IntInit");
+
// Int inits are always integers. :)
- bool MadeChange = UpdateNodeType(MVT::iAny, TP);
+ bool MadeChange = Types[0].EnforceInteger(TP);
- if (hasTypeSet()) {
- // At some point, it may make sense for this tree pattern to have
- // multiple types. Assert here that it does not, so we revisit this
- // code when appropriate.
- assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
- MVT::SimpleValueType VT = getTypeNum(0);
- for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
- assert(getTypeNum(i) == VT && "TreePattern has too many types!");
-
- VT = getTypeNum(0);
- if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
- unsigned Size = EVT(VT).getSizeInBits();
- // Make sure that the value is representable for this type.
- if (Size < 32) {
- int Val = (II->getValue() << (32-Size)) >> (32-Size);
- if (Val != II->getValue()) {
- // If sign-extended doesn't fit, does it fit as unsigned?
- unsigned ValueMask;
- unsigned UnsignedVal;
- ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
- UnsignedVal = unsigned(II->getValue());
-
- if ((ValueMask & UnsignedVal) != UnsignedVal) {
- TP.error("Integer value '" + itostr(II->getValue())+
- "' is out of range for type '" +
- getEnumName(getTypeNum(0)) + "'!");
- }
- }
- }
- }
- }
+ if (!Types[0].isConcrete())
+ return MadeChange;
+
+ MVT::SimpleValueType VT = getType(0);
+ if (VT == MVT::iPTR || VT == MVT::iPTRAny)
+ return MadeChange;
+ unsigned Size = EVT(VT).getSizeInBits();
+ // Make sure that the value is representable for this type.
+ if (Size >= 32) return MadeChange;
+
+ int Val = (II->getValue() << (32-Size)) >> (32-Size);
+ if (Val == II->getValue()) return MadeChange;
+
+ // If sign-extended doesn't fit, does it fit as unsigned?
+ unsigned ValueMask;
+ unsigned UnsignedVal;
+ ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
+ UnsignedVal = unsigned(II->getValue());
+
+ if ((ValueMask & UnsignedVal) == UnsignedVal)
+ return MadeChange;
+
+ TP.error("Integer value '" + itostr(II->getValue())+
+ "' is out of range for type '" + getEnumName(getType(0)) + "'!");
return MadeChange;
}
return false;
@@ -968,29 +1207,30 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
- assert (getNumChildren() >= 2 && "Missing RHS of a set?");
+ assert(getNumTypes() == 0 && "Set doesn't produce a value");
+ assert(getNumChildren() >= 2 && "Missing RHS of a set?");
unsigned NC = getNumChildren();
- bool MadeChange = false;
+
+ TreePatternNode *SetVal = getChild(NC-1);
+ bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
+
for (unsigned i = 0; i < NC-1; ++i) {
- MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
+ TreePatternNode *Child = getChild(i);
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
- MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
- TP);
- MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
- TP);
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
+ MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
}
return MadeChange;
}
- if (getOperator()->getName() == "implicit" ||
- getOperator()->getName() == "parallel") {
+ if (getOperator()->getName() == "implicit") {
+ assert(getNumTypes() == 0 && "Node doesn't produce a value");
+
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
}
@@ -998,6 +1238,18 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
bool MadeChange = false;
MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ assert(getChild(0)->getNumTypes() == 1 &&
+ getChild(1)->getNumTypes() == 1 && "Unhandled case");
+
+ // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
+ // what type it gets, so if it didn't get a concrete type just give it the
+ // first viable type from the reg class.
+ if (!getChild(1)->hasTypeSet(0) &&
+ !getChild(1)->getExtType(0).isCompletelyUnknown()) {
+ MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
+ MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
+ }
return MadeChange;
}
@@ -1007,22 +1259,24 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
-
+
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
- MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
+ MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
- if (getNumChildren() != NumParamVTs + NumRetVTs)
+ if (getNumChildren() != NumParamVTs + 1)
TP.error("Intrinsic '" + Int->Name + "' expects " +
- utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
+ utostr(NumParamVTs) + " operands, not " +
utostr(getNumChildren() - 1) + " operands!");
// Apply type info to the intrinsic ID.
- MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
+ MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
- for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
- MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
- MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
+ MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
+ assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
+ MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
@@ -1030,50 +1284,66 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NI.getNumOperands() >= 0 &&
+ getNumChildren() != (unsigned)NI.getNumOperands())
+ TP.error(getOperator()->getName() + " node requires exactly " +
+ itostr(NI.getNumOperands()) + " operands!");
+
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- // Branch, etc. do not produce results and top-level forms in instr pattern
- // must have void types.
- if (NI.getNumResults() == 0)
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
-
- return MadeChange;
+ return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
- bool MadeChange = false;
- unsigned NumResults = Inst.getNumResults();
+ CodeGenInstruction &InstInfo =
+ CDP.getTargetInfo().getInstruction(getOperator());
- assert(NumResults <= 1 &&
- "Only supports zero or one result instrs!");
+ bool MadeChange = false;
- CodeGenInstruction &InstInfo =
- CDP.getTargetInfo().getInstruction(getOperator()->getName());
- // Apply the result type to the node
- if (NumResults == 0 || InstInfo.NumDefs == 0) {
- MadeChange = UpdateNodeType(MVT::isVoid, TP);
- } else {
- Record *ResultNode = Inst.getResult(0);
+ // Apply the result types to the node, these come from the things in the
+ // (outs) list of the instruction.
+ // FIXME: Cap at one result so far.
+ unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0;
+ for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
+ Record *ResultNode = Inst.getResult(ResNo);
if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
- std::vector<unsigned char> VT;
- VT.push_back(MVT::iPTR);
- MadeChange = UpdateNodeType(VT, TP);
+ MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
} else if (ResultNode->getName() == "unknown") {
- std::vector<unsigned char> VT;
- VT.push_back(EEVT::isUnknown);
- MadeChange = UpdateNodeType(VT, TP);
+ // Nothing to do.
} else {
assert(ResultNode->isSubClassOf("RegisterClass") &&
"Operands should be register classes!");
-
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(ResultNode);
- MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
}
}
+
+ // If the instruction has implicit defs, we apply the first one as a result.
+ // FIXME: This sucks, it should apply all implicit defs.
+ if (!InstInfo.ImplicitDefs.empty()) {
+ unsigned ResNo = NumResultsToAdd;
+
+ // FIXME: Generalize to multiple possible types and multiple possible
+ // ImplicitDefs.
+ MVT::SimpleValueType VT =
+ InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
+
+ if (VT != MVT::Other)
+ MadeChange |= UpdateNodeType(ResNo, VT, TP);
+ }
+
+ // If this is an INSERT_SUBREG, constrain the source and destination VTs to
+ // be the same.
+ if (getOperator()->getName() == "INSERT_SUBREG") {
+ assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
+ MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
+ }
unsigned ChildNo = 0;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
@@ -1094,17 +1364,19 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
MVT::SimpleValueType VT;
TreePatternNode *Child = getChild(ChildNo++);
+ unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
+
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(OperandNode);
- MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
- MadeChange |= Child->UpdateNodeType(VT, TP);
+ MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
} else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
- MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
+ MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
} else if (OperandNode->getName() == "unknown") {
- MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP);
+ // Nothing to do.
} else {
assert(0 && "Unknown operand type!");
abort();
@@ -1126,15 +1398,20 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
+ bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+
+
// If either the output or input of the xform does not have exact
// type info. We assume they must be the same. Otherwise, it is perfectly
// legal to transform from one type to a completely different type.
+#if 0
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
- bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
- MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
+ bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
return MadeChange;
}
- return false;
+#endif
+ return MadeChange;
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
@@ -1194,15 +1471,15 @@ bool TreePatternNode::canPatternMatch(std::string &Reason,
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
- isInputPattern = isInput;
- for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
- Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
+ isInputPattern = isInput;
+ for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+ Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
- Trees.push_back(ParseTreePattern(Pat));
+ Trees.push_back(ParseTreePattern(Pat, ""));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
@@ -1211,14 +1488,68 @@ TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
Trees.push_back(Pat);
}
-
-
void TreePattern::error(const std::string &Msg) const {
dump();
throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
}
-TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
+void TreePattern::ComputeNamedNodes() {
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ ComputeNamedNodes(Trees[i]);
+}
+
+void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
+ if (!N->getName().empty())
+ NamedNodes[N->getName()].push_back(N);
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ ComputeNamedNodes(N->getChild(i));
+}
+
+
+TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
+ if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
+ Record *R = DI->getDef();
+
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode if its own. For example:
+ /// (foo GPR, imm) -> (foo GPR, (imm))
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
+ return ParseTreePattern(new DagInit(DI, "",
+ std::vector<std::pair<Init*, std::string> >()),
+ OpName);
+
+ // Input argument?
+ TreePatternNode *Res = new TreePatternNode(DI, 1);
+ if (R->getName() == "node" && !OpName.empty()) {
+ if (OpName.empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(OpName);
+ }
+
+ Res->setName(OpName);
+ return Res;
+ }
+
+ if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
+ if (!OpName.empty())
+ error("Constant int argument should not have a name!");
+ return new TreePatternNode(II, 1);
+ }
+
+ if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+ return ParseTreePattern(II, OpName);
+ }
+
+ DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
+ if (!Dag) {
+ TheInit->dump();
+ error("Pattern has unexpected init kind!");
+ }
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
@@ -1229,41 +1560,14 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
- Init *Arg = Dag->getArg(0);
- TreePatternNode *New;
- if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
- Record *R = DI->getDef();
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
- Dag->setArg(0, new DagInit(DI, "",
- std::vector<std::pair<Init*, std::string> >()));
- return ParseTreePattern(Dag);
- }
- New = new TreePatternNode(DI);
- } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
- New = ParseTreePattern(DI);
- } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
- New = new TreePatternNode(II);
- if (!Dag->getArgName(0).empty())
- error("Constant int argument should not have a name!");
- } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(new IntRecTy());
- if (II == 0 || !dynamic_cast<IntInit*>(II))
- error("Bits value must be constants!");
-
- New = new TreePatternNode(dynamic_cast<IntInit*>(II));
- if (!Dag->getArgName(0).empty())
- error("Constant int argument should not have a name!");
- } else {
- Arg->dump();
- error("Unknown leaf value for tree pattern!");
- return 0;
- }
+ TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
// Apply the type cast.
- New->UpdateNodeType(getValueType(Operator), *this);
- if (New->getNumChildren() == 0)
- New->setName(Dag->getArgName(0));
+ assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
+ New->UpdateNodeType(0, getValueType(Operator), *this);
+
+ if (!OpName.empty())
+ error("ValueType cast should not have a name!");
return New;
}
@@ -1274,65 +1578,38 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
Operator->getName() != "set" &&
- Operator->getName() != "implicit" &&
- Operator->getName() != "parallel")
+ Operator->getName() != "implicit")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
- if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
- Operator->isSubClassOf("SDNodeXForm")))
- error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+ if (isInputPattern) {
+ if (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm"))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+ } else {
+ if (Operator->isSubClassOf("Intrinsic"))
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+
+ if (Operator->isSubClassOf("SDNode") &&
+ Operator->getName() != "imm" &&
+ Operator->getName() != "fpimm" &&
+ Operator->getName() != "tglobaltlsaddr" &&
+ Operator->getName() != "tconstpool" &&
+ Operator->getName() != "tjumptable" &&
+ Operator->getName() != "tframeindex" &&
+ Operator->getName() != "texternalsym" &&
+ Operator->getName() != "tblockaddress" &&
+ Operator->getName() != "tglobaladdr" &&
+ Operator->getName() != "bb" &&
+ Operator->getName() != "vt")
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+ }
std::vector<TreePatternNode*> Children;
-
- for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
- Init *Arg = Dag->getArg(i);
- if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
- Children.push_back(ParseTreePattern(DI));
- if (Children.back()->getName().empty())
- Children.back()->setName(Dag->getArgName(i));
- } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
- Record *R = DefI->getDef();
- // Direct reference to a leaf DagNode or PatFrag? Turn it into a
- // TreePatternNode if its own.
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
- Dag->setArg(i, new DagInit(DefI, "",
- std::vector<std::pair<Init*, std::string> >()));
- --i; // Revisit this node...
- } else {
- TreePatternNode *Node = new TreePatternNode(DefI);
- Node->setName(Dag->getArgName(i));
- Children.push_back(Node);
-
- // Input argument?
- if (R->getName() == "node") {
- if (Dag->getArgName(i).empty())
- error("'node' argument requires a name to match with operand list");
- Args.push_back(Dag->getArgName(i));
- }
- }
- } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
- TreePatternNode *Node = new TreePatternNode(II);
- if (!Dag->getArgName(i).empty())
- error("Constant int argument should not have a name!");
- Children.push_back(Node);
- } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(new IntRecTy());
- if (II == 0 || !dynamic_cast<IntInit*>(II))
- error("Bits value must be constants!");
-
- TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
- if (!Dag->getArgName(i).empty())
- error("Constant int argument should not have a name!");
- Children.push_back(Node);
- } else {
- errs() << '"';
- Arg->dump();
- errs() << "\": ";
- error("Unknown leaf value for tree pattern!");
- }
- }
+
+ // Parse all the operands.
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
+ Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
// If the operator is an intrinsic, then this is just syntactic sugar for for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
@@ -1343,34 +1620,127 @@ TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
- if (Int.IS.RetVTs[0] == MVT::isVoid) {
+ if (Int.IS.RetVTs.empty())
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
- } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
+ else if (Int.ModRef != CodeGenIntrinsic::NoMem)
// Has side-effects, requires chain.
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
- } else {
- // Otherwise, no chain.
+ else // Otherwise, no chain.
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
- }
- TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
+ TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1);
Children.insert(Children.begin(), IIDNode);
}
- TreePatternNode *Result = new TreePatternNode(Operator, Children);
- Result->setName(Dag->getName());
+ unsigned NumResults = GetNumNodeResults(Operator, CDP);
+ TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
+ Result->setName(OpName);
+
+ if (!Dag->getName().empty()) {
+ assert(Result->getName().empty());
+ Result->setName(Dag->getName());
+ }
return Result;
}
+/// SimplifyTree - See if we can simplify this tree to eliminate something that
+/// will never match in favor of something obvious that will. This is here
+/// strictly as a convenience to target authors because it allows them to write
+/// more type generic things and have useless type casts fold away.
+///
+/// This returns true if any change is made.
+static bool SimplifyTree(TreePatternNode *&N) {
+ if (N->isLeaf())
+ return false;
+
+ // If we have a bitconvert with a resolved type and if the source and
+ // destination types are the same, then the bitconvert is useless, remove it.
+ if (N->getOperator()->getName() == "bitconvert" &&
+ N->getExtType(0).isConcrete() &&
+ N->getExtType(0) == N->getChild(0)->getExtType(0) &&
+ N->getName().empty()) {
+ N = N->getChild(0);
+ SimplifyTree(N);
+ return true;
+ }
+
+ // Walk all children.
+ bool MadeChange = false;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ MadeChange |= SimplifyTree(Child);
+ N->setChild(i, Child);
+ }
+ return MadeChange;
+}
+
+
+
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Throw an exception if a type contradiction is found.
-bool TreePattern::InferAllTypes() {
+bool TreePattern::
+InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
+ if (NamedNodes.empty())
+ ComputeNamedNodes();
+
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+ MadeChange |= SimplifyTree(Trees[i]);
+ }
+
+ // If there are constraints on our named nodes, apply them.
+ for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
+ I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
+ SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
+
+ // If we have input named node types, propagate their types to the named
+ // values here.
+ if (InNamedTypes) {
+ // FIXME: Should be error?
+ assert(InNamedTypes->count(I->getKey()) &&
+ "Named node in output pattern but not input pattern?");
+
+ const SmallVectorImpl<TreePatternNode*> &InNodes =
+ InNamedTypes->find(I->getKey())->second;
+
+ // The input types should be fully resolved by now.
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ // If this node is a register class, and it is the root of the pattern
+ // then we're mapping something onto an input register. We allow
+ // changing the type of the input register in this case. This allows
+ // us to match things like:
+ // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
+ if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
+ continue;
+ }
+
+ assert(Nodes[i]->getNumTypes() == 1 &&
+ InNodes[0]->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+ MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
+ *this);
+ }
+ }
+
+ // If there are multiple nodes with the same name, they must all have the
+ // same type.
+ if (I->second.size() > 1) {
+ for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
+ TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
+ assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+
+ MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
+ MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
+ }
+ }
+ }
}
bool HasUnresolvedTypes = false;
@@ -1622,16 +1992,13 @@ void CodeGenDAGPatterns::ParseDefaultOperands() {
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string, TreePatternNode*> &InstInputs,
- std::vector<Record*> &InstImpInputs) {
+ std::map<std::string, TreePatternNode*> &InstInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
I->error("Input " + DI->getDef()->getName() + " must be named!");
- else if (DI && DI->getDef()->isSubClassOf("Register"))
- InstImpInputs.push_back(DI->getDef());
}
return false;
}
@@ -1677,10 +2044,9 @@ void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, TreePatternNode*>&InstResults,
- std::vector<Record*> &InstImpInputs,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
- bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+ bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
@@ -1704,15 +2070,15 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
+ if (Pat->getChild(i)->getNumTypes() == 0)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
- InstImpInputs, InstImpResults);
+ InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
- bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+ bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
@@ -1753,8 +2119,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
- InstInputs, InstResults,
- InstImpInputs, InstImpResults);
+ InstInputs, InstResults, InstImpResults);
}
//===----------------------------------------------------------------------===//
@@ -1766,10 +2131,12 @@ class InstAnalyzer {
bool &mayStore;
bool &mayLoad;
bool &HasSideEffects;
+ bool &IsVariadic;
public:
InstAnalyzer(const CodeGenDAGPatterns &cdp,
- bool &maystore, bool &mayload, bool &hse)
- : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
+ bool &maystore, bool &mayload, bool &hse, bool &isv)
+ : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse),
+ IsVariadic(isv) {
}
/// Analyze - Analyze the specified instruction, returning true if the
@@ -1818,6 +2185,7 @@ private:
if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
+ if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
// If this is an intrinsic, analyze it.
@@ -1837,12 +2205,13 @@ private:
static void InferFromPattern(const CodeGenInstruction &Inst,
bool &MayStore, bool &MayLoad,
- bool &HasSideEffects,
+ bool &HasSideEffects, bool &IsVariadic,
const CodeGenDAGPatterns &CDP) {
- MayStore = MayLoad = HasSideEffects = false;
+ MayStore = MayLoad = HasSideEffects = IsVariadic = false;
bool HadPattern =
- InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
+ InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic)
+ .Analyze(Inst.TheDef);
// InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
@@ -1880,6 +2249,9 @@ static void InferFromPattern(const CodeGenInstruction &Inst,
"which already inferred this.\n", Inst.TheDef->getName().c_str());
HasSideEffects = true;
}
+
+ if (Inst.isVariadic)
+ IsVariadic = true; // Can warn if we want.
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
@@ -1901,7 +2273,7 @@ void CodeGenDAGPatterns::ParseInstructions() {
std::vector<Record*> Results;
std::vector<Record*> Operands;
- CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
+ CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
if (InstInfo.OperandList.size() != 0) {
if (InstInfo.NumDefs == 0) {
@@ -1920,10 +2292,8 @@ void CodeGenDAGPatterns::ParseInstructions() {
// Create and insert the instruction.
std::vector<Record*> ImpResults;
- std::vector<Record*> ImpOperands;
Instructions.insert(std::make_pair(Instrs[i],
- DAGInstruction(0, Results, Operands, ImpResults,
- ImpOperands)));
+ DAGInstruction(0, Results, Operands, ImpResults)));
continue; // no pattern.
}
@@ -1945,20 +2315,19 @@ void CodeGenDAGPatterns::ParseInstructions() {
// in the instruction, including what reg class they are.
std::map<std::string, TreePatternNode*> InstResults;
- std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
- if (Pat->getExtTypeNum(0) != MVT::isVoid)
+ if (Pat->getNumTypes() != 0)
I->error("Top-level forms in instruction pattern should have"
" void types");
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
- InstImpInputs, InstImpResults);
+ InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
@@ -1968,11 +2337,11 @@ void CodeGenDAGPatterns::ParseInstructions() {
// Parse the operands list from the (ops) list, validating it.
assert(I->getArgList().empty() && "Args list should still be empty here!");
- CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
+ CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
- TreePatternNode *Res0Node = NULL;
+ TreePatternNode *Res0Node = 0;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.OperandList.size())
I->error("'" + InstResults.begin()->first +
@@ -2050,7 +2419,7 @@ void CodeGenDAGPatterns::ParseInstructions() {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children);
+ OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
@@ -2061,22 +2430,22 @@ void CodeGenDAGPatterns::ParseInstructions() {
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
- new TreePatternNode(I->getRecord(), ResultNodeOperands);
+ new TreePatternNode(I->getRecord(), ResultNodeOperands,
+ GetNumNodeResults(I->getRecord(), *this));
// Copy fully inferred output node type to instruction result pattern.
- if (NumResults > 0)
- ResultPattern->setTypes(Res0Node->getExtTypes());
+ for (unsigned i = 0; i != NumResults; ++i)
+ ResultPattern->setType(i, Res0Node->getExtType(i));
// Create and insert the instruction.
- // FIXME: InstImpResults and InstImpInputs should not be part of
- // DAGInstruction.
- DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
+ // FIXME: InstImpResults should not be part of DAGInstruction.
+ DAGInstruction TheInst(I, Results, Operands, InstImpResults);
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
// Use a temporary tree pattern to infer all types and make sure that the
// constructed result is correct. This depends on the instruction already
// being inserted into the Instructions map.
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
- Temp.InferAllTypes();
+ Temp.InferAllTypes(&I->getNamedNodesMap());
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
@@ -2165,24 +2534,6 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
if (SrcNames[I->first].first == 0)
Pattern->error("Pattern has input without matching name in output: $" +
I->first);
-
-#if 0
- const std::vector<unsigned char> &SrcTypeVec =
- SrcNames[I->first].first->getExtTypes();
- const std::vector<unsigned char> &DstTypeVec =
- I->second.first->getExtTypes();
- if (SrcTypeVec == DstTypeVec) continue;
-
- std::string SrcType, DstType;
- for (unsigned i = 0, e = SrcTypeVec.size(); i != e; ++i)
- SrcType += ":" + GetTypeName(SrcTypeVec[i]);
- for (unsigned i = 0, e = DstTypeVec.size(); i != e; ++i)
- DstType += ":" + GetTypeName(DstTypeVec[i]);
-
- Pattern->error("Variable $" + I->first +
- " has different types in source (" + SrcType +
- ") and dest (" + DstType + ") pattern!");
-#endif
}
// Scan all of the named values in the source pattern, rejecting them if the
@@ -2198,65 +2549,67 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
void CodeGenDAGPatterns::InferInstructionFlags() {
- std::map<std::string, CodeGenInstruction> &InstrDescs =
- Target.getInstructions();
- for (std::map<std::string, CodeGenInstruction>::iterator
- II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
- CodeGenInstruction &InstInfo = II->second;
+ const std::vector<const CodeGenInstruction*> &Instructions =
+ Target.getInstructionsByEnumValue();
+ for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
+ CodeGenInstruction &InstInfo =
+ const_cast<CodeGenInstruction &>(*Instructions[i]);
// Determine properties of the instruction from its pattern.
- bool MayStore, MayLoad, HasSideEffects;
- InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
+ bool MayStore, MayLoad, HasSideEffects, IsVariadic;
+ InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic,
+ *this);
InstInfo.mayStore = MayStore;
InstInfo.mayLoad = MayLoad;
InstInfo.hasSideEffects = HasSideEffects;
+ InstInfo.isVariadic = IsVariadic;
+ }
+}
+
+/// Given a pattern result with an unresolved type, see if we can find one
+/// instruction with an unresolved result type. Force this result type to an
+/// arbitrary element if it's possible types to converge results.
+static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
+ if (N->isLeaf())
+ return false;
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ if (ForceArbitraryInstResultType(N->getChild(i), TP))
+ return true;
+
+ if (!N->getOperator()->isSubClassOf("Instruction"))
+ return false;
+
+ // If this type is already concrete or completely unknown we can't do
+ // anything.
+ for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
+ if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
+ continue;
+
+ // Otherwise, force its type to the first possibility (an arbitrary choice).
+ if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
+ return true;
}
+
+ return false;
}
void CodeGenDAGPatterns::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
- DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
- DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
- Record *Operator = OpDef->getDef();
- TreePattern *Pattern;
- if (Operator->getName() != "parallel")
- Pattern = new TreePattern(Patterns[i], Tree, true, *this);
- else {
- std::vector<Init*> Values;
- RecTy *ListTy = 0;
- for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) {
- Values.push_back(Tree->getArg(j));
- TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j));
- if (TArg == 0) {
- errs() << "In dag: " << Tree->getAsString();
- errs() << " -- Untyped argument in pattern\n";
- assert(0 && "Untyped argument in pattern");
- }
- if (ListTy != 0) {
- ListTy = resolveTypes(ListTy, TArg->getType());
- if (ListTy == 0) {
- errs() << "In dag: " << Tree->getAsString();
- errs() << " -- Incompatible types in pattern arguments\n";
- assert(0 && "Incompatible types in pattern arguments");
- }
- }
- else {
- ListTy = TArg->getType();
- }
- }
- ListInit *LI = new ListInit(Values, new ListRecTy(ListTy));
- Pattern = new TreePattern(Patterns[i], LI, true, *this);
- }
+ Record *CurPattern = Patterns[i];
+ DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
+ TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
- ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
+ ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
if (LI->getSize() == 0) continue; // no pattern.
// Parse the instruction.
- TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
+ TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
// Inline pattern fragments into it.
Result->InlinePatternFragments();
@@ -2270,38 +2623,61 @@ void CodeGenDAGPatterns::ParsePatterns() {
do {
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
- InferredAllPatternTypes = Pattern->InferAllTypes();
+ InferredAllPatternTypes =
+ Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
- InferredAllResultTypes = Result->InferAllTypes();
+ InferredAllResultTypes =
+ Result->InferAllTypes(&Pattern->getNamedNodesMap());
+ IterateInference = false;
+
// Apply the type of the result to the source pattern. This helps us
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
- IterateInference = Pattern->getTree(0)->
- UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
- IterateInference |= Result->getTree(0)->
- UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
+ for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
+ Pattern->getTree(0)->getNumTypes());
+ i != e; ++i) {
+ IterateInference = Pattern->getTree(0)->
+ UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
+ IterateInference |= Result->getTree(0)->
+ UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
+ }
+
+ // If our iteration has converged and the input pattern's types are fully
+ // resolved but the result pattern is not fully resolved, we may have a
+ // situation where we have two instructions in the result pattern and
+ // the instructions require a common register class, but don't care about
+ // what actual MVT is used. This is actually a bug in our modelling:
+ // output patterns should have register classes, not MVTs.
+ //
+ // In any case, to handle this, we just go through and disambiguate some
+ // arbitrary types to the result pattern's nodes.
+ if (!IterateInference && InferredAllPatternTypes &&
+ !InferredAllResultTypes)
+ IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
+ *Result);
} while (IterateInference);
// Verify that we inferred enough types that we can do something with the
// pattern and result. If these fire the user has to add type casts.
if (!InferredAllPatternTypes)
Pattern->error("Could not infer all types in pattern!");
- if (!InferredAllResultTypes)
+ if (!InferredAllResultTypes) {
+ Pattern->dump();
Result->error("Could not infer all types in pattern result!");
+ }
// Validate that the input pattern is correct.
std::map<std::string, TreePatternNode*> InstInputs;
std::map<std::string, TreePatternNode*> InstResults;
- std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
InstInputs, InstResults,
- InstImpInputs, InstImpResults);
+ InstImpResults);
// Promote the xform function to be an explicit node if set.
TreePatternNode *DstPattern = Result->getOnlyTree();
@@ -2312,25 +2688,29 @@ void CodeGenDAGPatterns::ParsePatterns() {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children);
+ OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
DstPattern = Result->getOnlyTree();
if (!DstPattern->isLeaf())
DstPattern = new TreePatternNode(DstPattern->getOperator(),
- ResultNodeOperands);
- DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
+ ResultNodeOperands,
+ DstPattern->getNumTypes());
+
+ for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
+ DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
+
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
Temp.InferAllTypes();
AddPatternToMatch(Pattern,
- PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
- Pattern->getTree(0),
- Temp.getOnlyTree(), InstImpResults,
- Patterns[i]->getValueAsInt("AddedComplexity"),
- Patterns[i]->getID()));
+ PatternToMatch(CurPattern->getValueAsListInit("Predicates"),
+ Pattern->getTree(0),
+ Temp.getOnlyTree(), InstImpResults,
+ CurPattern->getValueAsInt("AddedComplexity"),
+ CurPattern->getID()));
}
}
@@ -2364,13 +2744,15 @@ static void CombineChildVariants(TreePatternNode *Orig,
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
- TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
+ TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
+ Orig->getNumTypes());
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFns(Orig->getPredicateFns());
R->setTransformFn(Orig->getTransformFn());
- R->setTypes(Orig->getExtTypes());
+ for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
+ R->setType(i, Orig->getExtType(i));
// If this pattern cannot match, do not include it as a variant.
std::string ErrString;