diff options
Diffstat (limited to 'utils/TableGen/DAGISelEmitter.cpp')
-rw-r--r-- | utils/TableGen/DAGISelEmitter.cpp | 4001 |
1 files changed, 4001 insertions, 0 deletions
diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp new file mode 100644 index 0000000..fcad318 --- /dev/null +++ b/utils/TableGen/DAGISelEmitter.cpp @@ -0,0 +1,4001 @@ +//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Chris Lattner and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tablegen backend emits a DAG instruction selector. +// +//===----------------------------------------------------------------------===// + +#include "DAGISelEmitter.h" +#include "Record.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Streams.h" +#include <algorithm> +#include <set> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Helpers for working with extended types. + +/// FilterVTs - Filter a list of VT's according to a predicate. +/// +template<typename T> +static std::vector<MVT::ValueType> +FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { + std::vector<MVT::ValueType> Result; + for (unsigned i = 0, e = InVTs.size(); i != e; ++i) + if (Filter(InVTs[i])) + Result.push_back(InVTs[i]); + return Result; +} + +template<typename T> +static std::vector<unsigned char> +FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { + std::vector<unsigned char> Result; + for (unsigned i = 0, e = InVTs.size(); i != e; ++i) + if (Filter((MVT::ValueType)InVTs[i])) + Result.push_back(InVTs[i]); + return Result; +} + +static std::vector<unsigned char> +ConvertVTs(const std::vector<MVT::ValueType> &InVTs) { + std::vector<unsigned char> Result; + for (unsigned i = 0, e = InVTs.size(); i != e; ++i) + Result.push_back(InVTs[i]); + return Result; +} + +static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, + const std::vector<unsigned char> &RHS) { + if (LHS.size() > RHS.size()) return false; + for (unsigned i = 0, e = LHS.size(); i != e; ++i) + if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) + return false; + return true; +} + +/// isExtIntegerVT - Return true if the specified extended value type vector +/// contains isInt or an integer value type. +static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { + assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); + return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); +} + +/// isExtFloatingPointVT - Return true if the specified extended value type +/// vector contains isFP or a FP value type. +static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { + assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); + return EVTs[0] == MVT::isFP || + !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); +} + +//===----------------------------------------------------------------------===// +// SDTypeConstraint implementation +// + +SDTypeConstraint::SDTypeConstraint(Record *R) { + OperandNo = R->getValueAsInt("OperandNum"); + + if (R->isSubClassOf("SDTCisVT")) { + ConstraintType = SDTCisVT; + x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); + } else if (R->isSubClassOf("SDTCisPtrTy")) { + ConstraintType = SDTCisPtrTy; + } else if (R->isSubClassOf("SDTCisInt")) { + ConstraintType = SDTCisInt; + } else if (R->isSubClassOf("SDTCisFP")) { + ConstraintType = SDTCisFP; + } else if (R->isSubClassOf("SDTCisSameAs")) { + ConstraintType = SDTCisSameAs; + x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); + } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { + ConstraintType = SDTCisVTSmallerThanOp; + x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = + R->getValueAsInt("OtherOperandNum"); + } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { + ConstraintType = SDTCisOpSmallerThanOp; + x.SDTCisOpSmallerThanOp_Info.BigOperandNum = + R->getValueAsInt("BigOperandNum"); + } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { + ConstraintType = SDTCisIntVectorOfSameSize; + x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = + R->getValueAsInt("OtherOpNum"); + } else { + cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; + exit(1); + } +} + +/// getOperandNum - Return the node corresponding to operand #OpNo in tree +/// N, which has NumResults results. +TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, + TreePatternNode *N, + unsigned NumResults) const { + assert(NumResults <= 1 && + "We only work with nodes with zero or one result so far!"); + + if (OpNo >= (NumResults + N->getNumChildren())) { + cerr << "Invalid operand number " << OpNo << " "; + N->dump(); + cerr << '\n'; + exit(1); + } + + if (OpNo < NumResults) + return N; // FIXME: need value # + else + return N->getChild(OpNo-NumResults); +} + +/// ApplyTypeConstraint - Given a node in a pattern, apply this type +/// constraint to the nodes operands. This returns true if it makes a +/// change, false otherwise. If a type contradiction is found, throw an +/// exception. +bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, + const SDNodeInfo &NodeInfo, + TreePattern &TP) const { + unsigned NumResults = NodeInfo.getNumResults(); + assert(NumResults <= 1 && + "We only work with nodes with zero or one result so far!"); + + // Check that the number of operands is sane. Negative operands -> varargs. + if (NodeInfo.getNumOperands() >= 0) { + if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) + TP.error(N->getOperator()->getName() + " node requires exactly " + + itostr(NodeInfo.getNumOperands()) + " operands!"); + } + + const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); + + TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); + + switch (ConstraintType) { + default: assert(0 && "Unknown constraint type!"); + case SDTCisVT: + // Operand must be a particular type. + return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); + case SDTCisPtrTy: { + // Operand must be same as target pointer type. + return NodeToApply->UpdateNodeType(MVT::iPTR, TP); + } + case SDTCisInt: { + // If there is only one integer type supported, this must be it. + std::vector<MVT::ValueType> IntVTs = + FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); + + // If we found exactly one supported integer type, apply it. + if (IntVTs.size() == 1) + return NodeToApply->UpdateNodeType(IntVTs[0], TP); + return NodeToApply->UpdateNodeType(MVT::isInt, TP); + } + case SDTCisFP: { + // If there is only one FP type supported, this must be it. + std::vector<MVT::ValueType> FPVTs = + FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); + + // If we found exactly one supported FP type, apply it. + if (FPVTs.size() == 1) + return NodeToApply->UpdateNodeType(FPVTs[0], TP); + return NodeToApply->UpdateNodeType(MVT::isFP, TP); + } + case SDTCisSameAs: { + TreePatternNode *OtherNode = + getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); + return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | + OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); + } + case SDTCisVTSmallerThanOp: { + // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must + // have an integer type that is smaller than the VT. + if (!NodeToApply->isLeaf() || + !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || + !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() + ->isSubClassOf("ValueType")) + TP.error(N->getOperator()->getName() + " expects a VT operand!"); + MVT::ValueType VT = + getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); + if (!MVT::isInteger(VT)) + TP.error(N->getOperator()->getName() + " VT operand must be integer!"); + + TreePatternNode *OtherNode = + getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); + + // It must be integer. + bool MadeChange = false; + MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); + + // This code only handles nodes that have one type set. Assert here so + // that we can change this if we ever need to deal with multiple value + // types at this point. + assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); + if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) + OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. + return false; + } + case SDTCisOpSmallerThanOp: { + TreePatternNode *BigOperand = + getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); + + // Both operands must be integer or FP, but we don't care which. + bool MadeChange = false; + + // This code does not currently handle nodes which have multiple types, + // where some types are integer, and some are fp. Assert that this is not + // the case. + assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && + isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && + !(isExtIntegerInVTs(BigOperand->getExtTypes()) && + isExtFloatingPointInVTs(BigOperand->getExtTypes())) && + "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); + if (isExtIntegerInVTs(NodeToApply->getExtTypes())) + MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); + else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) + MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); + if (isExtIntegerInVTs(BigOperand->getExtTypes())) + MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); + else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) + MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); + + std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); + + if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { + VTs = FilterVTs(VTs, MVT::isInteger); + } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { + VTs = FilterVTs(VTs, MVT::isFloatingPoint); + } else { + VTs.clear(); + } + + switch (VTs.size()) { + default: // Too many VT's to pick from. + case 0: break; // No info yet. + case 1: + // Only one VT of this flavor. Cannot ever satisify the constraints. + return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw + case 2: + // If we have exactly two possible types, the little operand must be the + // small one, the big operand should be the big one. Common with + // float/double for example. + assert(VTs[0] < VTs[1] && "Should be sorted!"); + MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); + MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); + break; + } + return MadeChange; + } + case SDTCisIntVectorOfSameSize: { + TreePatternNode *OtherOperand = + getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, + N, NumResults); + if (OtherOperand->hasTypeSet()) { + if (!MVT::isVector(OtherOperand->getTypeNum(0))) + TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); + MVT::ValueType IVT = OtherOperand->getTypeNum(0); + IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); + return NodeToApply->UpdateNodeType(IVT, TP); + } + return false; + } + } + return false; +} + + +//===----------------------------------------------------------------------===// +// SDNodeInfo implementation +// +SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { + EnumName = R->getValueAsString("Opcode"); + SDClassName = R->getValueAsString("SDClass"); + Record *TypeProfile = R->getValueAsDef("TypeProfile"); + NumResults = TypeProfile->getValueAsInt("NumResults"); + NumOperands = TypeProfile->getValueAsInt("NumOperands"); + + // Parse the properties. + Properties = 0; + std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); + for (unsigned i = 0, e = PropList.size(); i != e; ++i) { + if (PropList[i]->getName() == "SDNPCommutative") { + Properties |= 1 << SDNPCommutative; + } else if (PropList[i]->getName() == "SDNPAssociative") { + Properties |= 1 << SDNPAssociative; + } else if (PropList[i]->getName() == "SDNPHasChain") { + Properties |= 1 << SDNPHasChain; + } else if (PropList[i]->getName() == "SDNPOutFlag") { + Properties |= 1 << SDNPOutFlag; + } else if (PropList[i]->getName() == "SDNPInFlag") { + Properties |= 1 << SDNPInFlag; + } else if (PropList[i]->getName() == "SDNPOptInFlag") { + Properties |= 1 << SDNPOptInFlag; + } else { + cerr << "Unknown SD Node property '" << PropList[i]->getName() + << "' on node '" << R->getName() << "'!\n"; + exit(1); + } + } + + + // Parse the type constraints. + std::vector<Record*> ConstraintList = + TypeProfile->getValueAsListOfDefs("Constraints"); + TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); +} + +//===----------------------------------------------------------------------===// +// TreePatternNode implementation +// + +TreePatternNode::~TreePatternNode() { +#if 0 // FIXME: implement refcounted tree nodes! + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + delete getChild(i); +#endif +} + +/// UpdateNodeType - Set the node type of N to VT if VT contains +/// information. If N already contains a conflicting type, then throw an +/// exception. This returns true if any information was updated. +/// +bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, + TreePattern &TP) { + assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); + + if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) + return false; + if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { + setTypes(ExtVTs); + return true; + } + + if (getExtTypeNum(0) == MVT::iPTR) { + if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) + return false; + if (isExtIntegerInVTs(ExtVTs)) { + std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger); + if (FVTs.size()) { + setTypes(ExtVTs); + return true; + } + } + } + + if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { + assert(hasTypeSet() && "should be handled above!"); + std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); + if (getExtTypes() == FVTs) + return false; + setTypes(FVTs); + return true; + } + if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { + //assert(hasTypeSet() && "should be handled above!"); + std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); + if (getExtTypes() == FVTs) + return false; + if (FVTs.size()) { + setTypes(FVTs); + return true; + } + } + if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { + assert(hasTypeSet() && "should be handled above!"); + std::vector<unsigned char> FVTs = + FilterEVTs(getExtTypes(), MVT::isFloatingPoint); + if (getExtTypes() == FVTs) + return false; + setTypes(FVTs); + return true; + } + + // If we know this is an int or fp type, and we are told it is a specific one, + // take the advice. + // + // Similarly, we should probably set the type here to the intersection of + // {isInt|isFP} and ExtVTs + if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || + (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { + setTypes(ExtVTs); + return true; + } + if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { + setTypes(ExtVTs); + return true; + } + + if (isLeaf()) { + dump(); + cerr << " "; + TP.error("Type inference contradiction found in node!"); + } else { + TP.error("Type inference contradiction found in node " + + getOperator()->getName() + "!"); + } + return true; // unreachable +} + + +void TreePatternNode::print(std::ostream &OS) const { + if (isLeaf()) { + OS << *getLeafValue(); + } else { + OS << "(" << getOperator()->getName(); + } + + // FIXME: At some point we should handle printing all the value types for + // nodes that are multiply typed. + switch (getExtTypeNum(0)) { + case MVT::Other: OS << ":Other"; break; + case MVT::isInt: OS << ":isInt"; break; + case MVT::isFP : OS << ":isFP"; break; + case MVT::isUnknown: ; /*OS << ":?";*/ break; + case MVT::iPTR: OS << ":iPTR"; break; + default: { + std::string VTName = llvm::getName(getTypeNum(0)); + // Strip off MVT:: prefix if present. + if (VTName.substr(0,5) == "MVT::") + VTName = VTName.substr(5); + OS << ":" << VTName; + break; + } + } + + if (!isLeaf()) { + if (getNumChildren() != 0) { + OS << " "; + getChild(0)->print(OS); + for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { + OS << ", "; + getChild(i)->print(OS); + } + } + OS << ")"; + } + + if (!PredicateFn.empty()) + OS << "<<P:" << PredicateFn << ">>"; + if (TransformFn) + OS << "<<X:" << TransformFn->getName() << ">>"; + if (!getName().empty()) + OS << ":$" << getName(); + +} +void TreePatternNode::dump() const { + print(*cerr.stream()); +} + +/// isIsomorphicTo - Return true if this node is recursively isomorphic to +/// the specified node. For this comparison, all of the state of the node +/// is considered, except for the assigned name. Nodes with differing names +/// that are otherwise identical are considered isomorphic. +bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { + if (N == this) return true; + if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || + getPredicateFn() != N->getPredicateFn() || + getTransformFn() != N->getTransformFn()) + return false; + + if (isLeaf()) { + if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) + if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) + return DI->getDef() == NDI->getDef(); + return getLeafValue() == N->getLeafValue(); + } + + if (N->getOperator() != getOperator() || + N->getNumChildren() != getNumChildren()) return false; + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + if (!getChild(i)->isIsomorphicTo(N->getChild(i))) + return false; + return true; +} + +/// clone - Make a copy of this tree and all of its children. +/// +TreePatternNode *TreePatternNode::clone() const { + TreePatternNode *New; + if (isLeaf()) { + New = new TreePatternNode(getLeafValue()); + } else { + std::vector<TreePatternNode*> CChildren; + CChildren.reserve(Children.size()); + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + CChildren.push_back(getChild(i)->clone()); + New = new TreePatternNode(getOperator(), CChildren); + } + New->setName(getName()); + New->setTypes(getExtTypes()); + New->setPredicateFn(getPredicateFn()); + New->setTransformFn(getTransformFn()); + return New; +} + +/// SubstituteFormalArguments - Replace the formal arguments in this tree +/// with actual values specified by ArgMap. +void TreePatternNode:: +SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { + if (isLeaf()) return; + + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { + TreePatternNode *Child = getChild(i); + if (Child->isLeaf()) { + Init *Val = Child->getLeafValue(); + if (dynamic_cast<DefInit*>(Val) && + static_cast<DefInit*>(Val)->getDef()->getName() == "node") { + // We found a use of a formal argument, replace it with its value. + Child = ArgMap[Child->getName()]; + assert(Child && "Couldn't find formal argument!"); + setChild(i, Child); + } + } else { + getChild(i)->SubstituteFormalArguments(ArgMap); + } + } +} + + +/// InlinePatternFragments - If this pattern refers to any pattern +/// fragments, inline them into place, giving us a pattern without any +/// PatFrag references. +TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { + if (isLeaf()) return this; // nothing to do. + Record *Op = getOperator(); + + if (!Op->isSubClassOf("PatFrag")) { + // Just recursively inline children nodes. + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + setChild(i, getChild(i)->InlinePatternFragments(TP)); + return this; + } + + // Otherwise, we found a reference to a fragment. First, look up its + // TreePattern record. + TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); + + // Verify that we are passing the right number of operands. + if (Frag->getNumArgs() != Children.size()) + TP.error("'" + Op->getName() + "' fragment requires " + + utostr(Frag->getNumArgs()) + " operands!"); + + TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); + + // Resolve formal arguments to their actual value. + if (Frag->getNumArgs()) { + // Compute the map of formal to actual arguments. + std::map<std::string, TreePatternNode*> ArgMap; + for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) + ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); + + FragTree->SubstituteFormalArguments(ArgMap); + } + + FragTree->setName(getName()); + FragTree->UpdateNodeType(getExtTypes(), TP); + + // Get a new copy of this fragment to stitch into here. + //delete this; // FIXME: implement refcounting! + return FragTree; +} + +/// getImplicitType - Check to see if the specified record has an implicit +/// type which should be applied to it. This infer the type of register +/// references from the register file information, for example. +/// +static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, + TreePattern &TP) { + // Some common return values + std::vector<unsigned char> Unknown(1, MVT::isUnknown); + std::vector<unsigned char> Other(1, MVT::Other); + + // Check to see if this is a register or a register class... + if (R->isSubClassOf("RegisterClass")) { + if (NotRegisters) + return Unknown; + const CodeGenRegisterClass &RC = + TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); + return ConvertVTs(RC.getValueTypes()); + } else if (R->isSubClassOf("PatFrag")) { + // Pattern fragment types will be resolved when they are inlined. + return Unknown; + } else if (R->isSubClassOf("Register")) { + if (NotRegisters) + return Unknown; + const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); + return T.getRegisterVTs(R); + } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { + // Using a VTSDNode or CondCodeSDNode. + return Other; + } else if (R->isSubClassOf("ComplexPattern")) { + if (NotRegisters) + return Unknown; + std::vector<unsigned char> + ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); + return ComplexPat; + } else if (R->getName() == "ptr_rc") { + Other[0] = MVT::iPTR; + return Other; + } else if (R->getName() == "node" || R->getName() == "srcvalue" || + R->getName() == "zero_reg") { + // Placeholder. + return Unknown; + } + + TP.error("Unknown node flavor used in pattern: " + R->getName()); + return Other; +} + +/// ApplyTypeConstraints - Apply all of the type constraints relevent to +/// this node and its children in the tree. This returns true if it makes a +/// change, false otherwise. If a type contradiction is found, throw an +/// exception. +bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { + DAGISelEmitter &ISE = TP.getDAGISelEmitter(); + if (isLeaf()) { + if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { + // If it's a regclass or something else known, include the type. + return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); + } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { + // Int inits are always integers. :) + bool MadeChange = UpdateNodeType(MVT::isInt, TP); + + if (hasTypeSet()) { + // At some point, it may make sense for this tree pattern to have + // multiple types. Assert here that it does not, so we revisit this + // code when appropriate. + assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); + MVT::ValueType VT = getTypeNum(0); + for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) + assert(getTypeNum(i) == VT && "TreePattern has too many types!"); + + VT = getTypeNum(0); + if (VT != MVT::iPTR) { + unsigned Size = MVT::getSizeInBits(VT); + // Make sure that the value is representable for this type. + if (Size < 32) { + int Val = (II->getValue() << (32-Size)) >> (32-Size); + if (Val != II->getValue()) + TP.error("Sign-extended integer value '" + itostr(II->getValue())+ + "' is out of range for type '" + + getEnumName(getTypeNum(0)) + "'!"); + } + } + } + + return MadeChange; + } + return false; + } + + // special handling for set, which isn't really an SDNode. + if (getOperator()->getName() == "set") { + assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); + bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); + MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); + + // Types of operands must match. + MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); + MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); + MadeChange |= UpdateNodeType(MVT::isVoid, TP); + return MadeChange; + } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || + getOperator() == ISE.get_intrinsic_w_chain_sdnode() || + getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { + unsigned IID = + dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); + const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); + bool MadeChange = false; + + // Apply the result type to the node. + MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); + + if (getNumChildren() != Int.ArgVTs.size()) + TP.error("Intrinsic '" + Int.Name + "' expects " + + utostr(Int.ArgVTs.size()-1) + " operands, not " + + utostr(getNumChildren()-1) + " operands!"); + + // Apply type info to the intrinsic ID. + MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); + + for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { + MVT::ValueType OpVT = Int.ArgVTs[i]; + MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); + MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); + } + return MadeChange; + } else if (getOperator()->isSubClassOf("SDNode")) { + const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); + + bool MadeChange = NI.ApplyTypeConstraints(this, TP); + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); + // Branch, etc. do not produce results and top-level forms in instr pattern + // must have void types. + if (NI.getNumResults() == 0) + MadeChange |= UpdateNodeType(MVT::isVoid, TP); + + // If this is a vector_shuffle operation, apply types to the build_vector + // operation. The types of the integers don't matter, but this ensures they + // won't get checked. + if (getOperator()->getName() == "vector_shuffle" && + getChild(2)->getOperator()->getName() == "build_vector") { + TreePatternNode *BV = getChild(2); + const std::vector<MVT::ValueType> &LegalVTs + = ISE.getTargetInfo().getLegalValueTypes(); + MVT::ValueType LegalIntVT = MVT::Other; + for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) + if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { + LegalIntVT = LegalVTs[i]; + break; + } + assert(LegalIntVT != MVT::Other && "No legal integer VT?"); + + for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) + MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); + } + return MadeChange; + } else if (getOperator()->isSubClassOf("Instruction")) { + const DAGInstruction &Inst = ISE.getInstruction(getOperator()); + bool MadeChange = false; + unsigned NumResults = Inst.getNumResults(); + + assert(NumResults <= 1 && + "Only supports zero or one result instrs!"); + + CodeGenInstruction &InstInfo = + ISE.getTargetInfo().getInstruction(getOperator()->getName()); + // Apply the result type to the node + if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack. + MadeChange = UpdateNodeType(MVT::isVoid, TP); + } else { + Record *ResultNode = Inst.getResult(0); + + if (ResultNode->getName() == "ptr_rc") { + std::vector<unsigned char> VT; + VT.push_back(MVT::iPTR); + MadeChange = UpdateNodeType(VT, TP); + } else { + assert(ResultNode->isSubClassOf("RegisterClass") && + "Operands should be register classes!"); + + const CodeGenRegisterClass &RC = + ISE.getTargetInfo().getRegisterClass(ResultNode); + MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); + } + } + + unsigned ChildNo = 0; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { + Record *OperandNode = Inst.getOperand(i); + + // If the instruction expects a predicate or optional def operand, we + // codegen this by setting the operand to it's default value if it has a + // non-empty DefaultOps field. + if ((OperandNode->isSubClassOf("PredicateOperand") || + OperandNode->isSubClassOf("OptionalDefOperand")) && + !ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) + continue; + + // Verify that we didn't run out of provided operands. + if (ChildNo >= getNumChildren()) + TP.error("Instruction '" + getOperator()->getName() + + "' expects more operands than were provided."); + + MVT::ValueType VT; + TreePatternNode *Child = getChild(ChildNo++); + if (OperandNode->isSubClassOf("RegisterClass")) { + const CodeGenRegisterClass &RC = + ISE.getTargetInfo().getRegisterClass(OperandNode); + MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); + } else if (OperandNode->isSubClassOf("Operand")) { + VT = getValueType(OperandNode->getValueAsDef("Type")); + MadeChange |= Child->UpdateNodeType(VT, TP); + } else if (OperandNode->getName() == "ptr_rc") { + MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); + } else { + assert(0 && "Unknown operand type!"); + abort(); + } + MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); + } + + if (ChildNo != getNumChildren()) + TP.error("Instruction '" + getOperator()->getName() + + "' was provided too many operands!"); + + return MadeChange; + } else { + assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); + + // Node transforms always take one operand. + if (getNumChildren() != 1) + TP.error("Node transform '" + getOperator()->getName() + + "' requires one operand!"); + + // If either the output or input of the xform does not have exact + // type info. We assume they must be the same. Otherwise, it is perfectly + // legal to transform from one type to a completely different type. + if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { + bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); + MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); + return MadeChange; + } + return false; + } +} + +/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the +/// RHS of a commutative operation, not the on LHS. +static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { + if (!N->isLeaf() && N->getOperator()->getName() == "imm") + return true; + if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) + return true; + return false; +} + + +/// canPatternMatch - If it is impossible for this pattern to match on this +/// target, fill in Reason and return false. Otherwise, return true. This is +/// used as a santity check for .td files (to prevent people from writing stuff +/// that can never possibly work), and to prevent the pattern permuter from +/// generating stuff that is useless. +bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ + if (isLeaf()) return true; + + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + if (!getChild(i)->canPatternMatch(Reason, ISE)) + return false; + + // If this is an intrinsic, handle cases that would make it not match. For + // example, if an operand is required to be an immediate. + if (getOperator()->isSubClassOf("Intrinsic")) { + // TODO: + return true; + } + + // If this node is a commutative operator, check that the LHS isn't an + // immediate. + const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); + if (NodeInfo.hasProperty(SDNPCommutative)) { + // Scan all of the operands of the node and make sure that only the last one + // is a constant node, unless the RHS also is. + if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { + for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) + if (OnlyOnRHSOfCommutative(getChild(i))) { + Reason="Immediate value must be on the RHS of commutative operators!"; + return false; + } + } + } + + return true; +} + +//===----------------------------------------------------------------------===// +// TreePattern implementation +// + +TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, + DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { + isInputPattern = isInput; + for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) + Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); +} + +TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, + DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { + isInputPattern = isInput; + Trees.push_back(ParseTreePattern(Pat)); +} + +TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, + DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { + isInputPattern = isInput; + Trees.push_back(Pat); +} + + + +void TreePattern::error(const std::string &Msg) const { + dump(); + throw "In " + TheRecord->getName() + ": " + Msg; +} + +TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { + DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); + if (!OpDef) error("Pattern has unexpected operator type!"); + Record *Operator = OpDef->getDef(); + + if (Operator->isSubClassOf("ValueType")) { + // If the operator is a ValueType, then this must be "type cast" of a leaf + // node. + if (Dag->getNumArgs() != 1) + error("Type cast only takes one operand!"); + + Init *Arg = Dag->getArg(0); + TreePatternNode *New; + if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { + Record *R = DI->getDef(); + if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { + Dag->setArg(0, new DagInit(DI, + std::vector<std::pair<Init*, std::string> >())); + return ParseTreePattern(Dag); + } + New = new TreePatternNode(DI); + } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { + New = ParseTreePattern(DI); + } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { + New = new TreePatternNode(II); + if (!Dag->getArgName(0).empty()) + error("Constant int argument should not have a name!"); + } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { + // Turn this into an IntInit. + Init *II = BI->convertInitializerTo(new IntRecTy()); + if (II == 0 || !dynamic_cast<IntInit*>(II)) + error("Bits value must be constants!"); + + New = new TreePatternNode(dynamic_cast<IntInit*>(II)); + if (!Dag->getArgName(0).empty()) + error("Constant int argument should not have a name!"); + } else { + Arg->dump(); + error("Unknown leaf value for tree pattern!"); + return 0; + } + + // Apply the type cast. + New->UpdateNodeType(getValueType(Operator), *this); + New->setName(Dag->getArgName(0)); + return New; + } + + // Verify that this is something that makes sense for an operator. + if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && + !Operator->isSubClassOf("Instruction") && + !Operator->isSubClassOf("SDNodeXForm") && + !Operator->isSubClassOf("Intrinsic") && + Operator->getName() != "set") + error("Unrecognized node '" + Operator->getName() + "'!"); + + // Check to see if this is something that is illegal in an input pattern. + if (isInputPattern && (Operator->isSubClassOf("Instruction") || + Operator->isSubClassOf("SDNodeXForm"))) + error("Cannot use '" + Operator->getName() + "' in an input pattern!"); + + std::vector<TreePatternNode*> Children; + + for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { + Init *Arg = Dag->getArg(i); + if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { + Children.push_back(ParseTreePattern(DI)); + if (Children.back()->getName().empty()) + Children.back()->setName(Dag->getArgName(i)); + } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { + Record *R = DefI->getDef(); + // Direct reference to a leaf DagNode or PatFrag? Turn it into a + // TreePatternNode if its own. + if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { + Dag->setArg(i, new DagInit(DefI, + std::vector<std::pair<Init*, std::string> >())); + --i; // Revisit this node... + } else { + TreePatternNode *Node = new TreePatternNode(DefI); + Node->setName(Dag->getArgName(i)); + Children.push_back(Node); + + // Input argument? + if (R->getName() == "node") { + if (Dag->getArgName(i).empty()) + error("'node' argument requires a name to match with operand list"); + Args.push_back(Dag->getArgName(i)); + } + } + } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { + TreePatternNode *Node = new TreePatternNode(II); + if (!Dag->getArgName(i).empty()) + error("Constant int argument should not have a name!"); + Children.push_back(Node); + } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { + // Turn this into an IntInit. + Init *II = BI->convertInitializerTo(new IntRecTy()); + if (II == 0 || !dynamic_cast<IntInit*>(II)) + error("Bits value must be constants!"); + + TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); + if (!Dag->getArgName(i).empty()) + error("Constant int argument should not have a name!"); + Children.push_back(Node); + } else { + cerr << '"'; + Arg->dump(); + cerr << "\": "; + error("Unknown leaf value for tree pattern!"); + } + } + + // If the operator is an intrinsic, then this is just syntactic sugar for for + // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and + // convert the intrinsic name to a number. + if (Operator->isSubClassOf("Intrinsic")) { + const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); + unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; + + // If this intrinsic returns void, it must have side-effects and thus a + // chain. + if (Int.ArgVTs[0] == MVT::isVoid) { + Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); + } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { + // Has side-effects, requires chain. + Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); + } else { + // Otherwise, no chain. + Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); + } + + TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); + Children.insert(Children.begin(), IIDNode); + } + + return new TreePatternNode(Operator, Children); +} + +/// InferAllTypes - Infer/propagate as many types throughout the expression +/// patterns as possible. Return true if all types are infered, false +/// otherwise. Throw an exception if a type contradiction is found. +bool TreePattern::InferAllTypes() { + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) + MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); + } + + bool HasUnresolvedTypes = false; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) + HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); + return !HasUnresolvedTypes; +} + +void TreePattern::print(std::ostream &OS) const { + OS << getRecord()->getName(); + if (!Args.empty()) { + OS << "(" << Args[0]; + for (unsigned i = 1, e = Args.size(); i != e; ++i) + OS << ", " << Args[i]; + OS << ")"; + } + OS << ": "; + + if (Trees.size() > 1) + OS << "[\n"; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) { + OS << "\t"; + Trees[i]->print(OS); + OS << "\n"; + } + + if (Trees.size() > 1) + OS << "]\n"; +} + +void TreePattern::dump() const { print(*cerr.stream()); } + + + +//===----------------------------------------------------------------------===// +// DAGISelEmitter implementation +// + +// Parse all of the SDNode definitions for the target, populating SDNodes. +void DAGISelEmitter::ParseNodeInfo() { + std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); + while (!Nodes.empty()) { + SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); + Nodes.pop_back(); + } + + // Get the buildin intrinsic nodes. + intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); + intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); + intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); +} + +/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms +/// map, and emit them to the file as functions. +void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { + OS << "\n// Node transformations.\n"; + std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); + while (!Xforms.empty()) { + Record *XFormNode = Xforms.back(); + Record *SDNode = XFormNode->getValueAsDef("Opcode"); + std::string Code = XFormNode->getValueAsCode("XFormFunction"); + SDNodeXForms.insert(std::make_pair(XFormNode, + std::make_pair(SDNode, Code))); + + if (!Code.empty()) { + std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline SDOperand Transform_" << XFormNode->getName() + << "(SDNode *" << C2 << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + OS << Code << "\n}\n"; + } + + Xforms.pop_back(); + } +} + +void DAGISelEmitter::ParseComplexPatterns() { + std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); + while (!AMs.empty()) { + ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); + AMs.pop_back(); + } +} + + +/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td +/// file, building up the PatternFragments map. After we've collected them all, +/// inline fragments together as necessary, so that there are no references left +/// inside a pattern fragment to a pattern fragment. +/// +/// This also emits all of the predicate functions to the output file. +/// +void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { + std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); + + // First step, parse all of the fragments and emit predicate functions. + OS << "\n// Predicate functions.\n"; + for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { + DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); + TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); + PatternFragments[Fragments[i]] = P; + + // Validate the argument list, converting it to map, to discard duplicates. + std::vector<std::string> &Args = P->getArgList(); + std::set<std::string> OperandsMap(Args.begin(), Args.end()); + + if (OperandsMap.count("")) + P->error("Cannot have unnamed 'node' values in pattern fragment!"); + + // Parse the operands list. + DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); + DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); + if (!OpsOp || OpsOp->getDef()->getName() != "ops") + P->error("Operands list should start with '(ops ... '!"); + + // Copy over the arguments. + Args.clear(); + for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { + if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || + static_cast<DefInit*>(OpsList->getArg(j))-> + getDef()->getName() != "node") + P->error("Operands list should all be 'node' values."); + if (OpsList->getArgName(j).empty()) + P->error("Operands list should have names for each operand!"); + if (!OperandsMap.count(OpsList->getArgName(j))) + P->error("'" + OpsList->getArgName(j) + + "' does not occur in pattern or was multiply specified!"); + OperandsMap.erase(OpsList->getArgName(j)); + Args.push_back(OpsList->getArgName(j)); + } + + if (!OperandsMap.empty()) + P->error("Operands list does not contain an entry for operand '" + + *OperandsMap.begin() + "'!"); + + // If there is a code init for this fragment, emit the predicate code and + // keep track of the fact that this fragment uses it. + std::string Code = Fragments[i]->getValueAsCode("Predicate"); + if (!Code.empty()) { + if (P->getOnlyTree()->isLeaf()) + OS << "inline bool Predicate_" << Fragments[i]->getName() + << "(SDNode *N) {\n"; + else { + std::string ClassName = + getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline bool Predicate_" << Fragments[i]->getName() + << "(SDNode *" << C2 << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + } + OS << Code << "\n}\n"; + P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); + } + + // If there is a node transformation corresponding to this, keep track of + // it. + Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); + if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? + P->getOnlyTree()->setTransformFn(Transform); + } + + OS << "\n\n"; + + // Now that we've parsed all of the tree fragments, do a closure on them so + // that there are not references to PatFrags left inside of them. + for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), + E = PatternFragments.end(); I != E; ++I) { + TreePattern *ThePat = I->second; + ThePat->InlinePatternFragments(); + + // Infer as many types as possible. Don't worry about it if we don't infer + // all of them, some may depend on the inputs of the pattern. + try { + ThePat->InferAllTypes(); + } catch (...) { + // If this pattern fragment is not supported by this target (no types can + // satisfy its constraints), just ignore it. If the bogus pattern is + // actually used by instructions, the type consistency error will be + // reported there. + } + + // If debugging, print out the pattern fragment result. + DEBUG(ThePat->dump()); + } +} + +void DAGISelEmitter::ParseDefaultOperands() { + std::vector<Record*> DefaultOps[2]; + DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); + DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); + + // Find some SDNode. + assert(!SDNodes.empty() && "No SDNodes parsed?"); + Init *SomeSDNode = new DefInit(SDNodes.begin()->first); + + for (unsigned iter = 0; iter != 2; ++iter) { + for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { + DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); + + // Clone the DefaultInfo dag node, changing the operator from 'ops' to + // SomeSDnode so that we can parse this. + std::vector<std::pair<Init*, std::string> > Ops; + for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) + Ops.push_back(std::make_pair(DefaultInfo->getArg(op), + DefaultInfo->getArgName(op))); + DagInit *DI = new DagInit(SomeSDNode, Ops); + + // Create a TreePattern to parse this. + TreePattern P(DefaultOps[iter][i], DI, false, *this); + assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); + + // Copy the operands over into a DAGDefaultOperand. + DAGDefaultOperand DefaultOpInfo; + + TreePatternNode *T = P.getTree(0); + for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { + TreePatternNode *TPN = T->getChild(op); + while (TPN->ApplyTypeConstraints(P, false)) + /* Resolve all types */; + + if (TPN->ContainsUnresolvedType()) + if (iter == 0) + throw "Value #" + utostr(i) + " of PredicateOperand '" + + DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; + else + throw "Value #" + utostr(i) + " of OptionalDefOperand '" + + DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; + + DefaultOpInfo.DefaultOps.push_back(TPN); + } + + // Insert it into the DefaultOperands map so we can find it later. + DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; + } + } +} + +/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an +/// instruction input. Return true if this is a real use. +static bool HandleUse(TreePattern *I, TreePatternNode *Pat, + std::map<std::string, TreePatternNode*> &InstInputs, + std::vector<Record*> &InstImpInputs) { + // No name -> not interesting. + if (Pat->getName().empty()) { + if (Pat->isLeaf()) { + DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); + if (DI && DI->getDef()->isSubClassOf("RegisterClass")) + I->error("Input " + DI->getDef()->getName() + " must be named!"); + else if (DI && DI->getDef()->isSubClassOf("Register")) + InstImpInputs.push_back(DI->getDef()); + } + return false; + } + + Record *Rec; + if (Pat->isLeaf()) { + DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); + if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); + Rec = DI->getDef(); + } else { + assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); + Rec = Pat->getOperator(); + } + + // SRCVALUE nodes are ignored. + if (Rec->getName() == "srcvalue") + return false; + + TreePatternNode *&Slot = InstInputs[Pat->getName()]; + if (!Slot) { + Slot = Pat; + } else { + Record *SlotRec; + if (Slot->isLeaf()) { + SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); + } else { + assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); + SlotRec = Slot->getOperator(); + } + + // Ensure that the inputs agree if we've already seen this input. + if (Rec != SlotRec) + I->error("All $" + Pat->getName() + " inputs must agree with each other"); + if (Slot->getExtTypes() != Pat->getExtTypes()) + I->error("All $" + Pat->getName() + " inputs must agree with each other"); + } + return true; +} + +/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is +/// part of "I", the instruction), computing the set of inputs and outputs of +/// the pattern. Report errors if we see anything naughty. +void DAGISelEmitter:: +FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, + std::map<std::string, TreePatternNode*> &InstInputs, + std::map<std::string, TreePatternNode*>&InstResults, + std::vector<Record*> &InstImpInputs, + std::vector<Record*> &InstImpResults) { + if (Pat->isLeaf()) { + bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); + if (!isUse && Pat->getTransformFn()) + I->error("Cannot specify a transform function for a non-input value!"); + return; + } else if (Pat->getOperator()->getName() != "set") { + // If this is not a set, verify that the children nodes are not void typed, + // and recurse. + for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { + if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) + I->error("Cannot have void nodes inside of patterns!"); + FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, + InstImpInputs, InstImpResults); + } + + // If this is a non-leaf node with no children, treat it basically as if + // it were a leaf. This handles nodes like (imm). + bool isUse = false; + if (Pat->getNumChildren() == 0) + isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); + + if (!isUse && Pat->getTransformFn()) + I->error("Cannot specify a transform function for a non-input value!"); + return; + } + + // Otherwise, this is a set, validate and collect instruction results. + if (Pat->getNumChildren() == 0) + I->error("set requires operands!"); + else if (Pat->getNumChildren() & 1) + I->error("set requires an even number of operands"); + + if (Pat->getTransformFn()) + I->error("Cannot specify a transform function on a set node!"); + + // Check the set destinations. + unsigned NumValues = Pat->getNumChildren()/2; + for (unsigned i = 0; i != NumValues; ++i) { + TreePatternNode *Dest = Pat->getChild(i); + if (!Dest->isLeaf()) + I->error("set destination should be a register!"); + + DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); + if (!Val) + I->error("set destination should be a register!"); + + if (Val->getDef()->isSubClassOf("RegisterClass") || + Val->getDef()->getName() == "ptr_rc") { + if (Dest->getName().empty()) + I->error("set destination must have a name!"); + if (InstResults.count(Dest->getName())) + I->error("cannot set '" + Dest->getName() +"' multiple times"); + InstResults[Dest->getName()] = Dest; + } else if (Val->getDef()->isSubClassOf("Register")) { + InstImpResults.push_back(Val->getDef()); + } else { + I->error("set destination should be a register!"); + } + + // Verify and collect info from the computation. + FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), + InstInputs, InstResults, + InstImpInputs, InstImpResults); + } +} + +/// ParseInstructions - Parse all of the instructions, inlining and resolving +/// any fragments involved. This populates the Instructions list with fully +/// resolved instructions. +void DAGISelEmitter::ParseInstructions() { + std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); + + for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { + ListInit *LI = 0; + + if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) + LI = Instrs[i]->getValueAsListInit("Pattern"); + + // If there is no pattern, only collect minimal information about the + // instruction for its operand list. We have to assume that there is one + // result, as we have no detailed info. + if (!LI || LI->getSize() == 0) { + std::vector<Record*> Results; + std::vector<Record*> Operands; + + CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); + + if (InstInfo.OperandList.size() != 0) { + // FIXME: temporary hack... + if (InstInfo.noResults) { + // These produce no results + for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) + Operands.push_back(InstInfo.OperandList[j].Rec); + } else { + // Assume the first operand is the result. + Results.push_back(InstInfo.OperandList[0].Rec); + + // The rest are inputs. + for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) + Operands.push_back(InstInfo.OperandList[j].Rec); + } + } + + // Create and insert the instruction. + std::vector<Record*> ImpResults; + std::vector<Record*> ImpOperands; + Instructions.insert(std::make_pair(Instrs[i], + DAGInstruction(0, Results, Operands, ImpResults, + ImpOperands))); + continue; // no pattern. + } + + // Parse the instruction. + TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); + // Inline pattern fragments into it. + I->InlinePatternFragments(); + + // Infer as many types as possible. If we cannot infer all of them, we can + // never do anything with this instruction pattern: report it to the user. + if (!I->InferAllTypes()) + I->error("Could not infer all types in pattern!"); + + // InstInputs - Keep track of all of the inputs of the instruction, along + // with the record they are declared as. + std::map<std::string, TreePatternNode*> InstInputs; + + // InstResults - Keep track of all the virtual registers that are 'set' + // in the instruction, including what reg class they are. + std::map<std::string, TreePatternNode*> InstResults; + + std::vector<Record*> InstImpInputs; + std::vector<Record*> InstImpResults; + + // Verify that the top-level forms in the instruction are of void type, and + // fill in the InstResults map. + for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { + TreePatternNode *Pat = I->getTree(j); + if (Pat->getExtTypeNum(0) != MVT::isVoid) + I->error("Top-level forms in instruction pattern should have" + " void types"); + + // Find inputs and outputs, and verify the structure of the uses/defs. + FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, + InstImpInputs, InstImpResults); + } + + // Now that we have inputs and outputs of the pattern, inspect the operands + // list for the instruction. This determines the order that operands are + // added to the machine instruction the node corresponds to. + unsigned NumResults = InstResults.size(); + + // Parse the operands list from the (ops) list, validating it. + assert(I->getArgList().empty() && "Args list should still be empty here!"); + CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); + + // Check that all of the results occur first in the list. + std::vector<Record*> Results; + TreePatternNode *Res0Node = NULL; + for (unsigned i = 0; i != NumResults; ++i) { + if (i == CGI.OperandList.size()) + I->error("'" + InstResults.begin()->first + + "' set but does not appear in operand list!"); + const std::string &OpName = CGI.OperandList[i].Name; + + // Check that it exists in InstResults. + TreePatternNode *RNode = InstResults[OpName]; + if (RNode == 0) + I->error("Operand $" + OpName + " does not exist in operand list!"); + + if (i == 0) + Res0Node = RNode; + Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); + if (R == 0) + I->error("Operand $" + OpName + " should be a set destination: all " + "outputs must occur before inputs in operand list!"); + + if (CGI.OperandList[i].Rec != R) + I->error("Operand $" + OpName + " class mismatch!"); + + // Remember the return type. + Results.push_back(CGI.OperandList[i].Rec); + + // Okay, this one checks out. + InstResults.erase(OpName); + } + + // Loop over the inputs next. Make a copy of InstInputs so we can destroy + // the copy while we're checking the inputs. + std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); + + std::vector<TreePatternNode*> ResultNodeOperands; + std::vector<Record*> Operands; + for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { + CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; + const std::string &OpName = Op.Name; + if (OpName.empty()) + I->error("Operand #" + utostr(i) + " in operands list has no name!"); + + if (!InstInputsCheck.count(OpName)) { + // If this is an predicate operand or optional def operand with an + // DefaultOps set filled in, we can ignore this. When we codegen it, + // we will do so as always executed. + if (Op.Rec->isSubClassOf("PredicateOperand") || + Op.Rec->isSubClassOf("OptionalDefOperand")) { + // Does it have a non-empty DefaultOps field? If so, ignore this + // operand. + if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) + continue; + } + I->error("Operand $" + OpName + + " does not appear in the instruction pattern"); + } + TreePatternNode *InVal = InstInputsCheck[OpName]; + InstInputsCheck.erase(OpName); // It occurred, remove from map. + + if (InVal->isLeaf() && + dynamic_cast<DefInit*>(InVal->getLeafValue())) { + Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); + if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) + I->error("Operand $" + OpName + "'s register class disagrees" + " between the operand and pattern"); + } + Operands.push_back(Op.Rec); + + // Construct the result for the dest-pattern operand list. + TreePatternNode *OpNode = InVal->clone(); + + // No predicate is useful on the result. + OpNode->setPredicateFn(""); + + // Promote the xform function to be an explicit node if set. + if (Record *Xform = OpNode->getTransformFn()) { + OpNode->setTransformFn(0); + std::vector<TreePatternNode*> Children; + Children.push_back(OpNode); + OpNode = new TreePatternNode(Xform, Children); + } + + ResultNodeOperands.push_back(OpNode); + } + + if (!InstInputsCheck.empty()) + I->error("Input operand $" + InstInputsCheck.begin()->first + + " occurs in pattern but not in operands list!"); + + TreePatternNode *ResultPattern = + new TreePatternNode(I->getRecord(), ResultNodeOperands); + // Copy fully inferred output node type to instruction result pattern. + if (NumResults > 0) + ResultPattern->setTypes(Res0Node->getExtTypes()); + + // Create and insert the instruction. + DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); + Instructions.insert(std::make_pair(I->getRecord(), TheInst)); + + // Use a temporary tree pattern to infer all types and make sure that the + // constructed result is correct. This depends on the instruction already + // being inserted into the Instructions map. + TreePattern Temp(I->getRecord(), ResultPattern, false, *this); + Temp.InferAllTypes(); + + DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; + TheInsertedInst.setResultPattern(Temp.getOnlyTree()); + + DEBUG(I->dump()); + } + + // If we can, convert the instructions to be patterns that are matched! + for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), + E = Instructions.end(); II != E; ++II) { + DAGInstruction &TheInst = II->second; + TreePattern *I = TheInst.getPattern(); + if (I == 0) continue; // No pattern. + + if (I->getNumTrees() != 1) { + cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; + continue; + } + TreePatternNode *Pattern = I->getTree(0); + TreePatternNode *SrcPattern; + if (Pattern->getOperator()->getName() == "set") { + if (Pattern->getNumChildren() != 2) + continue; // Not a set of a single value (not handled so far) + + SrcPattern = Pattern->getChild(1)->clone(); + } else{ + // Not a set (store or something?) + SrcPattern = Pattern; + } + + std::string Reason; + if (!SrcPattern->canPatternMatch(Reason, *this)) + I->error("Instruction can never match: " + Reason); + + Record *Instr = II->first; + TreePatternNode *DstPattern = TheInst.getResultPattern(); + PatternsToMatch. + push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), + SrcPattern, DstPattern, + Instr->getValueAsInt("AddedComplexity"))); + } +} + +void DAGISelEmitter::ParsePatterns() { + std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); + + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); + TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); + + // Inline pattern fragments into it. + Pattern->InlinePatternFragments(); + + ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); + if (LI->getSize() == 0) continue; // no pattern. + + // Parse the instruction. + TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); + + // Inline pattern fragments into it. + Result->InlinePatternFragments(); + + if (Result->getNumTrees() != 1) + Result->error("Cannot handle instructions producing instructions " + "with temporaries yet!"); + + bool IterateInference; + bool InferredAllPatternTypes, InferredAllResultTypes; + do { + // Infer as many types as possible. If we cannot infer all of them, we + // can never do anything with this pattern: report it to the user. + InferredAllPatternTypes = Pattern->InferAllTypes(); + + // Infer as many types as possible. If we cannot infer all of them, we + // can never do anything with this pattern: report it to the user. + InferredAllResultTypes = Result->InferAllTypes(); + + // Apply the type of the result to the source pattern. This helps us + // resolve cases where the input type is known to be a pointer type (which + // is considered resolved), but the result knows it needs to be 32- or + // 64-bits. Infer the other way for good measure. + IterateInference = Pattern->getOnlyTree()-> + UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); + IterateInference |= Result->getOnlyTree()-> + UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); + } while (IterateInference); + + // Verify that we inferred enough types that we can do something with the + // pattern and result. If these fire the user has to add type casts. + if (!InferredAllPatternTypes) + Pattern->error("Could not infer all types in pattern!"); + if (!InferredAllResultTypes) + Result->error("Could not infer all types in pattern result!"); + + // Validate that the input pattern is correct. + { + std::map<std::string, TreePatternNode*> InstInputs; + std::map<std::string, TreePatternNode*> InstResults; + std::vector<Record*> InstImpInputs; + std::vector<Record*> InstImpResults; + FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), + InstInputs, InstResults, + InstImpInputs, InstImpResults); + } + + // Promote the xform function to be an explicit node if set. + std::vector<TreePatternNode*> ResultNodeOperands; + TreePatternNode *DstPattern = Result->getOnlyTree(); + for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { + TreePatternNode *OpNode = DstPattern->getChild(ii); + if (Record *Xform = OpNode->getTransformFn()) { + OpNode->setTransformFn(0); + std::vector<TreePatternNode*> Children; + Children.push_back(OpNode); + OpNode = new TreePatternNode(Xform, Children); + } + ResultNodeOperands.push_back(OpNode); + } + DstPattern = Result->getOnlyTree(); + if (!DstPattern->isLeaf()) + DstPattern = new TreePatternNode(DstPattern->getOperator(), + ResultNodeOperands); + DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); + TreePattern Temp(Result->getRecord(), DstPattern, false, *this); + Temp.InferAllTypes(); + + std::string Reason; + if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) + Pattern->error("Pattern can never match: " + Reason); + + PatternsToMatch. + push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), + Pattern->getOnlyTree(), + Temp.getOnlyTree(), + Patterns[i]->getValueAsInt("AddedComplexity"))); + } +} + +/// CombineChildVariants - Given a bunch of permutations of each child of the +/// 'operator' node, put them together in all possible ways. +static void CombineChildVariants(TreePatternNode *Orig, + const std::vector<std::vector<TreePatternNode*> > &ChildVariants, + std::vector<TreePatternNode*> &OutVariants, + DAGISelEmitter &ISE) { + // Make sure that each operand has at least one variant to choose from. + for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) + if (ChildVariants[i].empty()) + return; + + // The end result is an all-pairs construction of the resultant pattern. + std::vector<unsigned> Idxs; + Idxs.resize(ChildVariants.size()); + bool NotDone = true; + while (NotDone) { + // Create the variant and add it to the output list. + std::vector<TreePatternNode*> NewChildren; + for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) + NewChildren.push_back(ChildVariants[i][Idxs[i]]); + TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); + + // Copy over properties. + R->setName(Orig->getName()); + R->setPredicateFn(Orig->getPredicateFn()); + R->setTransformFn(Orig->getTransformFn()); + R->setTypes(Orig->getExtTypes()); + + // If this pattern cannot every match, do not include it as a variant. + std::string ErrString; + if (!R->canPatternMatch(ErrString, ISE)) { + delete R; + } else { + bool AlreadyExists = false; + + // Scan to see if this pattern has already been emitted. We can get + // duplication due to things like commuting: + // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) + // which are the same pattern. Ignore the dups. + for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) + if (R->isIsomorphicTo(OutVariants[i])) { + AlreadyExists = true; + break; + } + + if (AlreadyExists) + delete R; + else + OutVariants.push_back(R); + } + + // Increment indices to the next permutation. + NotDone = false; + // Look for something we can increment without causing a wrap-around. + for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { + if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { + NotDone = true; // Found something to increment. + break; + } + Idxs[IdxsIdx] = 0; + } + } +} + +/// CombineChildVariants - A helper function for binary operators. +/// +static void CombineChildVariants(TreePatternNode *Orig, + const std::vector<TreePatternNode*> &LHS, + const std::vector<TreePatternNode*> &RHS, + std::vector<TreePatternNode*> &OutVariants, + DAGISelEmitter &ISE) { + std::vector<std::vector<TreePatternNode*> > ChildVariants; + ChildVariants.push_back(LHS); + ChildVariants.push_back(RHS); + CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); +} + + +static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, + std::vector<TreePatternNode *> &Children) { + assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); + Record *Operator = N->getOperator(); + + // Only permit raw nodes. + if (!N->getName().empty() || !N->getPredicateFn().empty() || + N->getTransformFn()) { + Children.push_back(N); + return; + } + + if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) + Children.push_back(N->getChild(0)); + else + GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); + + if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) + Children.push_back(N->getChild(1)); + else + GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); +} + +/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of +/// the (potentially recursive) pattern by using algebraic laws. +/// +static void GenerateVariantsOf(TreePatternNode *N, + std::vector<TreePatternNode*> &OutVariants, + DAGISelEmitter &ISE) { + // We cannot permute leaves. + if (N->isLeaf()) { + OutVariants.push_back(N); + return; + } + + // Look up interesting info about the node. + const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); + + // If this node is associative, reassociate. + if (NodeInfo.hasProperty(SDNPAssociative)) { + // Reassociate by pulling together all of the linked operators + std::vector<TreePatternNode*> MaximalChildren; + GatherChildrenOfAssociativeOpcode(N, MaximalChildren); + + // Only handle child sizes of 3. Otherwise we'll end up trying too many + // permutations. + if (MaximalChildren.size() == 3) { + // Find the variants of all of our maximal children. + std::vector<TreePatternNode*> AVariants, BVariants, CVariants; + GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); + GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); + GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); + + // There are only two ways we can permute the tree: + // (A op B) op C and A op (B op C) + // Within these forms, we can also permute A/B/C. + + // Generate legal pair permutations of A/B/C. + std::vector<TreePatternNode*> ABVariants; + std::vector<TreePatternNode*> BAVariants; + std::vector<TreePatternNode*> ACVariants; + std::vector<TreePatternNode*> CAVariants; + std::vector<TreePatternNode*> BCVariants; + std::vector<TreePatternNode*> CBVariants; + CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); + CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); + CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); + CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); + CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); + CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); + + // Combine those into the result: (x op x) op x + CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); + CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); + CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); + CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); + CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); + CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); + + // Combine those into the result: x op (x op x) + CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); + CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); + CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); + CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); + CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); + CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); + return; + } + } + + // Compute permutations of all children. + std::vector<std::vector<TreePatternNode*> > ChildVariants; + ChildVariants.resize(N->getNumChildren()); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); + + // Build all permutations based on how the children were formed. + CombineChildVariants(N, ChildVariants, OutVariants, ISE); + + // If this node is commutative, consider the commuted order. + if (NodeInfo.hasProperty(SDNPCommutative)) { + assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); + // Don't count children which are actually register references. + unsigned NC = 0; + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (Child->isLeaf()) + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + Record *RR = DI->getDef(); + if (RR->isSubClassOf("Register")) + continue; + } + NC++; + } + // Consider the commuted order. + if (NC == 2) + CombineChildVariants(N, ChildVariants[1], ChildVariants[0], + OutVariants, ISE); + } +} + + +// GenerateVariants - Generate variants. For example, commutative patterns can +// match multiple ways. Add them to PatternsToMatch as well. +void DAGISelEmitter::GenerateVariants() { + + DOUT << "Generating instruction variants.\n"; + + // Loop over all of the patterns we've collected, checking to see if we can + // generate variants of the instruction, through the exploitation of + // identities. This permits the target to provide agressive matching without + // the .td file having to contain tons of variants of instructions. + // + // Note that this loop adds new patterns to the PatternsToMatch list, but we + // intentionally do not reconsider these. Any variants of added patterns have + // already been added. + // + for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { + std::vector<TreePatternNode*> Variants; + GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); + + assert(!Variants.empty() && "Must create at least original variant!"); + Variants.erase(Variants.begin()); // Remove the original pattern. + + if (Variants.empty()) // No variants for this pattern. + continue; + + DOUT << "FOUND VARIANTS OF: "; + DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); + DOUT << "\n"; + + for (unsigned v = 0, e = Variants.size(); v != e; ++v) { + TreePatternNode *Variant = Variants[v]; + + DOUT << " VAR#" << v << ": "; + DEBUG(Variant->dump()); + DOUT << "\n"; + + // Scan to see if an instruction or explicit pattern already matches this. + bool AlreadyExists = false; + for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { + // Check to see if this variant already exists. + if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { + DOUT << " *** ALREADY EXISTS, ignoring variant.\n"; + AlreadyExists = true; + break; + } + } + // If we already have it, ignore the variant. + if (AlreadyExists) continue; + + // Otherwise, add it to the list of patterns we have. + PatternsToMatch. + push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), + Variant, PatternsToMatch[i].getDstPattern(), + PatternsToMatch[i].getAddedComplexity())); + } + + DOUT << "\n"; + } +} + +// NodeIsComplexPattern - return true if N is a leaf node and a subclass of +// ComplexPattern. +static bool NodeIsComplexPattern(TreePatternNode *N) +{ + return (N->isLeaf() && + dynamic_cast<DefInit*>(N->getLeafValue()) && + static_cast<DefInit*>(N->getLeafValue())->getDef()-> + isSubClassOf("ComplexPattern")); +} + +// NodeGetComplexPattern - return the pointer to the ComplexPattern if N +// is a leaf node and a subclass of ComplexPattern, else it returns NULL. +static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, + DAGISelEmitter &ISE) +{ + if (N->isLeaf() && + dynamic_cast<DefInit*>(N->getLeafValue()) && + static_cast<DefInit*>(N->getLeafValue())->getDef()-> + isSubClassOf("ComplexPattern")) { + return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) + ->getDef()); + } + return NULL; +} + +/// getPatternSize - Return the 'size' of this pattern. We want to match large +/// patterns before small ones. This is used to determine the size of a +/// pattern. +static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { + assert((isExtIntegerInVTs(P->getExtTypes()) || + isExtFloatingPointInVTs(P->getExtTypes()) || + P->getExtTypeNum(0) == MVT::isVoid || + P->getExtTypeNum(0) == MVT::Flag || + P->getExtTypeNum(0) == MVT::iPTR) && + "Not a valid pattern node to size!"); + unsigned Size = 3; // The node itself. + // If the root node is a ConstantSDNode, increases its size. + // e.g. (set R32:$dst, 0). + if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) + Size += 2; + + // FIXME: This is a hack to statically increase the priority of patterns + // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. + // Later we can allow complexity / cost for each pattern to be (optionally) + // specified. To get best possible pattern match we'll need to dynamically + // calculate the complexity of all patterns a dag can potentially map to. + const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); + if (AM) + Size += AM->getNumOperands() * 3; + + // If this node has some predicate function that must match, it adds to the + // complexity of this node. + if (!P->getPredicateFn().empty()) + ++Size; + + // Count children in the count if they are also nodes. + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = P->getChild(i); + if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) + Size += getPatternSize(Child, ISE); + else if (Child->isLeaf()) { + if (dynamic_cast<IntInit*>(Child->getLeafValue())) + Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). + else if (NodeIsComplexPattern(Child)) + Size += getPatternSize(Child, ISE); + else if (!Child->getPredicateFn().empty()) + ++Size; + } + } + + return Size; +} + +/// getResultPatternCost - Compute the number of instructions for this pattern. +/// This is a temporary hack. We should really include the instruction +/// latencies in this calculation. +static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { + if (P->isLeaf()) return 0; + + unsigned Cost = 0; + Record *Op = P->getOperator(); + if (Op->isSubClassOf("Instruction")) { + Cost++; + CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); + if (II.usesCustomDAGSchedInserter) + Cost += 10; + } + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) + Cost += getResultPatternCost(P->getChild(i), ISE); + return Cost; +} + +/// getResultPatternCodeSize - Compute the code size of instructions for this +/// pattern. +static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { + if (P->isLeaf()) return 0; + + unsigned Cost = 0; + Record *Op = P->getOperator(); + if (Op->isSubClassOf("Instruction")) { + Cost += Op->getValueAsInt("CodeSize"); + } + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) + Cost += getResultPatternSize(P->getChild(i), ISE); + return Cost; +} + +// PatternSortingPredicate - return true if we prefer to match LHS before RHS. +// In particular, we want to match maximal patterns first and lowest cost within +// a particular complexity first. +struct PatternSortingPredicate { + PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; + DAGISelEmitter &ISE; + + bool operator()(PatternToMatch *LHS, + PatternToMatch *RHS) { + unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); + unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); + LHSSize += LHS->getAddedComplexity(); + RHSSize += RHS->getAddedComplexity(); + if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost + if (LHSSize < RHSSize) return false; + + // If the patterns have equal complexity, compare generated instruction cost + unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); + unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); + if (LHSCost < RHSCost) return true; + if (LHSCost > RHSCost) return false; + + return getResultPatternSize(LHS->getDstPattern(), ISE) < + getResultPatternSize(RHS->getDstPattern(), ISE); + } +}; + +/// getRegisterValueType - Look up and return the first ValueType of specified +/// RegisterClass record +static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { + if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) + return RC->getValueTypeNum(0); + return MVT::Other; +} + + +/// RemoveAllTypes - A quick recursive walk over a pattern which removes all +/// type information from it. +static void RemoveAllTypes(TreePatternNode *N) { + N->removeTypes(); + if (!N->isLeaf()) + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + RemoveAllTypes(N->getChild(i)); +} + +Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { + Record *N = Records.getDef(Name); + if (!N || !N->isSubClassOf("SDNode")) { + cerr << "Error getting SDNode '" << Name << "'!\n"; + exit(1); + } + return N; +} + +/// NodeHasProperty - return true if TreePatternNode has the specified +/// property. +static bool NodeHasProperty(TreePatternNode *N, SDNP Property, + DAGISelEmitter &ISE) +{ + if (N->isLeaf()) { + const ComplexPattern *CP = NodeGetComplexPattern(N, ISE); + if (CP) + return CP->hasProperty(Property); + return false; + } + Record *Operator = N->getOperator(); + if (!Operator->isSubClassOf("SDNode")) return false; + + const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); + return NodeInfo.hasProperty(Property); +} + +static bool PatternHasProperty(TreePatternNode *N, SDNP Property, + DAGISelEmitter &ISE) +{ + if (NodeHasProperty(N, Property, ISE)) + return true; + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (PatternHasProperty(Child, Property, ISE)) + return true; + } + + return false; +} + +class PatternCodeEmitter { +private: + DAGISelEmitter &ISE; + + // Predicates. + ListInit *Predicates; + // Pattern cost. + unsigned Cost; + // Instruction selector pattern. + TreePatternNode *Pattern; + // Matched instruction. + TreePatternNode *Instruction; + + // Node to name mapping + std::map<std::string, std::string> VariableMap; + // Node to operator mapping + std::map<std::string, Record*> OperatorMap; + // Names of all the folded nodes which produce chains. + std::vector<std::pair<std::string, unsigned> > FoldedChains; + // Original input chain(s). + std::vector<std::pair<std::string, std::string> > OrigChains; + std::set<std::string> Duplicates; + + /// GeneratedCode - This is the buffer that we emit code to. The first int + /// indicates whether this is an exit predicate (something that should be + /// tested, and if true, the match fails) [when 1], or normal code to emit + /// [when 0], or initialization code to emit [when 2]. + std::vector<std::pair<unsigned, std::string> > &GeneratedCode; + /// GeneratedDecl - This is the set of all SDOperand declarations needed for + /// the set of patterns for each top-level opcode. + std::set<std::string> &GeneratedDecl; + /// TargetOpcodes - The target specific opcodes used by the resulting + /// instructions. + std::vector<std::string> &TargetOpcodes; + std::vector<std::string> &TargetVTs; + + std::string ChainName; + unsigned TmpNo; + unsigned OpcNo; + unsigned VTNo; + + void emitCheck(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(1, S)); + } + void emitCode(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(0, S)); + } + void emitInit(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(2, S)); + } + void emitDecl(const std::string &S) { + assert(!S.empty() && "Invalid declaration"); + GeneratedDecl.insert(S); + } + void emitOpcode(const std::string &Opc) { + TargetOpcodes.push_back(Opc); + OpcNo++; + } + void emitVT(const std::string &VT) { + TargetVTs.push_back(VT); + VTNo++; + } +public: + PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, + TreePatternNode *pattern, TreePatternNode *instr, + std::vector<std::pair<unsigned, std::string> > &gc, + std::set<std::string> &gd, + std::vector<std::string> &to, + std::vector<std::string> &tv) + : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), + GeneratedCode(gc), GeneratedDecl(gd), + TargetOpcodes(to), TargetVTs(tv), + TmpNo(0), OpcNo(0), VTNo(0) {} + + /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo + /// if the match fails. At this point, we already know that the opcode for N + /// matches, and the SDNode for the result has the RootName specified name. + void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, + const std::string &RootName, const std::string &ChainSuffix, + bool &FoundChain) { + bool isRoot = (P == NULL); + // Emit instruction predicates. Each predicate is just a string for now. + if (isRoot) { + std::string PredicateCheck; + for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { + if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { + Record *Def = Pred->getDef(); + if (!Def->isSubClassOf("Predicate")) { +#ifndef NDEBUG + Def->dump(); +#endif + assert(0 && "Unknown predicate type!"); + } + if (!PredicateCheck.empty()) + PredicateCheck += " && "; + PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; + } + } + + emitCheck(PredicateCheck); + } + + if (N->isLeaf()) { + if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { + emitCheck("cast<ConstantSDNode>(" + RootName + + ")->getSignExtended() == " + itostr(II->getValue())); + return; + } else if (!NodeIsComplexPattern(N)) { + assert(0 && "Cannot match this as a leaf value!"); + abort(); + } + } + + // If this node has a name associated with it, capture it in VariableMap. If + // we already saw this in the pattern, emit code to verify dagness. + if (!N->getName().empty()) { + std::string &VarMapEntry = VariableMap[N->getName()]; + if (VarMapEntry.empty()) { + VarMapEntry = RootName; + } else { + // If we get here, this is a second reference to a specific name. Since + // we already have checked that the first reference is valid, we don't + // have to recursively match it, just check that it's the same as the + // previously named thing. + emitCheck(VarMapEntry + " == " + RootName); + return; + } + + if (!N->isLeaf()) + OperatorMap[N->getName()] = N->getOperator(); + } + + + // Emit code to load the child nodes and match their contents recursively. + unsigned OpNo = 0; + bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE); + bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE); + bool EmittedUseCheck = false; + if (HasChain) { + if (NodeHasChain) + OpNo = 1; + if (!isRoot) { + // Multiple uses of actual result? + emitCheck(RootName + ".hasOneUse()"); + EmittedUseCheck = true; + if (NodeHasChain) { + // If the immediate use can somehow reach this node through another + // path, then can't fold it either or it will create a cycle. + // e.g. In the following diagram, XX can reach ld through YY. If + // ld is folded into XX, then YY is both a predecessor and a successor + // of XX. + // + // [ld] + // ^ ^ + // | | + // / \--- + // / [YY] + // | ^ + // [XX]-------| + bool NeedCheck = false; + if (P != Pattern) + NeedCheck = true; + else { + const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); + NeedCheck = + P->getOperator() == ISE.get_intrinsic_void_sdnode() || + P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() || + P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() || + PInfo.getNumOperands() > 1 || + PInfo.hasProperty(SDNPHasChain) || + PInfo.hasProperty(SDNPInFlag) || + PInfo.hasProperty(SDNPOptInFlag); + } + + if (NeedCheck) { + std::string ParentName(RootName.begin(), RootName.end()-1); + emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + + ".Val, N.Val)"); + } + } + } + + if (NodeHasChain) { + if (FoundChain) { + emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || " + "IsChainCompatible(" + ChainName + ".Val, " + + RootName + ".Val))"); + OrigChains.push_back(std::make_pair(ChainName, RootName)); + } else + FoundChain = true; + ChainName = "Chain" + ChainSuffix; + emitInit("SDOperand " + ChainName + " = " + RootName + + ".getOperand(0);"); + } + } + + // Don't fold any node which reads or writes a flag and has multiple uses. + // FIXME: We really need to separate the concepts of flag and "glue". Those + // real flag results, e.g. X86CMP output, can have multiple uses. + // FIXME: If the optional incoming flag does not exist. Then it is ok to + // fold it. + if (!isRoot && + (PatternHasProperty(N, SDNPInFlag, ISE) || + PatternHasProperty(N, SDNPOptInFlag, ISE) || + PatternHasProperty(N, SDNPOutFlag, ISE))) { + if (!EmittedUseCheck) { + // Multiple uses of actual result? + emitCheck(RootName + ".hasOneUse()"); + } + } + + // If there is a node predicate for this, emit the call. + if (!N->getPredicateFn().empty()) + emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); + + + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is + // a constant without a predicate fn that has more that one bit set, handle + // this as a special case. This is usually for targets that have special + // handling of certain large constants (e.g. alpha with it's 8/16/32-bit + // handling stuff). Using these instructions is often far more efficient + // than materializing the constant. Unfortunately, both the instcombiner + // and the dag combiner can often infer that bits are dead, and thus drop + // them from the mask in the dag. For example, it might turn 'AND X, 255' + // into 'AND X, 254' if it knows the low bit is set. Emit code that checks + // to handle this. + if (!N->isLeaf() && + (N->getOperator()->getName() == "and" || + N->getOperator()->getName() == "or") && + N->getChild(1)->isLeaf() && + N->getChild(1)->getPredicateFn().empty()) { + if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { + if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. + emitInit("SDOperand " + RootName + "0" + " = " + + RootName + ".getOperand(" + utostr(0) + ");"); + emitInit("SDOperand " + RootName + "1" + " = " + + RootName + ".getOperand(" + utostr(1) + ");"); + + emitCheck("isa<ConstantSDNode>(" + RootName + "1)"); + const char *MaskPredicate = N->getOperator()->getName() == "or" + ? "CheckOrMask(" : "CheckAndMask("; + emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" + + RootName + "1), " + itostr(II->getValue()) + ")"); + + EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), + ChainSuffix + utostr(0), FoundChain); + return; + } + } + } + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + emitInit("SDOperand " + RootName + utostr(OpNo) + " = " + + RootName + ".getOperand(" +utostr(OpNo) + ");"); + + EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), + ChainSuffix + utostr(OpNo), FoundChain); + } + + // Handle cases when root is a complex pattern. + const ComplexPattern *CP; + if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + utostr(i)); + emitCode("SDOperand CPTmp" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + emitDecl("CPInChain"); + emitDecl("Chain" + ChainSuffix); + emitCode("SDOperand CPInChain;"); + emitCode("SDOperand Chain" + ChainSuffix + ";"); + } + + std::string Code = Fn + "(" + RootName + ", " + RootName; + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) { + ChainName = "Chain" + ChainSuffix; + Code += ", CPInChain, Chain" + ChainSuffix; + } + emitCheck(Code + ")"); + } + } + + void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, + const std::string &RootName, + const std::string &ChainSuffix, bool &FoundChain) { + if (!Child->isLeaf()) { + // If it's not a leaf, recursively match. + const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); + emitCheck(RootName + ".getOpcode() == " + + CInfo.getEnumName()); + EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); + if (NodeHasProperty(Child, SDNPHasChain, ISE)) + FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); + } else { + // If this child has a name associated with it, capture it in VarMap. If + // we already saw this in the pattern, emit code to verify dagness. + if (!Child->getName().empty()) { + std::string &VarMapEntry = VariableMap[Child->getName()]; + if (VarMapEntry.empty()) { + VarMapEntry = RootName; + } else { + // If we get here, this is a second reference to a specific name. + // Since we already have checked that the first reference is valid, + // we don't have to recursively match it, just check that it's the + // same as the previously named thing. + emitCheck(VarMapEntry + " == " + RootName); + Duplicates.insert(RootName); + return; + } + } + + // Handle leaves of various types. + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + Record *LeafRec = DI->getDef(); + if (LeafRec->isSubClassOf("RegisterClass") || + LeafRec->getName() == "ptr_rc") { + // Handle register references. Nothing to do here. + } else if (LeafRec->isSubClassOf("Register")) { + // Handle register references. + } else if (LeafRec->isSubClassOf("ComplexPattern")) { + // Handle complex pattern. + const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE); + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + utostr(i)); + emitCode("SDOperand CPTmp" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator()); + FoldedChains.push_back(std::make_pair("CPInChain", + PInfo.getNumResults())); + ChainName = "Chain" + ChainSuffix; + emitDecl("CPInChain"); + emitDecl(ChainName); + emitCode("SDOperand CPInChain;"); + emitCode("SDOperand " + ChainName + ";"); + } + + std::string Code = Fn + "(N, "; + if (CP->hasProperty(SDNPHasChain)) { + std::string ParentName(RootName.begin(), RootName.end()-1); + Code += ParentName + ", "; + } + Code += RootName; + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) + Code += ", CPInChain, Chain" + ChainSuffix; + emitCheck(Code + ")"); + } else if (LeafRec->getName() == "srcvalue") { + // Place holder for SRCVALUE nodes. Nothing to do here. + } else if (LeafRec->isSubClassOf("ValueType")) { + // Make sure this is the specified value type. + emitCheck("cast<VTSDNode>(" + RootName + + ")->getVT() == MVT::" + LeafRec->getName()); + } else if (LeafRec->isSubClassOf("CondCode")) { + // Make sure this is the specified cond code. + emitCheck("cast<CondCodeSDNode>(" + RootName + + ")->get() == ISD::" + LeafRec->getName()); + } else { +#ifndef NDEBUG + Child->dump(); + cerr << " "; +#endif + assert(0 && "Unknown leaf type!"); + } + + // If there is a node predicate for this, emit the call. + if (!Child->getPredicateFn().empty()) + emitCheck(Child->getPredicateFn() + "(" + RootName + + ".Val)"); + } else if (IntInit *II = + dynamic_cast<IntInit*>(Child->getLeafValue())) { + emitCheck("isa<ConstantSDNode>(" + RootName + ")"); + unsigned CTmp = TmpNo++; + emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+ + RootName + ")->getSignExtended();"); + + emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); + } else { +#ifndef NDEBUG + Child->dump(); +#endif + assert(0 && "Unknown leaf type!"); + } + } + } + + /// EmitResultCode - Emit the action for a pattern. Now that it has matched + /// we actually have to build a DAG! + std::vector<std::string> + EmitResultCode(TreePatternNode *N, bool RetSelected, + bool InFlagDecled, bool ResNodeDecled, + bool LikeLeaf = false, bool isRoot = false) { + // List of arguments of getTargetNode() or SelectNodeTo(). + std::vector<std::string> NodeOps; + // This is something selected from the pattern we matched. + if (!N->getName().empty()) { + std::string &Val = VariableMap[N->getName()]; + assert(!Val.empty() && + "Variable referenced but not defined and not caught earlier!"); + if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { + // Already selected this operand, just return the tmpval. + NodeOps.push_back(Val); + return NodeOps; + } + + const ComplexPattern *CP; + unsigned ResNo = TmpNo++; + if (!N->isLeaf() && N->getOperator()->getName() == "imm") { + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + std::string CastType; + switch (N->getTypeNum(0)) { + default: + cerr << "Cannot handle " << getEnumName(N->getTypeNum(0)) + << " type as an immediate constant. Aborting\n"; + abort(); + case MVT::i1: CastType = "bool"; break; + case MVT::i8: CastType = "unsigned char"; break; + case MVT::i16: CastType = "unsigned short"; break; + case MVT::i32: CastType = "unsigned"; break; + case MVT::i64: CastType = "uint64_t"; break; + } + emitCode("SDOperand Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(((" + CastType + + ") cast<ConstantSDNode>(" + Val + ")->getValue()), " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = "Tmp"+utostr(ResNo); + } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ + Record *Op = OperatorMap[N->getName()]; + // Transform ExternalSymbol to TargetExternalSymbol + if (Op && Op->getName() == "externalsym") { + emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" + "ExternalSymbol(cast<ExternalSymbolSDNode>(" + + Val + ")->getSymbol(), " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = "Tmp"+utostr(ResNo); + } else { + NodeOps.push_back(Val); + } + } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" + || N->getOperator()->getName() == "tglobaltlsaddr")) { + Record *Op = OperatorMap[N->getName()]; + // Transform GlobalAddress to TargetGlobalAddress + if (Op && (Op->getName() == "globaladdr" || + Op->getName() == "globaltlsaddr")) { + emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" + "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + + ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = "Tmp"+utostr(ResNo); + } else { + NodeOps.push_back(Val); + } + } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ + NodeOps.push_back(Val); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = "Tmp"+utostr(ResNo); + } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { + NodeOps.push_back(Val); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = "Tmp"+utostr(ResNo); + } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { + for (unsigned i = 0; i < CP->getNumOperands(); ++i) { + emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");"); + NodeOps.push_back("CPTmp" + utostr(i)); + } + } else { + // This node, probably wrapped in a SDNodeXForm, behaves like a leaf + // node even if it isn't one. Don't select it. + if (!LikeLeaf) { + emitCode("AddToISelQueue(" + Val + ");"); + if (isRoot && N->isLeaf()) { + emitCode("ReplaceUses(N, " + Val + ");"); + emitCode("return NULL;"); + } + } + NodeOps.push_back(Val); + } + return NodeOps; + } + if (N->isLeaf()) { + // If this is an explicit register reference, handle it. + if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { + unsigned ResNo = TmpNo++; + if (DI->getDef()->isSubClassOf("Register")) { + emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + + ISE.getQualifiedName(DI->getDef()) + ", " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } else if (DI->getDef()->getName() == "zero_reg") { + emitCode("SDOperand Tmp" + utostr(ResNo) + + " = CurDAG->getRegister(0, " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } + } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { + unsigned ResNo = TmpNo++; + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + emitCode("SDOperand Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + + ", " + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } + +#ifndef NDEBUG + N->dump(); +#endif + assert(0 && "Unknown leaf type!"); + return NodeOps; + } + + Record *Op = N->getOperator(); + if (Op->isSubClassOf("Instruction")) { + const CodeGenTarget &CGT = ISE.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op->getName()); + const DAGInstruction &Inst = ISE.getInstruction(Op); + TreePattern *InstPat = Inst.getPattern(); + TreePatternNode *InstPatNode = + isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) + : (InstPat ? InstPat->getOnlyTree() : NULL); + if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { + InstPatNode = InstPatNode->getChild(1); + } + bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; + bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; + bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; + bool NodeHasOptInFlag = isRoot && + PatternHasProperty(Pattern, SDNPOptInFlag, ISE); + bool NodeHasInFlag = isRoot && + PatternHasProperty(Pattern, SDNPInFlag, ISE); + bool NodeHasOutFlag = HasImpResults || (isRoot && + PatternHasProperty(Pattern, SDNPOutFlag, ISE)); + bool NodeHasChain = InstPatNode && + PatternHasProperty(InstPatNode, SDNPHasChain, ISE); + bool InputHasChain = isRoot && + NodeHasProperty(Pattern, SDNPHasChain, ISE); + unsigned NumResults = Inst.getNumResults(); + + if (NodeHasOptInFlag) { + emitCode("bool HasInFlag = " + "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); + } + if (HasVarOps) + emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";"); + + // How many results is this pattern expected to produce? + unsigned PatResults = 0; + for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { + MVT::ValueType VT = Pattern->getTypeNum(i); + if (VT != MVT::isVoid && VT != MVT::Flag) + PatResults++; + } + + if (OrigChains.size() > 0) { + // The original input chain is being ignored. If it is not just + // pointing to the op that's being folded, we should create a + // TokenFactor with it and the chain of the folded op as the new chain. + // We could potentially be doing multiple levels of folding, in that + // case, the TokenFactor can have more operands. + emitCode("SmallVector<SDOperand, 8> InChains;"); + for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { + emitCode("if (" + OrigChains[i].first + ".Val != " + + OrigChains[i].second + ".Val) {"); + emitCode(" AddToISelQueue(" + OrigChains[i].first + ");"); + emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); + emitCode("}"); + } + emitCode("AddToISelQueue(" + ChainName + ");"); + emitCode("InChains.push_back(" + ChainName + ");"); + emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, " + "&InChains[0], InChains.size());"); + } + + // Loop over all of the operands of the instruction pattern, emitting code + // to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases + // where there are predicate operands for an instruction, we need to fill + // in the 'execute always' values. Match up the node operands to the + // instruction operands to do this. + std::vector<std::string> AllOps; + unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs. + for (unsigned ChildNo = 0, InstOpNo = NumResults; + InstOpNo != II.OperandList.size(); ++InstOpNo) { + std::vector<std::string> Ops; + + // If this is a normal operand or a predicate operand without + // 'execute always', emit it. + Record *OperandNode = II.OperandList[InstOpNo].Rec; + if ((!OperandNode->isSubClassOf("PredicateOperand") && + !OperandNode->isSubClassOf("OptionalDefOperand")) || + ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) { + Ops = EmitResultCode(N->getChild(ChildNo), RetSelected, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + ++ChildNo; + } else { + // Otherwise, this is a predicate or optional def operand, emit the + // 'default ops' operands. + const DAGDefaultOperand &DefaultOp = + ISE.getDefaultOperand(II.OperandList[InstOpNo].Rec); + for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { + Ops = EmitResultCode(DefaultOp.DefaultOps[i], RetSelected, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + NumEAInputs += Ops.size(); + } + } + } + + // Emit all the chain and CopyToReg stuff. + bool ChainEmitted = NodeHasChain; + if (NodeHasChain) + emitCode("AddToISelQueue(" + ChainName + ");"); + if (NodeHasInFlag || HasImpInputs) + EmitInFlagSelectCode(Pattern, "N", ChainEmitted, + InFlagDecled, ResNodeDecled, true); + if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { + if (!InFlagDecled) { + emitCode("SDOperand InFlag(0, 0);"); + InFlagDecled = true; + } + if (NodeHasOptInFlag) { + emitCode("if (HasInFlag) {"); + emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); + emitCode(" AddToISelQueue(InFlag);"); + emitCode("}"); + } + } + + unsigned ResNo = TmpNo++; + if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || + NodeHasOptInFlag) { + std::string Code; + std::string Code2; + std::string NodeName; + if (!isRoot) { + NodeName = "Tmp" + utostr(ResNo); + Code2 = "SDOperand " + NodeName + " = SDOperand("; + } else { + NodeName = "ResNode"; + if (!ResNodeDecled) { + Code2 = "SDNode *" + NodeName + " = "; + ResNodeDecled = true; + } else + Code2 = NodeName + " = "; + } + + Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); + unsigned OpsNo = OpcNo; + emitOpcode(II.Namespace + "::" + II.TheDef->getName()); + + // Output order: results, chain, flags + // Result types. + if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { + Code += ", VT" + utostr(VTNo); + emitVT(getEnumName(N->getTypeNum(0))); + } + if (NodeHasChain) + Code += ", MVT::Other"; + if (NodeHasOutFlag) + Code += ", MVT::Flag"; + + // Figure out how many fixed inputs the node has. This is important to + // know which inputs are the variable ones if present. + unsigned NumInputs = AllOps.size(); + NumInputs += NodeHasChain; + + // Inputs. + if (HasVarOps) { + for (unsigned i = 0, e = AllOps.size(); i != e; ++i) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); + AllOps.clear(); + } + + if (HasVarOps) { + // Figure out whether any operands at the end of the op list are not + // part of the variable section. + std::string EndAdjust; + if (NodeHasInFlag || HasImpInputs) + EndAdjust = "-1"; // Always has one flag. + else if (NodeHasOptInFlag) + EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. + + emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) + + ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); + + emitCode(" AddToISelQueue(N.getOperand(i));"); + emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); + emitCode("}"); + } + + if (NodeHasChain) { + if (HasVarOps) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); + else + AllOps.push_back(ChainName); + } + + if (HasVarOps) { + if (NodeHasInFlag || HasImpInputs) + emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); + else if (NodeHasOptInFlag) { + emitCode("if (HasInFlag)"); + emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); + } + Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + + ".size()"; + } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) + AllOps.push_back("InFlag"); + + unsigned NumOps = AllOps.size(); + if (NumOps) { + if (!NodeHasOptInFlag && NumOps < 4) { + for (unsigned i = 0; i != NumOps; ++i) + Code += ", " + AllOps[i]; + } else { + std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { "; + for (unsigned i = 0; i != NumOps; ++i) { + OpsCode += AllOps[i]; + if (i != NumOps-1) + OpsCode += ", "; + } + emitCode(OpsCode + " };"); + Code += ", Ops" + utostr(OpsNo) + ", "; + if (NodeHasOptInFlag) { + Code += "HasInFlag ? "; + Code += utostr(NumOps) + " : " + utostr(NumOps-1); + } else + Code += utostr(NumOps); + } + } + + if (!isRoot) + Code += "), 0"; + emitCode(Code2 + Code + ");"); + + if (NodeHasChain) + // Remember which op produces the chain. + if (!isRoot) + emitCode(ChainName + " = SDOperand(" + NodeName + + ".Val, " + utostr(PatResults) + ");"); + else + emitCode(ChainName + " = SDOperand(" + NodeName + + ", " + utostr(PatResults) + ");"); + + if (!isRoot) { + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } + + bool NeedReplace = false; + if (NodeHasOutFlag) { + if (!InFlagDecled) { + emitCode("SDOperand InFlag = SDOperand(ResNode, " + + utostr(NumResults + (unsigned)NodeHasChain) + ");"); + InFlagDecled = true; + } else + emitCode("InFlag = SDOperand(ResNode, " + + utostr(NumResults + (unsigned)NodeHasChain) + ");"); + } + + if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) { + emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));"); + NumResults = 1; + } + + if (FoldedChains.size() > 0) { + std::string Code; + for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) + emitCode("ReplaceUses(SDOperand(" + + FoldedChains[j].first + ".Val, " + + utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + + utostr(NumResults) + "));"); + NeedReplace = true; + } + + if (NodeHasOutFlag) { + emitCode("ReplaceUses(SDOperand(N.Val, " + + utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); + NeedReplace = true; + } + + if (NeedReplace) { + for (unsigned i = 0; i < NumResults; i++) + emitCode("ReplaceUses(SDOperand(N.Val, " + + utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); + if (InputHasChain) + emitCode("ReplaceUses(SDOperand(N.Val, " + + utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " + + ChainName + ".ResNo" + "));"); + } else + RetSelected = true; + + // User does not expect the instruction would produce a chain! + if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { + ; + } else if (InputHasChain && !NodeHasChain) { + // One of the inner node produces a chain. + if (NodeHasOutFlag) + emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) + + "), SDOperand(ResNode, N.ResNo-1));"); + for (unsigned i = 0; i < PatResults; ++i) + emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + + "), SDOperand(ResNode, " + utostr(i) + "));"); + emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + + "), " + ChainName + ");"); + RetSelected = false; + } + + if (RetSelected) + emitCode("return ResNode;"); + else + emitCode("return NULL;"); + } else { + std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" + + utostr(OpcNo); + if (N->getTypeNum(0) != MVT::isVoid) + Code += ", VT" + utostr(VTNo); + if (NodeHasOutFlag) + Code += ", MVT::Flag"; + + if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) + AllOps.push_back("InFlag"); + + unsigned NumOps = AllOps.size(); + if (NumOps) { + if (!NodeHasOptInFlag && NumOps < 4) { + for (unsigned i = 0; i != NumOps; ++i) + Code += ", " + AllOps[i]; + } else { + std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { "; + for (unsigned i = 0; i != NumOps; ++i) { + OpsCode += AllOps[i]; + if (i != NumOps-1) + OpsCode += ", "; + } + emitCode(OpsCode + " };"); + Code += ", Ops" + utostr(OpcNo) + ", "; + Code += utostr(NumOps); + } + } + emitCode(Code + ");"); + emitOpcode(II.Namespace + "::" + II.TheDef->getName()); + if (N->getTypeNum(0) != MVT::isVoid) + emitVT(getEnumName(N->getTypeNum(0))); + } + + return NodeOps; + } else if (Op->isSubClassOf("SDNodeXForm")) { + assert(N->getNumChildren() == 1 && "node xform should have one child!"); + // PatLeaf node - the operand may or may not be a leaf node. But it should + // behave like one. + std::vector<std::string> Ops = + EmitResultCode(N->getChild(0), RetSelected, InFlagDecled, + ResNodeDecled, true); + unsigned ResNo = TmpNo++; + emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() + + "(" + Ops.back() + ".Val);"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + if (isRoot) + emitCode("return Tmp" + utostr(ResNo) + ".Val;"); + return NodeOps; + } else { + N->dump(); + cerr << "\n"; + throw std::string("Unknown node in result pattern!"); + } + } + + /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' + /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that + /// 'Pat' may be missing types. If we find an unresolved type to add a check + /// for, this returns true otherwise false if Pat has all types. + bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, + const std::string &Prefix, bool isRoot = false) { + // Did we find one? + if (Pat->getExtTypes() != Other->getExtTypes()) { + // Move a type over from 'other' to 'pat'. + Pat->setTypes(Other->getExtTypes()); + // The top level node type is checked outside of the select function. + if (!isRoot) + emitCheck(Prefix + ".Val->getValueType(0) == " + + getName(Pat->getTypeNum(0))); + return true; + } + + unsigned OpNo = + (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE); + for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) + if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), + Prefix + utostr(OpNo))) + return true; + return false; + } + +private: + /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is + /// being built. + void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, + bool &ChainEmitted, bool &InFlagDecled, + bool &ResNodeDecled, bool isRoot = false) { + const CodeGenTarget &T = ISE.getTargetInfo(); + unsigned OpNo = + (unsigned) NodeHasProperty(N, SDNPHasChain, ISE); + bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + TreePatternNode *Child = N->getChild(i); + if (!Child->isLeaf()) { + EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, + InFlagDecled, ResNodeDecled); + } else { + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + if (!Child->getName().empty()) { + std::string Name = RootName + utostr(OpNo); + if (Duplicates.find(Name) != Duplicates.end()) + // A duplicate! Do not emit a copy for this node. + continue; + } + + Record *RR = DI->getDef(); + if (RR->isSubClassOf("Register")) { + MVT::ValueType RVT = getRegisterValueType(RR, T); + if (RVT == MVT::Flag) { + if (!InFlagDecled) { + emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";"); + InFlagDecled = true; + } else + emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); + emitCode("AddToISelQueue(InFlag);"); + } else { + if (!ChainEmitted) { + emitCode("SDOperand Chain = CurDAG->getEntryNode();"); + ChainName = "Chain"; + ChainEmitted = true; + } + emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");"); + if (!InFlagDecled) { + emitCode("SDOperand InFlag(0, 0);"); + InFlagDecled = true; + } + std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; + emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + + ", " + ISE.getQualifiedName(RR) + + ", " + RootName + utostr(OpNo) + ", InFlag).Val;"); + ResNodeDecled = true; + emitCode(ChainName + " = SDOperand(ResNode, 0);"); + emitCode("InFlag = SDOperand(ResNode, 1);"); + } + } + } + } + } + + if (HasInFlag) { + if (!InFlagDecled) { + emitCode("SDOperand InFlag = " + RootName + + ".getOperand(" + utostr(OpNo) + ");"); + InFlagDecled = true; + } else + emitCode("InFlag = " + RootName + + ".getOperand(" + utostr(OpNo) + ");"); + emitCode("AddToISelQueue(InFlag);"); + } + } + + /// EmitCopyFromRegs - Emit code to copy result to physical registers + /// as specified by the instruction. It returns true if any copy is + /// emitted. + bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled, + bool &ChainEmitted) { + bool RetVal = false; + Record *Op = N->getOperator(); + if (Op->isSubClassOf("Instruction")) { + const DAGInstruction &Inst = ISE.getInstruction(Op); + const CodeGenTarget &CGT = ISE.getTargetInfo(); + unsigned NumImpResults = Inst.getNumImpResults(); + for (unsigned i = 0; i < NumImpResults; i++) { + Record *RR = Inst.getImpResult(i); + if (RR->isSubClassOf("Register")) { + MVT::ValueType RVT = getRegisterValueType(RR, CGT); + if (RVT != MVT::Flag) { + if (!ChainEmitted) { + emitCode("SDOperand Chain = CurDAG->getEntryNode();"); + ChainEmitted = true; + ChainName = "Chain"; + } + std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; + emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName + + ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + + ", InFlag).Val;"); + ResNodeDecled = true; + emitCode(ChainName + " = SDOperand(ResNode, 1);"); + emitCode("InFlag = SDOperand(ResNode, 2);"); + RetVal = true; + } + } + } + } + return RetVal; + } +}; + +/// EmitCodeForPattern - Given a pattern to match, emit code to the specified +/// stream to match the pattern, and generate the code for the match if it +/// succeeds. Returns true if the pattern is not guaranteed to match. +void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, + std::vector<std::pair<unsigned, std::string> > &GeneratedCode, + std::set<std::string> &GeneratedDecl, + std::vector<std::string> &TargetOpcodes, + std::vector<std::string> &TargetVTs) { + PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), + Pattern.getSrcPattern(), Pattern.getDstPattern(), + GeneratedCode, GeneratedDecl, + TargetOpcodes, TargetVTs); + + // Emit the matcher, capturing named arguments in VariableMap. + bool FoundChain = false; + Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); + + // TP - Get *SOME* tree pattern, we don't care which. + TreePattern &TP = *PatternFragments.begin()->second; + + // At this point, we know that we structurally match the pattern, but the + // types of the nodes may not match. Figure out the fewest number of type + // comparisons we need to emit. For example, if there is only one integer + // type supported by a target, there should be no type comparisons at all for + // integer patterns! + // + // To figure out the fewest number of type checks needed, clone the pattern, + // remove the types, then perform type inference on the pattern as a whole. + // If there are unresolved types, emit an explicit check for those types, + // apply the type to the tree, then rerun type inference. Iterate until all + // types are resolved. + // + TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); + RemoveAllTypes(Pat); + + do { + // Resolve/propagate as many types as possible. + try { + bool MadeChange = true; + while (MadeChange) + MadeChange = Pat->ApplyTypeConstraints(TP, + true/*Ignore reg constraints*/); + } catch (...) { + assert(0 && "Error: could not find consistent types for something we" + " already decided was ok!"); + abort(); + } + + // Insert a check for an unresolved type and add it to the tree. If we find + // an unresolved type to add a check for, this returns true and we iterate, + // otherwise we are done. + } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); + + Emitter.EmitResultCode(Pattern.getDstPattern(), + false, false, false, false, true); + delete Pat; +} + +/// EraseCodeLine - Erase one code line from all of the patterns. If removing +/// a line causes any of them to be empty, remove them and return true when +/// done. +static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*, + std::vector<std::pair<unsigned, std::string> > > > + &Patterns) { + bool ErasedPatterns = false; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + Patterns[i].second.pop_back(); + if (Patterns[i].second.empty()) { + Patterns.erase(Patterns.begin()+i); + --i; --e; + ErasedPatterns = true; + } + } + return ErasedPatterns; +} + +/// EmitPatterns - Emit code for at least one pattern, but try to group common +/// code together between the patterns. +void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*, + std::vector<std::pair<unsigned, std::string> > > > + &Patterns, unsigned Indent, + std::ostream &OS) { + typedef std::pair<unsigned, std::string> CodeLine; + typedef std::vector<CodeLine> CodeList; + typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList; + + if (Patterns.empty()) return; + + // Figure out how many patterns share the next code line. Explicitly copy + // FirstCodeLine so that we don't invalidate a reference when changing + // Patterns. + const CodeLine FirstCodeLine = Patterns.back().second.back(); + unsigned LastMatch = Patterns.size()-1; + while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) + --LastMatch; + + // If not all patterns share this line, split the list into two pieces. The + // first chunk will use this line, the second chunk won't. + if (LastMatch != 0) { + PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); + PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); + + // FIXME: Emit braces? + if (Shared.size() == 1) { + PatternToMatch &Pattern = *Shared.back().first; + OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; + Pattern.getSrcPattern()->print(OS); + OS << "\n" << std::string(Indent, ' ') << "// Emits: "; + Pattern.getDstPattern()->print(OS); + OS << "\n"; + unsigned AddedComplexity = Pattern.getAddedComplexity(); + OS << std::string(Indent, ' ') << "// Pattern complexity = " + << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity + << " cost = " + << getResultPatternCost(Pattern.getDstPattern(), *this) + << " size = " + << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; + } + if (FirstCodeLine.first != 1) { + OS << std::string(Indent, ' ') << "{\n"; + Indent += 2; + } + EmitPatterns(Shared, Indent, OS); + if (FirstCodeLine.first != 1) { + Indent -= 2; + OS << std::string(Indent, ' ') << "}\n"; + } + + if (Other.size() == 1) { + PatternToMatch &Pattern = *Other.back().first; + OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; + Pattern.getSrcPattern()->print(OS); + OS << "\n" << std::string(Indent, ' ') << "// Emits: "; + Pattern.getDstPattern()->print(OS); + OS << "\n"; + unsigned AddedComplexity = Pattern.getAddedComplexity(); + OS << std::string(Indent, ' ') << "// Pattern complexity = " + << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity + << " cost = " + << getResultPatternCost(Pattern.getDstPattern(), *this) + << " size = " + << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; + } + EmitPatterns(Other, Indent, OS); + return; + } + + // Remove this code from all of the patterns that share it. + bool ErasedPatterns = EraseCodeLine(Patterns); + + bool isPredicate = FirstCodeLine.first == 1; + + // Otherwise, every pattern in the list has this line. Emit it. + if (!isPredicate) { + // Normal code. + OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; + } else { + OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; + + // If the next code line is another predicate, and if all of the pattern + // in this group share the same next line, emit it inline now. Do this + // until we run out of common predicates. + while (!ErasedPatterns && Patterns.back().second.back().first == 1) { + // Check that all of fhe patterns in Patterns end with the same predicate. + bool AllEndWithSamePredicate = true; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) + if (Patterns[i].second.back() != Patterns.back().second.back()) { + AllEndWithSamePredicate = false; + break; + } + // If all of the predicates aren't the same, we can't share them. + if (!AllEndWithSamePredicate) break; + + // Otherwise we can. Emit it shared now. + OS << " &&\n" << std::string(Indent+4, ' ') + << Patterns.back().second.back().second; + ErasedPatterns = EraseCodeLine(Patterns); + } + + OS << ") {\n"; + Indent += 2; + } + + EmitPatterns(Patterns, Indent, OS); + + if (isPredicate) + OS << std::string(Indent-2, ' ') << "}\n"; +} + +static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) { + const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op); + return OpcodeInfo.getEnumName(); +} + +static std::string getLegalCName(std::string OpName) { + std::string::size_type pos = OpName.find("::"); + if (pos != std::string::npos) + OpName.replace(pos, 2, "_"); + return OpName; +} + +void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { + // Get the namespace to insert instructions into. Make sure not to pick up + // "TargetInstrInfo" by accidentally getting the namespace off the PHI + // instruction or something. + std::string InstNS; + for (CodeGenTarget::inst_iterator i = Target.inst_begin(), + e = Target.inst_end(); i != e; ++i) { + InstNS = i->second.Namespace; + if (InstNS != "TargetInstrInfo") + break; + } + + if (!InstNS.empty()) InstNS += "::"; + + // Group the patterns by their top-level opcodes. + std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode; + // All unique target node emission functions. + std::map<std::string, unsigned> EmitFunctions; + for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { + TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); + if (!Node->isLeaf()) { + PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)]. + push_back(&PatternsToMatch[i]); + } else { + const ComplexPattern *CP; + if (dynamic_cast<IntInit*>(Node->getLeafValue())) { + PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)]. + push_back(&PatternsToMatch[i]); + } else if ((CP = NodeGetComplexPattern(Node, *this))) { + std::vector<Record*> OpNodes = CP->getRootNodes(); + for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { + PatternsByOpcode[getOpcodeName(OpNodes[j], *this)] + .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(), + &PatternsToMatch[i]); + } + } else { + cerr << "Unrecognized opcode '"; + Node->dump(); + cerr << "' on tree pattern '"; + cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName(); + cerr << "'!\n"; + exit(1); + } + } + } + + // For each opcode, there might be multiple select functions, one per + // ValueType of the node (or its first operand if it doesn't produce a + // non-chain result. + std::map<std::string, std::vector<std::string> > OpcodeVTMap; + + // Emit one Select_* method for each top-level opcode. We do this instead of + // emitting one giant switch statement to support compilers where this will + // result in the recursive functions taking less stack space. + for (std::map<std::string, std::vector<PatternToMatch*> >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; + std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second; + assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); + + // We want to emit all of the matching code now. However, we want to emit + // the matches in order of minimal cost. Sort the patterns so the least + // cost one is at the start. + std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), + PatternSortingPredicate(*this)); + + // Split them into groups by type. + std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType; + for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { + PatternToMatch *Pat = PatternsOfOp[i]; + TreePatternNode *SrcPat = Pat->getSrcPattern(); + MVT::ValueType VT = SrcPat->getTypeNum(0); + std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI = + PatternsByType.find(VT); + if (TI != PatternsByType.end()) + TI->second.push_back(Pat); + else { + std::vector<PatternToMatch*> PVec; + PVec.push_back(Pat); + PatternsByType.insert(std::make_pair(VT, PVec)); + } + } + + for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator + II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; + ++II) { + MVT::ValueType OpVT = II->first; + std::vector<PatternToMatch*> &Patterns = II->second; + typedef std::vector<std::pair<unsigned,std::string> > CodeList; + typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI; + + std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns; + std::vector<std::vector<std::string> > PatternOpcodes; + std::vector<std::vector<std::string> > PatternVTs; + std::vector<std::set<std::string> > PatternDecls; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + CodeList GeneratedCode; + std::set<std::string> GeneratedDecl; + std::vector<std::string> TargetOpcodes; + std::vector<std::string> TargetVTs; + GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, + TargetOpcodes, TargetVTs); + CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); + PatternDecls.push_back(GeneratedDecl); + PatternOpcodes.push_back(TargetOpcodes); + PatternVTs.push_back(TargetVTs); + } + + // Scan the code to see if all of the patterns are reachable and if it is + // possible that the last one might not match. + bool mightNotMatch = true; + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + mightNotMatch = false; + + for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { + if (GeneratedCode[j].first == 1) { // predicate. + mightNotMatch = true; + break; + } + } + + // If this pattern definitely matches, and if it isn't the last one, the + // patterns after it CANNOT ever match. Error out. + if (mightNotMatch == false && i != CodeForPatterns.size()-1) { + cerr << "Pattern '"; + CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream()); + cerr << "' is impossible to select!\n"; + exit(1); + } + } + + // Factor target node emission code (emitted by EmitResultCode) into + // separate functions. Uniquing and share them among all instruction + // selection routines. + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; + std::vector<std::string> &TargetVTs = PatternVTs[i]; + std::set<std::string> Decls = PatternDecls[i]; + std::vector<std::string> AddedInits; + int CodeSize = (int)GeneratedCode.size(); + int LastPred = -1; + for (int j = CodeSize-1; j >= 0; --j) { + if (LastPred == -1 && GeneratedCode[j].first == 1) + LastPred = j; + else if (LastPred != -1 && GeneratedCode[j].first == 2) + AddedInits.push_back(GeneratedCode[j].second); + } + + std::string CalleeCode = "(const SDOperand &N"; + std::string CallerCode = "(N"; + for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { + CalleeCode += ", unsigned Opc" + utostr(j); + CallerCode += ", " + TargetOpcodes[j]; + } + for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { + CalleeCode += ", MVT::ValueType VT" + utostr(j); + CallerCode += ", " + TargetVTs[j]; + } + for (std::set<std::string>::iterator + I = Decls.begin(), E = Decls.end(); I != E; ++I) { + std::string Name = *I; + CalleeCode += ", SDOperand &" + Name; + CallerCode += ", " + Name; + } + CallerCode += ");"; + CalleeCode += ") "; + // Prevent emission routines from being inlined to reduce selection + // routines stack frame sizes. + CalleeCode += "DISABLE_INLINE "; + CalleeCode += "{\n"; + + for (std::vector<std::string>::const_reverse_iterator + I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) + CalleeCode += " " + *I + "\n"; + + for (int j = LastPred+1; j < CodeSize; ++j) + CalleeCode += " " + GeneratedCode[j].second + "\n"; + for (int j = LastPred+1; j < CodeSize; ++j) + GeneratedCode.pop_back(); + CalleeCode += "}\n"; + + // Uniquing the emission routines. + unsigned EmitFuncNum; + std::map<std::string, unsigned>::iterator EFI = + EmitFunctions.find(CalleeCode); + if (EFI != EmitFunctions.end()) { + EmitFuncNum = EFI->second; + } else { + EmitFuncNum = EmitFunctions.size(); + EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); + OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; + } + + // Replace the emission code within selection routines with calls to the + // emission functions. + CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; + GeneratedCode.push_back(std::make_pair(false, CallerCode)); + } + + // Print function. + std::string OpVTStr; + if (OpVT == MVT::iPTR) { + OpVTStr = "_iPTR"; + } else if (OpVT == MVT::isVoid) { + // Nodes with a void result actually have a first result type of either + // Other (a chain) or Flag. Since there is no one-to-one mapping from + // void to this case, we handle it specially here. + } else { + OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' + } + std::map<std::string, std::vector<std::string> >::iterator OpVTI = + OpcodeVTMap.find(OpName); + if (OpVTI == OpcodeVTMap.end()) { + std::vector<std::string> VTSet; + VTSet.push_back(OpVTStr); + OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); + } else + OpVTI->second.push_back(OpVTStr); + + OS << "SDNode *Select_" << getLegalCName(OpName) + << OpVTStr << "(const SDOperand &N) {\n"; + + // Loop through and reverse all of the CodeList vectors, as we will be + // accessing them from their logical front, but accessing the end of a + // vector is more efficient. + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + std::reverse(GeneratedCode.begin(), GeneratedCode.end()); + } + + // Next, reverse the list of patterns itself for the same reason. + std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); + + // Emit all of the patterns now, grouped together to share code. + EmitPatterns(CodeForPatterns, 2, OS); + + // If the last pattern has predicates (which could fail) emit code to + // catch the case where nothing handles a pattern. + if (mightNotMatch) { + OS << " cerr << \"Cannot yet select: \";\n"; + if (OpName != "ISD::INTRINSIC_W_CHAIN" && + OpName != "ISD::INTRINSIC_WO_CHAIN" && + OpName != "ISD::INTRINSIC_VOID") { + OS << " N.Val->dump(CurDAG);\n"; + } else { + OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" + "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" + << " cerr << \"intrinsic %\"<< " + "Intrinsic::getName((Intrinsic::ID)iid);\n"; + } + OS << " cerr << '\\n';\n" + << " abort();\n" + << " return NULL;\n"; + } + OS << "}\n\n"; + } + } + + // Emit boilerplate. + OS << "SDNode *Select_INLINEASM(SDOperand N) {\n" + << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n" + << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n" + + << " // Ensure that the asm operands are themselves selected.\n" + << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n" + << " AddToISelQueue(Ops[j]);\n\n" + + << " std::vector<MVT::ValueType> VTs;\n" + << " VTs.push_back(MVT::Other);\n" + << " VTs.push_back(MVT::Flag);\n" + << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " + "Ops.size());\n" + << " return New.Val;\n" + << "}\n\n"; + + OS << "SDNode *Select_LABEL(const SDOperand &N) {\n" + << " SDOperand Chain = N.getOperand(0);\n" + << " SDOperand N1 = N.getOperand(1);\n" + << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n" + << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" + << " AddToISelQueue(Chain);\n" + << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n" + << " MVT::Other, Tmp, Chain);\n" + << "}\n\n"; + + OS << "// The main instruction selector code.\n" + << "SDNode *SelectCode(SDOperand N) {\n" + << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" + << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS + << "INSTRUCTION_LIST_END)) {\n" + << " return NULL; // Already selected.\n" + << " }\n\n" + << " MVT::ValueType NVT = N.Val->getValueType(0);\n" + << " switch (N.getOpcode()) {\n" + << " default: break;\n" + << " case ISD::EntryToken: // These leaves remain the same.\n" + << " case ISD::BasicBlock:\n" + << " case ISD::Register:\n" + << " case ISD::HANDLENODE:\n" + << " case ISD::TargetConstant:\n" + << " case ISD::TargetConstantPool:\n" + << " case ISD::TargetFrameIndex:\n" + << " case ISD::TargetExternalSymbol:\n" + << " case ISD::TargetJumpTable:\n" + << " case ISD::TargetGlobalTLSAddress:\n" + << " case ISD::TargetGlobalAddress: {\n" + << " return NULL;\n" + << " }\n" + << " case ISD::AssertSext:\n" + << " case ISD::AssertZext: {\n" + << " AddToISelQueue(N.getOperand(0));\n" + << " ReplaceUses(N, N.getOperand(0));\n" + << " return NULL;\n" + << " }\n" + << " case ISD::TokenFactor:\n" + << " case ISD::CopyFromReg:\n" + << " case ISD::CopyToReg: {\n" + << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" + << " AddToISelQueue(N.getOperand(i));\n" + << " return NULL;\n" + << " }\n" + << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" + << " case ISD::LABEL: return Select_LABEL(N);\n"; + + + // Loop over all of the case statements, emiting a call to each method we + // emitted above. + for (std::map<std::string, std::vector<PatternToMatch*> >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; + // Potentially multiple versions of select for this opcode. One for each + // ValueType of the node (or its first true operand if it doesn't produce a + // result. + std::map<std::string, std::vector<std::string> >::iterator OpVTI = + OpcodeVTMap.find(OpName); + std::vector<std::string> &OpVTs = OpVTI->second; + OS << " case " << OpName << ": {\n"; + if (OpVTs.size() == 1) { + std::string &VTStr = OpVTs[0]; + OS << " return Select_" << getLegalCName(OpName) + << VTStr << "(N);\n"; + } else { + // Keep track of whether we see a pattern that has an iPtr result. + bool HasPtrPattern = false; + bool HasDefaultPattern = false; + + OS << " switch (NVT) {\n"; + for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { + std::string &VTStr = OpVTs[i]; + if (VTStr.empty()) { + HasDefaultPattern = true; + continue; + } + + // If this is a match on iPTR: don't emit it directly, we need special + // code. + if (VTStr == "_iPTR") { + HasPtrPattern = true; + continue; + } + OS << " case MVT::" << VTStr.substr(1) << ":\n" + << " return Select_" << getLegalCName(OpName) + << VTStr << "(N);\n"; + } + OS << " default:\n"; + + // If there is an iPTR result version of this pattern, emit it here. + if (HasPtrPattern) { + OS << " if (NVT == TLI.getPointerTy())\n"; + OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; + } + if (HasDefaultPattern) { + OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; + } + OS << " break;\n"; + OS << " }\n"; + OS << " break;\n"; + } + OS << " }\n"; + } + + OS << " } // end of big switch.\n\n" + << " cerr << \"Cannot yet select: \";\n" + << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" + << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" + << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" + << " N.Val->dump(CurDAG);\n" + << " } else {\n" + << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" + "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" + << " cerr << \"intrinsic %\"<< " + "Intrinsic::getName((Intrinsic::ID)iid);\n" + << " }\n" + << " cerr << '\\n';\n" + << " abort();\n" + << " return NULL;\n" + << "}\n"; +} + +void DAGISelEmitter::run(std::ostream &OS) { + EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + + " target", OS); + + OS << "// *** NOTE: This file is #included into the middle of the target\n" + << "// *** instruction selector class. These functions are really " + << "methods.\n\n"; + + OS << "#include \"llvm/Support/Compiler.h\"\n"; + + OS << "// Instruction selector priority queue:\n" + << "std::vector<SDNode*> ISelQueue;\n"; + OS << "/// Keep track of nodes which have already been added to queue.\n" + << "unsigned char *ISelQueued;\n"; + OS << "/// Keep track of nodes which have already been selected.\n" + << "unsigned char *ISelSelected;\n"; + OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" + << "std::vector<SDNode*> ISelKilled;\n\n"; + + OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n"; + OS << "/// not reach Op.\n"; + OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n"; + OS << " if (Chain->getOpcode() == ISD::EntryToken)\n"; + OS << " return true;\n"; + OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n"; + OS << " return false;\n"; + OS << " else if (Chain->getNumOperands() > 0) {\n"; + OS << " SDOperand C0 = Chain->getOperand(0);\n"; + OS << " if (C0.getValueType() == MVT::Other)\n"; + OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n"; + OS << " }\n"; + OS << " return true;\n"; + OS << "}\n"; + + OS << "/// Sorting functions for the selection queue.\n" + << "struct isel_sort : public std::binary_function" + << "<SDNode*, SDNode*, bool> {\n" + << " bool operator()(const SDNode* left, const SDNode* right) " + << "const {\n" + << " return (left->getNodeId() > right->getNodeId());\n" + << " }\n" + << "};\n\n"; + + OS << "inline void setQueued(int Id) {\n"; + OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; + OS << "}\n"; + OS << "inline bool isQueued(int Id) {\n"; + OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; + OS << "}\n"; + OS << "inline void setSelected(int Id) {\n"; + OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; + OS << "}\n"; + OS << "inline bool isSelected(int Id) {\n"; + OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; + OS << "}\n\n"; + + OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n"; + OS << " int Id = N.Val->getNodeId();\n"; + OS << " if (Id != -1 && !isQueued(Id)) {\n"; + OS << " ISelQueue.push_back(N.Val);\n"; + OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; + OS << " setQueued(Id);\n"; + OS << " }\n"; + OS << "}\n\n"; + + OS << "inline void RemoveKilled() {\n"; +OS << " unsigned NumKilled = ISelKilled.size();\n"; + OS << " if (NumKilled) {\n"; + OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; + OS << " SDNode *Temp = ISelKilled[i];\n"; + OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), " + << "Temp), ISelQueue.end());\n"; + OS << " };\n"; + OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; + OS << " ISelKilled.clear();\n"; + OS << " }\n"; + OS << "}\n\n"; + + OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n"; + OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; + OS << " setSelected(F.Val->getNodeId());\n"; + OS << " RemoveKilled();\n"; + OS << "}\n"; + OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n"; + OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n"; + OS << " setSelected(F->getNodeId());\n"; + OS << " RemoveKilled();\n"; + OS << "}\n\n"; + + OS << "// SelectRoot - Top level entry to DAG isel.\n"; + OS << "SDOperand SelectRoot(SDOperand Root) {\n"; + OS << " SelectRootInit();\n"; + OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; + OS << " ISelQueued = new unsigned char[NumBytes];\n"; + OS << " ISelSelected = new unsigned char[NumBytes];\n"; + OS << " memset(ISelQueued, 0, NumBytes);\n"; + OS << " memset(ISelSelected, 0, NumBytes);\n"; + OS << "\n"; + OS << " // Create a dummy node (which is not added to allnodes), that adds\n" + << " // a reference to the root node, preventing it from being deleted,\n" + << " // and tracking any changes of the root.\n" + << " HandleSDNode Dummy(CurDAG->getRoot());\n" + << " ISelQueue.push_back(CurDAG->getRoot().Val);\n"; + OS << " while (!ISelQueue.empty()) {\n"; + OS << " SDNode *Node = ISelQueue.front();\n"; + OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; + OS << " ISelQueue.pop_back();\n"; + OS << " if (!isSelected(Node->getNodeId())) {\n"; + OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n"; + OS << " if (ResNode != Node) {\n"; + OS << " if (ResNode)\n"; + OS << " ReplaceUses(Node, ResNode);\n"; + OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n"; + OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n"; + OS << " RemoveKilled();\n"; + OS << " }\n"; + OS << " }\n"; + OS << " }\n"; + OS << " }\n"; + OS << "\n"; + OS << " delete[] ISelQueued;\n"; + OS << " ISelQueued = NULL;\n"; + OS << " delete[] ISelSelected;\n"; + OS << " ISelSelected = NULL;\n"; + OS << " return Dummy.getValue();\n"; + OS << "}\n"; + + Intrinsics = LoadIntrinsics(Records); + ParseNodeInfo(); + ParseNodeTransforms(OS); + ParseComplexPatterns(); + ParsePatternFragments(OS); + ParseDefaultOperands(); + ParseInstructions(); + ParsePatterns(); + + // Generate variants. For example, commutative patterns can match + // multiple ways. Add them to PatternsToMatch as well. + GenerateVariants(); + + DOUT << "\n\nALL PATTERNS TO MATCH:\n\n"; + for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { + DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); + DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump()); + DOUT << "\n"; + } + + // At this point, we have full information about the 'Patterns' we need to + // parse, both implicitly from instructions as well as from explicit pattern + // definitions. Emit the resultant instruction selector. + EmitInstructionSelector(OS); + + for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), + E = PatternFragments.end(); I != E; ++I) + delete I->second; + PatternFragments.clear(); + + Instructions.clear(); +} |