aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/DAGISelMatcherGen.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen/DAGISelMatcherGen.cpp')
-rw-r--r--utils/TableGen/DAGISelMatcherGen.cpp882
1 files changed, 882 insertions, 0 deletions
diff --git a/utils/TableGen/DAGISelMatcherGen.cpp b/utils/TableGen/DAGISelMatcherGen.cpp
new file mode 100644
index 0000000..4951a42
--- /dev/null
+++ b/utils/TableGen/DAGISelMatcherGen.cpp
@@ -0,0 +1,882 @@
+//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DAGISelMatcher.h"
+#include "CodeGenDAGPatterns.h"
+#include "Record.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include <utility>
+using namespace llvm;
+
+
+/// getRegisterValueType - Look up and return the ValueType of the specified
+/// register. If the register is a member of multiple register classes which
+/// have different associated types, return MVT::Other.
+static MVT::SimpleValueType getRegisterValueType(Record *R,
+ const CodeGenTarget &T) {
+ bool FoundRC = false;
+ MVT::SimpleValueType VT = MVT::Other;
+ const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
+ std::vector<Record*>::const_iterator Element;
+
+ for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
+ const CodeGenRegisterClass &RC = RCs[rc];
+ if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
+ continue;
+
+ if (!FoundRC) {
+ FoundRC = true;
+ VT = RC.getValueTypeNum(0);
+ continue;
+ }
+
+ // If this occurs in multiple register classes, they all have to agree.
+ assert(VT == RC.getValueTypeNum(0));
+ }
+ return VT;
+}
+
+
+namespace {
+ class MatcherGen {
+ const PatternToMatch &Pattern;
+ const CodeGenDAGPatterns &CGP;
+
+ /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
+ /// out with all of the types removed. This allows us to insert type checks
+ /// as we scan the tree.
+ TreePatternNode *PatWithNoTypes;
+
+ /// VariableMap - A map from variable names ('$dst') to the recorded operand
+ /// number that they were captured as. These are biased by 1 to make
+ /// insertion easier.
+ StringMap<unsigned> VariableMap;
+
+ /// NextRecordedOperandNo - As we emit opcodes to record matched values in
+ /// the RecordedNodes array, this keeps track of which slot will be next to
+ /// record into.
+ unsigned NextRecordedOperandNo;
+
+ /// MatchedChainNodes - This maintains the position in the recorded nodes
+ /// array of all of the recorded input nodes that have chains.
+ SmallVector<unsigned, 2> MatchedChainNodes;
+
+ /// MatchedFlagResultNodes - This maintains the position in the recorded
+ /// nodes array of all of the recorded input nodes that have flag results.
+ SmallVector<unsigned, 2> MatchedFlagResultNodes;
+
+ /// MatchedComplexPatterns - This maintains a list of all of the
+ /// ComplexPatterns that we need to check. The patterns are known to have
+ /// names which were recorded. The second element of each pair is the first
+ /// slot number that the OPC_CheckComplexPat opcode drops the matched
+ /// results into.
+ SmallVector<std::pair<const TreePatternNode*,
+ unsigned>, 2> MatchedComplexPatterns;
+
+ /// PhysRegInputs - List list has an entry for each explicitly specified
+ /// physreg input to the pattern. The first elt is the Register node, the
+ /// second is the recorded slot number the input pattern match saved it in.
+ SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
+
+ /// Matcher - This is the top level of the generated matcher, the result.
+ Matcher *TheMatcher;
+
+ /// CurPredicate - As we emit matcher nodes, this points to the latest check
+ /// which should have future checks stuck into its Next position.
+ Matcher *CurPredicate;
+ public:
+ MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
+
+ ~MatcherGen() {
+ delete PatWithNoTypes;
+ }
+
+ bool EmitMatcherCode(unsigned Variant);
+ void EmitResultCode();
+
+ Matcher *GetMatcher() const { return TheMatcher; }
+ Matcher *GetCurPredicate() const { return CurPredicate; }
+ private:
+ void AddMatcher(Matcher *NewNode);
+ void InferPossibleTypes();
+
+ // Matcher Generation.
+ void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
+ void EmitLeafMatchCode(const TreePatternNode *N);
+ void EmitOperatorMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes);
+
+ // Result Code Generation.
+ unsigned getNamedArgumentSlot(StringRef Name) {
+ unsigned VarMapEntry = VariableMap[Name];
+ assert(VarMapEntry != 0 &&
+ "Variable referenced but not defined and not caught earlier!");
+ return VarMapEntry-1;
+ }
+
+ /// GetInstPatternNode - Get the pattern for an instruction.
+ const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
+ const TreePatternNode *N);
+
+ void EmitResultOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultOfNamedOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultLeafAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultInstructionAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ };
+
+} // end anon namespace.
+
+MatcherGen::MatcherGen(const PatternToMatch &pattern,
+ const CodeGenDAGPatterns &cgp)
+: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
+ TheMatcher(0), CurPredicate(0) {
+ // We need to produce the matcher tree for the patterns source pattern. To do
+ // this we need to match the structure as well as the types. To do the type
+ // matching, we want to figure out the fewest number of type checks we need to
+ // emit. For example, if there is only one integer type supported by a
+ // target, there should be no type comparisons at all for integer patterns!
+ //
+ // To figure out the fewest number of type checks needed, clone the pattern,
+ // remove the types, then perform type inference on the pattern as a whole.
+ // If there are unresolved types, emit an explicit check for those types,
+ // apply the type to the tree, then rerun type inference. Iterate until all
+ // types are resolved.
+ //
+ PatWithNoTypes = Pattern.getSrcPattern()->clone();
+ PatWithNoTypes->RemoveAllTypes();
+
+ // If there are types that are manifestly known, infer them.
+ InferPossibleTypes();
+}
+
+/// InferPossibleTypes - As we emit the pattern, we end up generating type
+/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
+/// want to propagate implied types as far throughout the tree as possible so
+/// that we avoid doing redundant type checks. This does the type propagation.
+void MatcherGen::InferPossibleTypes() {
+ // TP - Get *SOME* tree pattern, we don't care which. It is only used for
+ // diagnostics, which we know are impossible at this point.
+ TreePattern &TP = *CGP.pf_begin()->second;
+
+ try {
+ bool MadeChange = true;
+ while (MadeChange)
+ MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
+ true/*Ignore reg constraints*/);
+ } catch (...) {
+ errs() << "Type constraint application shouldn't fail!";
+ abort();
+ }
+}
+
+
+/// AddMatcher - Add a matcher node to the current graph we're building.
+void MatcherGen::AddMatcher(Matcher *NewNode) {
+ if (CurPredicate != 0)
+ CurPredicate->setNext(NewNode);
+ else
+ TheMatcher = NewNode;
+ CurPredicate = NewNode;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Pattern Match Generation
+//===----------------------------------------------------------------------===//
+
+/// EmitLeafMatchCode - Generate matching code for leaf nodes.
+void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
+ assert(N->isLeaf() && "Not a leaf?");
+
+ // Direct match against an integer constant.
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ // If this is the root of the dag we're matching, we emit a redundant opcode
+ // check to ensure that this gets folded into the normal top-level
+ // OpcodeSwitch.
+ if (N == Pattern.getSrcPattern()) {
+ const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
+ AddMatcher(new CheckOpcodeMatcher(NI));
+ }
+
+ return AddMatcher(new CheckIntegerMatcher(II->getValue()));
+ }
+
+ DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
+ if (DI == 0) {
+ errs() << "Unknown leaf kind: " << *DI << "\n";
+ abort();
+ }
+
+ Record *LeafRec = DI->getDef();
+ if (// Handle register references. Nothing to do here, they always match.
+ LeafRec->isSubClassOf("RegisterClass") ||
+ LeafRec->isSubClassOf("PointerLikeRegClass") ||
+ // Place holder for SRCVALUE nodes. Nothing to do here.
+ LeafRec->getName() == "srcvalue")
+ return;
+
+ // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
+ // record the register
+ if (LeafRec->isSubClassOf("Register")) {
+ AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
+ NextRecordedOperandNo));
+ PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
+ return;
+ }
+
+ if (LeafRec->isSubClassOf("ValueType"))
+ return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
+
+ if (LeafRec->isSubClassOf("CondCode"))
+ return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
+
+ if (LeafRec->isSubClassOf("ComplexPattern")) {
+ // We can't model ComplexPattern uses that don't have their name taken yet.
+ // The OPC_CheckComplexPattern operation implicitly records the results.
+ if (N->getName().empty()) {
+ errs() << "We expect complex pattern uses to have names: " << *N << "\n";
+ exit(1);
+ }
+
+ // Remember this ComplexPattern so that we can emit it after all the other
+ // structural matches are done.
+ MatchedComplexPatterns.push_back(std::make_pair(N, 0));
+ return;
+ }
+
+ errs() << "Unknown leaf kind: " << *N << "\n";
+ abort();
+}
+
+void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes) {
+ assert(!N->isLeaf() && "Not an operator?");
+ const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
+
+ // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
+ // a constant without a predicate fn that has more that one bit set, handle
+ // this as a special case. This is usually for targets that have special
+ // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
+ // handling stuff). Using these instructions is often far more efficient
+ // than materializing the constant. Unfortunately, both the instcombiner
+ // and the dag combiner can often infer that bits are dead, and thus drop
+ // them from the mask in the dag. For example, it might turn 'AND X, 255'
+ // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
+ // to handle this.
+ if ((N->getOperator()->getName() == "and" ||
+ N->getOperator()->getName() == "or") &&
+ N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
+ N->getPredicateFns().empty()) {
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
+ if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
+ // If this is at the root of the pattern, we emit a redundant
+ // CheckOpcode so that the following checks get factored properly under
+ // a single opcode check.
+ if (N == Pattern.getSrcPattern())
+ AddMatcher(new CheckOpcodeMatcher(CInfo));
+
+ // Emit the CheckAndImm/CheckOrImm node.
+ if (N->getOperator()->getName() == "and")
+ AddMatcher(new CheckAndImmMatcher(II->getValue()));
+ else
+ AddMatcher(new CheckOrImmMatcher(II->getValue()));
+
+ // Match the LHS of the AND as appropriate.
+ AddMatcher(new MoveChildMatcher(0));
+ EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
+ AddMatcher(new MoveParentMatcher());
+ return;
+ }
+ }
+ }
+
+ // Check that the current opcode lines up.
+ AddMatcher(new CheckOpcodeMatcher(CInfo));
+
+ // If this node has memory references (i.e. is a load or store), tell the
+ // interpreter to capture them in the memref array.
+ if (N->NodeHasProperty(SDNPMemOperand, CGP))
+ AddMatcher(new RecordMemRefMatcher());
+
+ // If this node has a chain, then the chain is operand #0 is the SDNode, and
+ // the child numbers of the node are all offset by one.
+ unsigned OpNo = 0;
+ if (N->NodeHasProperty(SDNPHasChain, CGP)) {
+ // Record the node and remember it in our chained nodes list.
+ AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
+ "' chained node",
+ NextRecordedOperandNo));
+ // Remember all of the input chains our pattern will match.
+ MatchedChainNodes.push_back(NextRecordedOperandNo++);
+
+ // Don't look at the input chain when matching the tree pattern to the
+ // SDNode.
+ OpNo = 1;
+
+ // If this node is not the root and the subtree underneath it produces a
+ // chain, then the result of matching the node is also produce a chain.
+ // Beyond that, this means that we're also folding (at least) the root node
+ // into the node that produce the chain (for example, matching
+ // "(add reg, (load ptr))" as a add_with_memory on X86). This is
+ // problematic, if the 'reg' node also uses the load (say, its chain).
+ // Graphically:
+ //
+ // [LD]
+ // ^ ^
+ // | \ DAG's like cheese.
+ // / |
+ // / [YY]
+ // | ^
+ // [XX]--/
+ //
+ // It would be invalid to fold XX and LD. In this case, folding the two
+ // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
+ // To prevent this, we emit a dynamic check for legality before allowing
+ // this to be folded.
+ //
+ const TreePatternNode *Root = Pattern.getSrcPattern();
+ if (N != Root) { // Not the root of the pattern.
+ // If there is a node between the root and this node, then we definitely
+ // need to emit the check.
+ bool NeedCheck = !Root->hasChild(N);
+
+ // If it *is* an immediate child of the root, we can still need a check if
+ // the root SDNode has multiple inputs. For us, this means that it is an
+ // intrinsic, has multiple operands, or has other inputs like chain or
+ // flag).
+ if (!NeedCheck) {
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
+ NeedCheck =
+ Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
+ Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
+ Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
+ PInfo.getNumOperands() > 1 ||
+ PInfo.hasProperty(SDNPHasChain) ||
+ PInfo.hasProperty(SDNPInFlag) ||
+ PInfo.hasProperty(SDNPOptInFlag);
+ }
+
+ if (NeedCheck)
+ AddMatcher(new CheckFoldableChainNodeMatcher());
+ }
+ }
+
+ // If this node has an output flag and isn't the root, remember it.
+ if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
+ N != Pattern.getSrcPattern()) {
+ // TODO: This redundantly records nodes with both flags and chains.
+
+ // Record the node and remember it in our chained nodes list.
+ AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
+ "' flag output node",
+ NextRecordedOperandNo));
+ // Remember all of the nodes with output flags our pattern will match.
+ MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
+ }
+
+ // If this node is known to have an input flag or if it *might* have an input
+ // flag, capture it as the flag input of the pattern.
+ if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
+ N->NodeHasProperty(SDNPInFlag, CGP))
+ AddMatcher(new CaptureFlagInputMatcher());
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ // Get the code suitable for matching this child. Move to the child, check
+ // it then move back to the parent.
+ AddMatcher(new MoveChildMatcher(OpNo));
+ EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
+ AddMatcher(new MoveParentMatcher());
+ }
+}
+
+
+void MatcherGen::EmitMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes) {
+ // If N and NodeNoTypes don't agree on a type, then this is a case where we
+ // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
+ // reinfer any correlated types.
+ unsigned NodeType = EEVT::isUnknown;
+ if (NodeNoTypes->getExtTypes() != N->getExtTypes()) {
+ NodeType = N->getTypeNum(0);
+ NodeNoTypes->setTypes(N->getExtTypes());
+ InferPossibleTypes();
+ }
+
+ // If this node has a name associated with it, capture it in VariableMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ if (!N->getName().empty()) {
+ unsigned &VarMapEntry = VariableMap[N->getName()];
+ if (VarMapEntry == 0) {
+ // If it is a named node, we must emit a 'Record' opcode.
+ AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
+ VarMapEntry = ++NextRecordedOperandNo;
+ } else {
+ // If we get here, this is a second reference to a specific name. Since
+ // we already have checked that the first reference is valid, we don't
+ // have to recursively match it, just check that it's the same as the
+ // previously named thing.
+ AddMatcher(new CheckSameMatcher(VarMapEntry-1));
+ return;
+ }
+ }
+
+ if (N->isLeaf())
+ EmitLeafMatchCode(N);
+ else
+ EmitOperatorMatchCode(N, NodeNoTypes);
+
+ // If there are node predicates for this node, generate their checks.
+ for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
+ AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
+
+ if (NodeType != EEVT::isUnknown)
+ AddMatcher(new CheckTypeMatcher((MVT::SimpleValueType)NodeType));
+}
+
+/// EmitMatcherCode - Generate the code that matches the predicate of this
+/// pattern for the specified Variant. If the variant is invalid this returns
+/// true and does not generate code, if it is valid, it returns false.
+bool MatcherGen::EmitMatcherCode(unsigned Variant) {
+ // If the root of the pattern is a ComplexPattern and if it is specified to
+ // match some number of root opcodes, these are considered to be our variants.
+ // Depending on which variant we're generating code for, emit the root opcode
+ // check.
+ if (const ComplexPattern *CP =
+ Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
+ const std::vector<Record*> &OpNodes = CP->getRootNodes();
+ assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
+ if (Variant >= OpNodes.size()) return true;
+
+ AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
+ } else {
+ if (Variant != 0) return true;
+ }
+
+ // Emit the matcher for the pattern structure and types.
+ EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
+
+ // If the pattern has a predicate on it (e.g. only enabled when a subtarget
+ // feature is around, do the check).
+ if (!Pattern.getPredicateCheck().empty())
+ AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
+
+ // Now that we've completed the structural type match, emit any ComplexPattern
+ // checks (e.g. addrmode matches). We emit this after the structural match
+ // because they are generally more expensive to evaluate and more difficult to
+ // factor.
+ for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
+ const TreePatternNode *N = MatchedComplexPatterns[i].first;
+
+ // Remember where the results of this match get stuck.
+ MatchedComplexPatterns[i].second = NextRecordedOperandNo;
+
+ // Get the slot we recorded the value in from the name on the node.
+ unsigned RecNodeEntry = VariableMap[N->getName()];
+ assert(!N->getName().empty() && RecNodeEntry &&
+ "Complex pattern should have a name and slot");
+ --RecNodeEntry; // Entries in VariableMap are biased.
+
+ const ComplexPattern &CP =
+ CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
+
+ // Emit a CheckComplexPat operation, which does the match (aborting if it
+ // fails) and pushes the matched operands onto the recorded nodes list.
+ AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
+ N->getName(), NextRecordedOperandNo));
+
+ // Record the right number of operands.
+ NextRecordedOperandNo += CP.getNumOperands();
+ if (CP.hasProperty(SDNPHasChain)) {
+ // If the complex pattern has a chain, then we need to keep track of the
+ // fact that we just recorded a chain input. The chain input will be
+ // matched as the last operand of the predicate if it was successful.
+ ++NextRecordedOperandNo; // Chained node operand.
+
+ // It is the last operand recorded.
+ assert(NextRecordedOperandNo > 1 &&
+ "Should have recorded input/result chains at least!");
+ MatchedChainNodes.push_back(NextRecordedOperandNo-1);
+ }
+
+ // TODO: Complex patterns can't have output flags, if they did, we'd want
+ // to record them.
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Node Result Generation
+//===----------------------------------------------------------------------===//
+
+void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps){
+ assert(!N->getName().empty() && "Operand not named!");
+
+ // A reference to a complex pattern gets all of the results of the complex
+ // pattern's match.
+ if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
+ unsigned SlotNo = 0;
+ for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
+ if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
+ SlotNo = MatchedComplexPatterns[i].second;
+ break;
+ }
+ assert(SlotNo != 0 && "Didn't get a slot number assigned?");
+
+ // The first slot entry is the node itself, the subsequent entries are the
+ // matched values.
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ ResultOps.push_back(SlotNo+i);
+ return;
+ }
+
+ unsigned SlotNo = getNamedArgumentSlot(N->getName());
+
+ // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
+ // version of the immediate so that it doesn't get selected due to some other
+ // node use.
+ if (!N->isLeaf()) {
+ StringRef OperatorName = N->getOperator()->getName();
+ if (OperatorName == "imm" || OperatorName == "fpimm") {
+ AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+ }
+
+ ResultOps.push_back(SlotNo);
+}
+
+void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ assert(N->isLeaf() && "Must be a leaf");
+
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ AddMatcher(new EmitIntegerMatcher(II->getValue(),N->getTypeNum(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ // If this is an explicit register reference, handle it.
+ if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ if (DI->getDef()->isSubClassOf("Register")) {
+ AddMatcher(new EmitRegisterMatcher(DI->getDef(),
+ N->getTypeNum(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ if (DI->getDef()->getName() == "zero_reg") {
+ AddMatcher(new EmitRegisterMatcher(0, N->getTypeNum(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ // Handle a reference to a register class. This is used
+ // in COPY_TO_SUBREG instructions.
+ if (DI->getDef()->isSubClassOf("RegisterClass")) {
+ std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
+ AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+ }
+
+ errs() << "unhandled leaf node: \n";
+ N->dump();
+}
+
+/// GetInstPatternNode - Get the pattern for an instruction.
+///
+const TreePatternNode *MatcherGen::
+GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
+ const TreePattern *InstPat = Inst.getPattern();
+
+ // FIXME2?: Assume actual pattern comes before "implicit".
+ TreePatternNode *InstPatNode;
+ if (InstPat)
+ InstPatNode = InstPat->getTree(0);
+ else if (/*isRoot*/ N == Pattern.getDstPattern())
+ InstPatNode = Pattern.getSrcPattern();
+ else
+ return 0;
+
+ if (InstPatNode && !InstPatNode->isLeaf() &&
+ InstPatNode->getOperator()->getName() == "set")
+ InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
+
+ return InstPatNode;
+}
+
+void MatcherGen::
+EmitResultInstructionAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &OutputOps) {
+ Record *Op = N->getOperator();
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(Op->getName());
+ const DAGInstruction &Inst = CGP.getInstruction(Op);
+
+ // If we can, get the pattern for the instruction we're generating. We derive
+ // a variety of information from this pattern, such as whether it has a chain.
+ //
+ // FIXME2: This is extremely dubious for several reasons, not the least of
+ // which it gives special status to instructions with patterns that Pat<>
+ // nodes can't duplicate.
+ const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
+
+ // NodeHasChain - Whether the instruction node we're creating takes chains.
+ bool NodeHasChain = InstPatNode &&
+ InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
+
+ bool isRoot = N == Pattern.getDstPattern();
+
+ // TreeHasOutFlag - True if this tree has a flag.
+ bool TreeHasInFlag = false, TreeHasOutFlag = false;
+ if (isRoot) {
+ const TreePatternNode *SrcPat = Pattern.getSrcPattern();
+ TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
+ SrcPat->TreeHasProperty(SDNPInFlag, CGP);
+
+ // FIXME2: this is checking the entire pattern, not just the node in
+ // question, doing this just for the root seems like a total hack.
+ TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
+ }
+
+ // NumResults - This is the number of results produced by the instruction in
+ // the "outs" list.
+ unsigned NumResults = Inst.getNumResults();
+
+ // Loop over all of the operands of the instruction pattern, emitting code
+ // to fill them all in. The node 'N' usually has number children equal to
+ // the number of input operands of the instruction. However, in cases
+ // where there are predicate operands for an instruction, we need to fill
+ // in the 'execute always' values. Match up the node operands to the
+ // instruction operands to do this.
+ SmallVector<unsigned, 8> InstOps;
+ for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
+ InstOpNo != e; ++InstOpNo) {
+
+ // Determine what to emit for this operand.
+ Record *OperandNode = II.OperandList[InstOpNo].Rec;
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
+ // This is a predicate or optional def operand; emit the
+ // 'default ops' operands.
+ const DAGDefaultOperand &DefaultOp =
+ CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
+ for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
+ EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
+ continue;
+ }
+
+ // Otherwise this is a normal operand or a predicate operand without
+ // 'execute always'; emit it.
+ EmitResultOperand(N->getChild(ChildNo), InstOps);
+ ++ChildNo;
+ }
+
+ // If this node has an input flag or explicitly specified input physregs, we
+ // need to add chained and flagged copyfromreg nodes and materialize the flag
+ // input.
+ if (isRoot && !PhysRegInputs.empty()) {
+ // Emit all of the CopyToReg nodes for the input physical registers. These
+ // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
+ for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
+ AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
+ PhysRegInputs[i].first));
+ // Even if the node has no other flag inputs, the resultant node must be
+ // flagged to the CopyFromReg nodes we just generated.
+ TreeHasInFlag = true;
+ }
+
+ // Result order: node results, chain, flags
+
+ // Determine the result types.
+ SmallVector<MVT::SimpleValueType, 4> ResultVTs;
+ if (NumResults != 0 && N->getTypeNum(0) != MVT::isVoid) {
+ // FIXME2: If the node has multiple results, we should add them. For now,
+ // preserve existing behavior?!
+ ResultVTs.push_back(N->getTypeNum(0));
+ }
+
+
+ // If this is the root instruction of a pattern that has physical registers in
+ // its result pattern, add output VTs for them. For example, X86 has:
+ // (set AL, (mul ...))
+ // This also handles implicit results like:
+ // (implicit EFLAGS)
+ if (isRoot && Pattern.getDstRegs().size() != 0) {
+ for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i)
+ if (Pattern.getDstRegs()[i]->isSubClassOf("Register"))
+ ResultVTs.push_back(getRegisterValueType(Pattern.getDstRegs()[i], CGT));
+ }
+
+ // FIXME2: Instead of using the isVariadic flag on the instruction, we should
+ // have an SDNP that indicates variadicism. The TargetInstrInfo isVariadic
+ // property should be inferred from this when an instruction has a pattern.
+ int NumFixedArityOperands = -1;
+ if (isRoot && II.isVariadic)
+ NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
+
+ // If this is the root node and any of the nodes matched nodes in the input
+ // pattern have MemRefs in them, have the interpreter collect them and plop
+ // them onto this node.
+ //
+ // FIXME3: This is actively incorrect for result patterns where the root of
+ // the pattern is not the memory reference and is also incorrect when the
+ // result pattern has multiple memory-referencing instructions. For example,
+ // in the X86 backend, this pattern causes the memrefs to get attached to the
+ // CVTSS2SDrr instead of the MOVSSrm:
+ //
+ // def : Pat<(extloadf32 addr:$src),
+ // (CVTSS2SDrr (MOVSSrm addr:$src))>;
+ //
+ bool NodeHasMemRefs =
+ isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
+
+ AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
+ ResultVTs.data(), ResultVTs.size(),
+ InstOps.data(), InstOps.size(),
+ NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
+ NodeHasMemRefs, NumFixedArityOperands,
+ NextRecordedOperandNo));
+
+ // The non-chain and non-flag results of the newly emitted node get recorded.
+ for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
+ if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
+ OutputOps.push_back(NextRecordedOperandNo++);
+ }
+}
+
+void MatcherGen::
+EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
+
+ // Emit the operand.
+ SmallVector<unsigned, 8> InputOps;
+
+ // FIXME2: Could easily generalize this to support multiple inputs and outputs
+ // to the SDNodeXForm. For now we just support one input and one output like
+ // the old instruction selector.
+ assert(N->getNumChildren() == 1);
+ EmitResultOperand(N->getChild(0), InputOps);
+
+ // The input currently must have produced exactly one result.
+ assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
+
+ AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
+ ResultOps.push_back(NextRecordedOperandNo++);
+}
+
+void MatcherGen::EmitResultOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ // This is something selected from the pattern we matched.
+ if (!N->getName().empty())
+ return EmitResultOfNamedOperand(N, ResultOps);
+
+ if (N->isLeaf())
+ return EmitResultLeafAsOperand(N, ResultOps);
+
+ Record *OpRec = N->getOperator();
+ if (OpRec->isSubClassOf("Instruction"))
+ return EmitResultInstructionAsOperand(N, ResultOps);
+ if (OpRec->isSubClassOf("SDNodeXForm"))
+ return EmitResultSDNodeXFormAsOperand(N, ResultOps);
+ errs() << "Unknown result node to emit code for: " << *N << '\n';
+ throw std::string("Unknown node in result pattern!");
+}
+
+void MatcherGen::EmitResultCode() {
+ // Patterns that match nodes with (potentially multiple) chain inputs have to
+ // merge them together into a token factor. This informs the generated code
+ // what all the chained nodes are.
+ if (!MatchedChainNodes.empty())
+ AddMatcher(new EmitMergeInputChainsMatcher
+ (MatchedChainNodes.data(), MatchedChainNodes.size()));
+
+ // Codegen the root of the result pattern, capturing the resulting values.
+ SmallVector<unsigned, 8> Ops;
+ EmitResultOperand(Pattern.getDstPattern(), Ops);
+
+ // At this point, we have however many values the result pattern produces.
+ // However, the input pattern might not need all of these. If there are
+ // excess values at the end (such as condition codes etc) just lop them off.
+ // This doesn't need to worry about flags or chains, just explicit results.
+ //
+ // FIXME2: This doesn't work because there is currently no way to get an
+ // accurate count of the # results the source pattern sets. This is because
+ // of the "parallel" construct in X86 land, which looks like this:
+ //
+ //def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2),
+ // (implicit EFLAGS)),
+ // (AND8rr GR8:$src1, GR8:$src2)>;
+ //
+ // This idiom means to match the two-result node X86and_flag (which is
+ // declared as returning a single result, because we can't match multi-result
+ // nodes yet). In this case, we would have to know that the input has two
+ // results. However, mul8r is modelled exactly the same way, but without
+ // implicit defs included. The fix is to support multiple results directly
+ // and eliminate 'parallel'.
+ //
+ // FIXME2: When this is fixed, we should revert the terrible hack in the
+ // OPC_EmitNode code in the interpreter.
+#if 0
+ const TreePatternNode *Src = Pattern.getSrcPattern();
+ unsigned NumSrcResults = Src->getTypeNum(0) != MVT::isVoid ? 1 : 0;
+ NumSrcResults += Pattern.getDstRegs().size();
+ assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
+ Ops.resize(NumSrcResults);
+#endif
+
+ // If the matched pattern covers nodes which define a flag result, emit a node
+ // that tells the matcher about them so that it can update their results.
+ if (!MatchedFlagResultNodes.empty())
+ AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
+ MatchedFlagResultNodes.size()));
+
+ AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
+}
+
+
+/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
+/// the specified variant. If the variant number is invalid, this returns null.
+Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
+ unsigned Variant,
+ const CodeGenDAGPatterns &CGP) {
+ MatcherGen Gen(Pattern, CGP);
+
+ // Generate the code for the matcher.
+ if (Gen.EmitMatcherCode(Variant))
+ return 0;
+
+ // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
+ // FIXME2: Split result code out to another table, and make the matcher end
+ // with an "Emit <index>" command. This allows result generation stuff to be
+ // shared and factored?
+
+ // If the match succeeds, then we generate Pattern.
+ Gen.EmitResultCode();
+
+ // Unconditional match.
+ return Gen.GetMatcher();
+}
+
+
+