aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen')
-rw-r--r--utils/TableGen/ARMDecoderEmitter.cpp197
-rw-r--r--utils/TableGen/DisassemblerEmitter.cpp5
-rw-r--r--utils/TableGen/FixedLenDecoderEmitter.cpp1372
-rw-r--r--utils/TableGen/FixedLenDecoderEmitter.h56
4 files changed, 1532 insertions, 98 deletions
diff --git a/utils/TableGen/ARMDecoderEmitter.cpp b/utils/TableGen/ARMDecoderEmitter.cpp
index 21af620..a8de745 100644
--- a/utils/TableGen/ARMDecoderEmitter.cpp
+++ b/utils/TableGen/ARMDecoderEmitter.cpp
@@ -221,7 +221,7 @@ typedef enum {
#define BIT_WIDTH 32
// Forward declaration.
-class FilterChooser;
+class ARMFilterChooser;
// Representation of the instruction to work on.
typedef bit_value_t insn_t[BIT_WIDTH];
@@ -262,9 +262,9 @@ typedef bit_value_t insn_t[BIT_WIDTH];
/// decoder could try to decode the even/odd register numbering and assign to
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
/// version and return the Opcode since the two have the same Asm format string.
-class Filter {
+class ARMFilter {
protected:
- FilterChooser *Owner; // points to the FilterChooser who owns this filter
+ ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter
unsigned StartBit; // the starting bit position
unsigned NumBits; // number of bits to filter
bool Mixed; // a mixed region contains both set and unset bits
@@ -276,7 +276,7 @@ protected:
std::vector<unsigned> VariableInstructions;
// Map of well-known segment value to its delegate.
- std::map<unsigned, FilterChooser*> FilterChooserMap;
+ std::map<unsigned, ARMFilterChooser*> FilterChooserMap;
// Number of instructions which fall under FilteredInstructions category.
unsigned NumFiltered;
@@ -296,16 +296,17 @@ public:
}
// Return the filter chooser for the group of instructions without constant
// segment values.
- FilterChooser &getVariableFC() {
+ ARMFilterChooser &getVariableFC() {
assert(NumFiltered == 1);
assert(FilterChooserMap.size() == 1);
return *(FilterChooserMap.find((unsigned)-1)->second);
}
- Filter(const Filter &f);
- Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
+ ARMFilter(const ARMFilter &f);
+ ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
+ bool mixed);
- ~Filter();
+ ~ARMFilter();
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
@@ -333,7 +334,7 @@ typedef enum {
ATTR_MIXED
} bitAttr_t;
-/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
+/// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters
/// in order to perform the decoding of instructions at the current level.
///
/// Decoding proceeds from the top down. Based on the well-known encoding bits
@@ -348,11 +349,11 @@ typedef enum {
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree. And each case is delegated to an inferior FilterChooser to
/// decide what further remaining bits to look at.
-class FilterChooser {
+class ARMFilterChooser {
static TARGET_NAME_t TargetName;
protected:
- friend class Filter;
+ friend class ARMFilter;
// Vector of codegen instructions to choose our filter.
const std::vector<const CodeGenInstruction*> &AllInstructions;
@@ -361,14 +362,14 @@ protected:
const std::vector<unsigned> Opcodes;
// Vector of candidate filters.
- std::vector<Filter> Filters;
+ std::vector<ARMFilter> Filters;
// Array of bit values passed down from our parent.
// Set to all BIT_UNFILTERED's for Parent == NULL.
bit_value_t FilterBitValues[BIT_WIDTH];
// Links to the FilterChooser above us in the decoding tree.
- FilterChooser *Parent;
+ ARMFilterChooser *Parent;
// Index of the best filter from Filters.
int BestIndex;
@@ -376,13 +377,13 @@ protected:
public:
static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
- FilterChooser(const FilterChooser &FC) :
+ ARMFilterChooser(const ARMFilterChooser &FC) :
AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
}
- FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs) :
AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
BestIndex(-1) {
@@ -392,10 +393,10 @@ public:
doFilter();
}
- FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
- const std::vector<unsigned> &IDs,
- bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
- FilterChooser &parent) :
+ ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ const std::vector<unsigned> &IDs,
+ bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
+ ARMFilterChooser &parent) :
AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
BestIndex(-1) {
for (unsigned i = 0; i < BIT_WIDTH; ++i)
@@ -426,8 +427,9 @@ protected:
Insn[i] = bitFromBits(Bits, i);
// Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
- if (getByteField(*AllInstructions[Opcode]->TheDef, "IndexModeBits")
- == IndexModeUpd)
+ Record *R = AllInstructions[Opcode]->TheDef;
+ if (R->getValue("IndexModeBits") &&
+ getByteField(*R, "IndexModeBits") == IndexModeUpd)
Insn[21] = BIT_TRUE;
}
@@ -452,7 +454,7 @@ protected:
/// dumpFilterArray on each filter chooser up to the top level one.
void dumpStack(raw_ostream &o, const char *prefix);
- Filter &bestFilter() {
+ ARMFilter &bestFilter() {
assert(BestIndex != -1 && "BestIndex not set");
return Filters[BestIndex];
}
@@ -497,11 +499,12 @@ protected:
bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
// Emits code to decode the singleton, and then to decode the rest.
- void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
+ void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
+ ARMFilter &Best);
// Assign a single filter and run with it.
- void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
- bool mixed);
+ void runSingleFilter(ARMFilterChooser &owner, unsigned startBit,
+ unsigned numBit, bool mixed);
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
@@ -530,7 +533,7 @@ protected:
// //
///////////////////////////
-Filter::Filter(const Filter &f) :
+ARMFilter::ARMFilter(const ARMFilter &f) :
Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
FilteredInstructions(f.FilteredInstructions),
VariableInstructions(f.VariableInstructions),
@@ -538,7 +541,7 @@ Filter::Filter(const Filter &f) :
LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
}
-Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
+ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
Mixed(mixed) {
assert(StartBit + NumBits - 1 < BIT_WIDTH);
@@ -575,8 +578,8 @@ Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
&& "Filter returns no instruction categories");
}
-Filter::~Filter() {
- std::map<unsigned, FilterChooser*>::iterator filterIterator;
+ARMFilter::~ARMFilter() {
+ std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
@@ -590,7 +593,7 @@ Filter::~Filter() {
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
-void Filter::recurse() {
+void ARMFilter::recurse() {
std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
bit_value_t BitValueArray[BIT_WIDTH];
@@ -606,12 +609,12 @@ void Filter::recurse() {
// Delegates to an inferior filter chooser for futher processing on this
// group of instructions whose segment values are variable.
- FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
+ FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
(unsigned)-1,
- new FilterChooser(Owner->AllInstructions,
- VariableInstructions,
- BitValueArray,
- *Owner)
+ new ARMFilterChooser(Owner->AllInstructions,
+ VariableInstructions,
+ BitValueArray,
+ *Owner)
));
}
@@ -638,18 +641,18 @@ void Filter::recurse() {
// Delegates to an inferior filter chooser for futher processing on this
// category of instructions.
- FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
+ FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
mapIterator->first,
- new FilterChooser(Owner->AllInstructions,
- mapIterator->second,
- BitValueArray,
- *Owner)
+ new ARMFilterChooser(Owner->AllInstructions,
+ mapIterator->second,
+ BitValueArray,
+ *Owner)
));
}
}
// Emit code to decode instructions given a segment or segments of bits.
-void Filter::emit(raw_ostream &o, unsigned &Indentation) {
+void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) {
o.indent(Indentation) << "// Check Inst{";
if (NumBits > 1)
@@ -660,7 +663,7 @@ void Filter::emit(raw_ostream &o, unsigned &Indentation) {
o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
<< StartBit << ", " << NumBits << ")) {\n";
- std::map<unsigned, FilterChooser*>::iterator filterIterator;
+ std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
bool DefaultCase = false;
for (filterIterator = FilterChooserMap.begin();
@@ -709,7 +712,7 @@ void Filter::emit(raw_ostream &o, unsigned &Indentation) {
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
-unsigned Filter::usefulness() const {
+unsigned ARMFilter::usefulness() const {
if (VariableInstructions.size())
return FilteredInstructions.size();
else
@@ -723,10 +726,10 @@ unsigned Filter::usefulness() const {
//////////////////////////////////
// Define the symbol here.
-TARGET_NAME_t FilterChooser::TargetName;
+TARGET_NAME_t ARMFilterChooser::TargetName;
// This provides an opportunity for target specific code emission.
-void FilterChooser::emitTopHook(raw_ostream &o) {
+void ARMFilterChooser::emitTopHook(raw_ostream &o) {
if (TargetName == TARGET_ARM) {
// Emit code that references the ARMFormat data type.
o << "static const ARMFormat ARMFormats[] = {\n";
@@ -747,7 +750,7 @@ void FilterChooser::emitTopHook(raw_ostream &o) {
}
// Emit the top level typedef and decodeInstruction() function.
-void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
+void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
// Run the target specific emit hook.
emitTopHook(o);
@@ -818,7 +821,7 @@ void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
// This provides an opportunity for target specific code emission after
// emitTop().
-void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
+void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
if (TargetName != TARGET_THUMB) return;
// Emit code that decodes the Thumb ISA.
@@ -843,7 +846,7 @@ void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
-bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
+bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
unsigned StartBit, unsigned NumBits) const {
Field = 0;
@@ -860,7 +863,7 @@ bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
-void FilterChooser::dumpFilterArray(raw_ostream &o,
+void ARMFilterChooser::dumpFilterArray(raw_ostream &o,
bit_value_t (&filter)[BIT_WIDTH]) {
unsigned bitIndex;
@@ -884,8 +887,8 @@ void FilterChooser::dumpFilterArray(raw_ostream &o,
/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
-void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
- FilterChooser *current = this;
+void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
+ ARMFilterChooser *current = this;
while (current) {
o << prefix;
@@ -896,7 +899,7 @@ void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
}
// Called from Filter::recurse() when singleton exists. For debug purpose.
-void FilterChooser::SingletonExists(unsigned Opc) {
+void ARMFilterChooser::SingletonExists(unsigned Opc) {
insn_t Insn0;
insnWithID(Insn0, Opc);
@@ -923,7 +926,7 @@ void FilterChooser::SingletonExists(unsigned Opc) {
// This returns a list of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
-unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
+unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
insn_t &Insn) {
unsigned Num, BitNo;
@@ -983,7 +986,7 @@ unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
-bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
+bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
unsigned Opc) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
@@ -1046,8 +1049,9 @@ bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
}
// Emits code to decode the singleton, and then to decode the rest.
-void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
- Filter &Best) {
+void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o,
+ unsigned &Indentation,
+ ARMFilter &Best) {
unsigned Opc = Best.getSingletonOpc();
@@ -1063,10 +1067,11 @@ void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
// Assign a single filter and run with it. Top level API client can initialize
// with a single filter to start the filtering process.
-void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
- unsigned numBit, bool mixed) {
+void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner,
+ unsigned startBit,
+ unsigned numBit, bool mixed) {
Filters.clear();
- Filter F(*this, startBit, numBit, true);
+ ARMFilter F(*this, startBit, numBit, true);
Filters.push_back(F);
BestIndex = 0; // Sole Filter instance to choose from.
bestFilter().recurse();
@@ -1074,18 +1079,18 @@ void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
-void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
- unsigned BitIndex, bool AllowMixed) {
+void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
+ unsigned BitIndex, bool AllowMixed) {
if (RA == ATTR_MIXED && AllowMixed)
- Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
+ Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true));
else if (RA == ATTR_ALL_SET && !AllowMixed)
- Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
+ Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false));
}
// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters. It chooses the best filter and
// recursively descends down the decoding tree.
-bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
+bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
Filters.clear();
BestIndex = -1;
unsigned numInstructions = Opcodes.size();
@@ -1317,7 +1322,7 @@ bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
-void FilterChooser::doFilter() {
+void ARMFilterChooser::doFilter() {
unsigned Num = Opcodes.size();
assert(Num && "FilterChooser created with no instructions");
@@ -1350,7 +1355,7 @@ void FilterChooser::doFilter() {
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
-bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
+bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
if (Opcodes.size() == 1)
// There is only one instruction in the set, which is great!
// Call emitSingletonDecoder() to see whether there are any remaining
@@ -1359,7 +1364,7 @@ bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
// Choose the best filter to do the decodings!
if (BestIndex != -1) {
- Filter &Best = bestFilter();
+ ARMFilter &Best = bestFilter();
if (Best.getNumFiltered() == 1)
emitSingletonDecoder(o, Indentation, Best);
else
@@ -1538,7 +1543,7 @@ protected:
std::vector<unsigned> Opcodes2;
ARMDecoderEmitter &Frontend;
CodeGenTarget Target;
- FilterChooser *FC;
+ ARMFilterChooser *FC;
TARGET_NAME_t TargetName;
};
@@ -1752,32 +1757,20 @@ ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI,
void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
getInstructionsByEnumValue(NumberedInstructions);
- uint16_t numUIDs = NumberedInstructions.size();
- uint16_t uid;
-
- const char *instClass = NULL;
-
- switch (TargetName) {
- case TARGET_ARM:
- instClass = "InstARM";
- break;
- default:
- assert(0 && "Unreachable code!");
- }
-
- for (uid = 0; uid < numUIDs; uid++) {
- // filter out intrinsics
- if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
- continue;
+ unsigned numUIDs = NumberedInstructions.size();
+ if (TargetName == TARGET_ARM) {
+ for (unsigned uid = 0; uid < numUIDs; uid++) {
+ // filter out intrinsics
+ if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM"))
+ continue;
- if (populateInstruction(*NumberedInstructions[uid], TargetName))
- Opcodes.push_back(uid);
- }
+ if (populateInstruction(*NumberedInstructions[uid], TargetName))
+ Opcodes.push_back(uid);
+ }
- // Special handling for the ARM chip, which supports two modes of execution.
- // This branch handles the Thumb opcodes.
- if (TargetName == TARGET_ARM) {
- for (uid = 0; uid < numUIDs; uid++) {
+ // Special handling for the ARM chip, which supports two modes of execution.
+ // This branch handles the Thumb opcodes.
+ for (unsigned uid = 0; uid < numUIDs; uid++) {
// filter out intrinsics
if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
&& !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
@@ -1786,6 +1779,18 @@ void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
Opcodes2.push_back(uid);
}
+
+ return;
+ }
+
+ // For other targets.
+ for (unsigned uid = 0; uid < numUIDs; uid++) {
+ Record *R = NumberedInstructions[uid]->TheDef;
+ if (R->getValueAsString("Namespace") == "TargetOpcode")
+ continue;
+
+ if (populateInstruction(*NumberedInstructions[uid], TargetName))
+ Opcodes.push_back(uid);
}
}
@@ -1805,20 +1810,20 @@ void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
o << '\n';
o << "namespace llvm {\n\n";
- FilterChooser::setTargetName(TargetName);
+ ARMFilterChooser::setTargetName(TargetName);
switch (TargetName) {
case TARGET_ARM: {
// Emit common utility and ARM ISA decoder.
- FC = new FilterChooser(NumberedInstructions, Opcodes);
+ FC = new ARMFilterChooser(NumberedInstructions, Opcodes);
// Reset indentation level.
unsigned Indentation = 0;
FC->emitTop(o, Indentation);
delete FC;
// Emit Thumb ISA decoder as well.
- FilterChooser::setTargetName(TARGET_THUMB);
- FC = new FilterChooser(NumberedInstructions, Opcodes2);
+ ARMFilterChooser::setTargetName(TARGET_THUMB);
+ FC = new ARMFilterChooser(NumberedInstructions, Opcodes2);
// Reset indentation level.
Indentation = 0;
FC->emitBot(o, Indentation);
diff --git a/utils/TableGen/DisassemblerEmitter.cpp b/utils/TableGen/DisassemblerEmitter.cpp
index 2d8bf66..90a2af2 100644
--- a/utils/TableGen/DisassemblerEmitter.cpp
+++ b/utils/TableGen/DisassemblerEmitter.cpp
@@ -13,6 +13,7 @@
#include "X86DisassemblerTables.h"
#include "X86RecognizableInstr.h"
#include "ARMDecoderEmitter.h"
+#include "FixedLenDecoderEmitter.h"
using namespace llvm;
using namespace llvm::X86Disassembler;
@@ -127,11 +128,11 @@ void DisassemblerEmitter::run(raw_ostream &OS) {
}
// Fixed-instruction-length targets use a common disassembler.
+ // ARM use its own implementation for now.
if (Target.getName() == "ARM") {
ARMDecoderEmitter(Records).run(OS);
return;
}
- throw TGError(Target.getTargetRecord()->getLoc(),
- "Unable to generate disassembler for this target");
+ FixedLenDecoderEmitter(Records).run(OS);
}
diff --git a/utils/TableGen/FixedLenDecoderEmitter.cpp b/utils/TableGen/FixedLenDecoderEmitter.cpp
new file mode 100644
index 0000000..2c222b3
--- /dev/null
+++ b/utils/TableGen/FixedLenDecoderEmitter.cpp
@@ -0,0 +1,1372 @@
+//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// It contains the tablegen backend that emits the decoder functions for
+// targets with fixed length instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "decoder-emitter"
+
+#include "FixedLenDecoderEmitter.h"
+#include "CodeGenTarget.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <vector>
+#include <map>
+#include <string>
+
+using namespace llvm;
+
+// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
+// for a bit value.
+//
+// BIT_UNFILTERED is used as the init value for a filter position. It is used
+// only for filter processings.
+typedef enum {
+ BIT_TRUE, // '1'
+ BIT_FALSE, // '0'
+ BIT_UNSET, // '?'
+ BIT_UNFILTERED // unfiltered
+} bit_value_t;
+
+static bool ValueSet(bit_value_t V) {
+ return (V == BIT_TRUE || V == BIT_FALSE);
+}
+static bool ValueNotSet(bit_value_t V) {
+ return (V == BIT_UNSET);
+}
+static int Value(bit_value_t V) {
+ return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
+}
+static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
+ if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
+ return bit->getValue() ? BIT_TRUE : BIT_FALSE;
+
+ // The bit is uninitialized.
+ return BIT_UNSET;
+}
+// Prints the bit value for each position.
+static void dumpBits(raw_ostream &o, BitsInit &bits) {
+ unsigned index;
+
+ for (index = bits.getNumBits(); index > 0; index--) {
+ switch (bitFromBits(bits, index - 1)) {
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ default:
+ assert(0 && "unexpected return value from bitFromBits");
+ }
+ }
+}
+
+static BitsInit &getBitsField(const Record &def, const char *str) {
+ BitsInit *bits = def.getValueAsBitsInit(str);
+ return *bits;
+}
+
+// Forward declaration.
+class FilterChooser;
+
+// FIXME: Possibly auto-detected?
+#define BIT_WIDTH 32
+
+// Representation of the instruction to work on.
+typedef bit_value_t insn_t[BIT_WIDTH];
+
+/// Filter - Filter works with FilterChooser to produce the decoding tree for
+/// the ISA.
+///
+/// It is useful to think of a Filter as governing the switch stmts of the
+/// decoding tree in a certain level. Each case stmt delegates to an inferior
+/// FilterChooser to decide what further decoding logic to employ, or in another
+/// words, what other remaining bits to look at. The FilterChooser eventually
+/// chooses a best Filter to do its job.
+///
+/// This recursive scheme ends when the number of Opcodes assigned to the
+/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
+/// the Filter/FilterChooser combo does not know how to distinguish among the
+/// Opcodes assigned.
+///
+/// An example of a conflict is
+///
+/// Conflict:
+/// 111101000.00........00010000....
+/// 111101000.00........0001........
+/// 1111010...00........0001........
+/// 1111010...00....................
+/// 1111010.........................
+/// 1111............................
+/// ................................
+/// VST4q8a 111101000_00________00010000____
+/// VST4q8b 111101000_00________00010000____
+///
+/// The Debug output shows the path that the decoding tree follows to reach the
+/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
+/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
+///
+/// The encoding info in the .td files does not specify this meta information,
+/// which could have been used by the decoder to resolve the conflict. The
+/// decoder could try to decode the even/odd register numbering and assign to
+/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
+/// version and return the Opcode since the two have the same Asm format string.
+class Filter {
+protected:
+ FilterChooser *Owner; // points to the FilterChooser who owns this filter
+ unsigned StartBit; // the starting bit position
+ unsigned NumBits; // number of bits to filter
+ bool Mixed; // a mixed region contains both set and unset bits
+
+ // Map of well-known segment value to the set of uid's with that value.
+ std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
+
+ // Set of uid's with non-constant segment values.
+ std::vector<unsigned> VariableInstructions;
+
+ // Map of well-known segment value to its delegate.
+ std::map<unsigned, FilterChooser*> FilterChooserMap;
+
+ // Number of instructions which fall under FilteredInstructions category.
+ unsigned NumFiltered;
+
+ // Keeps track of the last opcode in the filtered bucket.
+ unsigned LastOpcFiltered;
+
+ // Number of instructions which fall under VariableInstructions category.
+ unsigned NumVariable;
+
+public:
+ unsigned getNumFiltered() { return NumFiltered; }
+ unsigned getNumVariable() { return NumVariable; }
+ unsigned getSingletonOpc() {
+ assert(NumFiltered == 1);
+ return LastOpcFiltered;
+ }
+ // Return the filter chooser for the group of instructions without constant
+ // segment values.
+ FilterChooser &getVariableFC() {
+ assert(NumFiltered == 1);
+ assert(FilterChooserMap.size() == 1);
+ return *(FilterChooserMap.find((unsigned)-1)->second);
+ }
+
+ Filter(const Filter &f);
+ Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
+
+ ~Filter();
+
+ // Divides the decoding task into sub tasks and delegates them to the
+ // inferior FilterChooser's.
+ //
+ // A special case arises when there's only one entry in the filtered
+ // instructions. In order to unambiguously decode the singleton, we need to
+ // match the remaining undecoded encoding bits against the singleton.
+ void recurse();
+
+ // Emit code to decode instructions given a segment or segments of bits.
+ void emit(raw_ostream &o, unsigned &Indentation);
+
+ // Returns the number of fanout produced by the filter. More fanout implies
+ // the filter distinguishes more categories of instructions.
+ unsigned usefulness() const;
+}; // End of class Filter
+
+// These are states of our finite state machines used in FilterChooser's
+// filterProcessor() which produces the filter candidates to use.
+typedef enum {
+ ATTR_NONE,
+ ATTR_FILTERED,
+ ATTR_ALL_SET,
+ ATTR_ALL_UNSET,
+ ATTR_MIXED
+} bitAttr_t;
+
+/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
+/// in order to perform the decoding of instructions at the current level.
+///
+/// Decoding proceeds from the top down. Based on the well-known encoding bits
+/// of instructions available, FilterChooser builds up the possible Filters that
+/// can further the task of decoding by distinguishing among the remaining
+/// candidate instructions.
+///
+/// Once a filter has been chosen, it is called upon to divide the decoding task
+/// into sub-tasks and delegates them to its inferior FilterChoosers for further
+/// processings.
+///
+/// It is useful to think of a Filter as governing the switch stmts of the
+/// decoding tree. And each case is delegated to an inferior FilterChooser to
+/// decide what further remaining bits to look at.
+class FilterChooser {
+protected:
+ friend class Filter;
+
+ // Vector of codegen instructions to choose our filter.
+ const std::vector<const CodeGenInstruction*> &AllInstructions;
+
+ // Vector of uid's for this filter chooser to work on.
+ const std::vector<unsigned> Opcodes;
+
+ // Lookup table for the operand decoding of instructions.
+ std::map<unsigned, std::vector<OperandInfo> > &Operands;
+
+ // Vector of candidate filters.
+ std::vector<Filter> Filters;
+
+ // Array of bit values passed down from our parent.
+ // Set to all BIT_UNFILTERED's for Parent == NULL.
+ bit_value_t FilterBitValues[BIT_WIDTH];
+
+ // Links to the FilterChooser above us in the decoding tree.
+ FilterChooser *Parent;
+
+ // Index of the best filter from Filters.
+ int BestIndex;
+
+public:
+ FilterChooser(const FilterChooser &FC) :
+ AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
+ Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent),
+ BestIndex(FC.BestIndex) {
+ memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
+ }
+
+ FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ const std::vector<unsigned> &IDs,
+ std::map<unsigned, std::vector<OperandInfo> > &Ops) :
+ AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
+ Parent(NULL), BestIndex(-1) {
+ for (unsigned i = 0; i < BIT_WIDTH; ++i)
+ FilterBitValues[i] = BIT_UNFILTERED;
+
+ doFilter();
+ }
+
+ FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ const std::vector<unsigned> &IDs,
+ std::map<unsigned, std::vector<OperandInfo> > &Ops,
+ bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
+ FilterChooser &parent) :
+ AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
+ Filters(), Parent(&parent), BestIndex(-1) {
+ for (unsigned i = 0; i < BIT_WIDTH; ++i)
+ FilterBitValues[i] = ParentFilterBitValues[i];
+
+ doFilter();
+ }
+
+ // The top level filter chooser has NULL as its parent.
+ bool isTopLevel() { return Parent == NULL; }
+
+ // Emit the top level typedef and decodeInstruction() function.
+ void emitTop(raw_ostream &o, unsigned Indentation);
+
+protected:
+ // Populates the insn given the uid.
+ void insnWithID(insn_t &Insn, unsigned Opcode) const {
+ BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
+
+ for (unsigned i = 0; i < BIT_WIDTH; ++i)
+ Insn[i] = bitFromBits(Bits, i);
+ }
+
+ // Returns the record name.
+ const std::string &nameWithID(unsigned Opcode) const {
+ return AllInstructions[Opcode]->TheDef->getName();
+ }
+
+ // Populates the field of the insn given the start position and the number of
+ // consecutive bits to scan for.
+ //
+ // Returns false if there exists any uninitialized bit value in the range.
+ // Returns true, otherwise.
+ bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
+ unsigned NumBits) const;
+
+ /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
+ /// filter array as a series of chars.
+ void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
+
+ /// dumpStack - dumpStack traverses the filter chooser chain and calls
+ /// dumpFilterArray on each filter chooser up to the top level one.
+ void dumpStack(raw_ostream &o, const char *prefix);
+
+ Filter &bestFilter() {
+ assert(BestIndex != -1 && "BestIndex not set");
+ return Filters[BestIndex];
+ }
+
+ // Called from Filter::recurse() when singleton exists. For debug purpose.
+ void SingletonExists(unsigned Opc);
+
+ bool PositionFiltered(unsigned i) {
+ return ValueSet(FilterBitValues[i]);
+ }
+
+ // Calculates the island(s) needed to decode the instruction.
+ // This returns a lit of undecoded bits of an instructions, for example,
+ // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
+ // decoded bits in order to verify that the instruction matches the Opcode.
+ unsigned getIslands(std::vector<unsigned> &StartBits,
+ std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
+ insn_t &Insn);
+
+ // Emits code to decode the singleton. Return true if we have matched all the
+ // well-known bits.
+ bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
+
+ // Emits code to decode the singleton, and then to decode the rest.
+ void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
+
+ // Assign a single filter and run with it.
+ void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
+ bool mixed);
+
+ // reportRegion is a helper function for filterProcessor to mark a region as
+ // eligible for use as a filter region.
+ void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
+ bool AllowMixed);
+
+ // FilterProcessor scans the well-known encoding bits of the instructions and
+ // builds up a list of candidate filters. It chooses the best filter and
+ // recursively descends down the decoding tree.
+ bool filterProcessor(bool AllowMixed, bool Greedy = true);
+
+ // Decides on the best configuration of filter(s) to use in order to decode
+ // the instructions. A conflict of instructions may occur, in which case we
+ // dump the conflict set to the standard error.
+ void doFilter();
+
+ // Emits code to decode our share of instructions. Returns true if the
+ // emitted code causes a return, which occurs if we know how to decode
+ // the instruction at this level or the instruction is not decodeable.
+ bool emit(raw_ostream &o, unsigned &Indentation);
+};
+
+///////////////////////////
+// //
+// Filter Implmenetation //
+// //
+///////////////////////////
+
+Filter::Filter(const Filter &f) :
+ Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
+ FilteredInstructions(f.FilteredInstructions),
+ VariableInstructions(f.VariableInstructions),
+ FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
+ LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
+}
+
+Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
+ bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
+ Mixed(mixed) {
+ assert(StartBit + NumBits - 1 < BIT_WIDTH);
+
+ NumFiltered = 0;
+ LastOpcFiltered = 0;
+ NumVariable = 0;
+
+ for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
+ insn_t Insn;
+
+ // Populates the insn given the uid.
+ Owner->insnWithID(Insn, Owner->Opcodes[i]);
+
+ uint64_t Field;
+ // Scans the segment for possibly well-specified encoding bits.
+ bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
+
+ if (ok) {
+ // The encoding bits are well-known. Lets add the uid of the
+ // instruction into the bucket keyed off the constant field value.
+ LastOpcFiltered = Owner->Opcodes[i];
+ FilteredInstructions[Field].push_back(LastOpcFiltered);
+ ++NumFiltered;
+ } else {
+ // Some of the encoding bit(s) are unspecfied. This contributes to
+ // one additional member of "Variable" instructions.
+ VariableInstructions.push_back(Owner->Opcodes[i]);
+ ++NumVariable;
+ }
+ }
+
+ assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
+ && "Filter returns no instruction categories");
+}
+
+Filter::~Filter() {
+ std::map<unsigned, FilterChooser*>::iterator filterIterator;
+ for (filterIterator = FilterChooserMap.begin();
+ filterIterator != FilterChooserMap.end();
+ filterIterator++) {
+ delete filterIterator->second;
+ }
+}
+
+// Divides the decoding task into sub tasks and delegates them to the
+// inferior FilterChooser's.
+//
+// A special case arises when there's only one entry in the filtered
+// instructions. In order to unambiguously decode the singleton, we need to
+// match the remaining undecoded encoding bits against the singleton.
+void Filter::recurse() {
+ std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
+
+ bit_value_t BitValueArray[BIT_WIDTH];
+ // Starts by inheriting our parent filter chooser's filter bit values.
+ memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
+
+ unsigned bitIndex;
+
+ if (VariableInstructions.size()) {
+ // Conservatively marks each segment position as BIT_UNSET.
+ for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
+ BitValueArray[StartBit + bitIndex] = BIT_UNSET;
+
+ // Delegates to an inferior filter chooser for futher processing on this
+ // group of instructions whose segment values are variable.
+ FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
+ (unsigned)-1,
+ new FilterChooser(Owner->AllInstructions,
+ VariableInstructions,
+ Owner->Operands,
+ BitValueArray,
+ *Owner)
+ ));
+ }
+
+ // No need to recurse for a singleton filtered instruction.
+ // See also Filter::emit().
+ if (getNumFiltered() == 1) {
+ //Owner->SingletonExists(LastOpcFiltered);
+ assert(FilterChooserMap.size() == 1);
+ return;
+ }
+
+ // Otherwise, create sub choosers.
+ for (mapIterator = FilteredInstructions.begin();
+ mapIterator != FilteredInstructions.end();
+ mapIterator++) {
+
+ // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
+ for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
+ if (mapIterator->first & (1ULL << bitIndex))
+ BitValueArray[StartBit + bitIndex] = BIT_TRUE;
+ else
+ BitValueArray[StartBit + bitIndex] = BIT_FALSE;
+ }
+
+ // Delegates to an inferior filter chooser for futher processing on this
+ // category of instructions.
+ FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
+ mapIterator->first,
+ new FilterChooser(Owner->AllInstructions,
+ mapIterator->second,
+ Owner->Operands,
+ BitValueArray,
+ *Owner)
+ ));
+ }
+}
+
+// Emit code to decode instructions given a segment or segments of bits.
+void Filter::emit(raw_ostream &o, unsigned &Indentation) {
+ o.indent(Indentation) << "// Check Inst{";
+
+ if (NumBits > 1)
+ o << (StartBit + NumBits - 1) << '-';
+
+ o << StartBit << "} ...\n";
+
+ o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
+ << StartBit << ", " << NumBits << ")) {\n";
+
+ std::map<unsigned, FilterChooser*>::iterator filterIterator;
+
+ bool DefaultCase = false;
+ for (filterIterator = FilterChooserMap.begin();
+ filterIterator != FilterChooserMap.end();
+ filterIterator++) {
+
+ // Field value -1 implies a non-empty set of variable instructions.
+ // See also recurse().
+ if (filterIterator->first == (unsigned)-1) {
+ DefaultCase = true;
+
+ o.indent(Indentation) << "default:\n";
+ o.indent(Indentation) << " break; // fallthrough\n";
+
+ // Closing curly brace for the switch statement.
+ // This is unconventional because we want the default processing to be
+ // performed for the fallthrough cases as well, i.e., when the "cases"
+ // did not prove a decoded instruction.
+ o.indent(Indentation) << "}\n";
+
+ } else
+ o.indent(Indentation) << "case " << filterIterator->first << ":\n";
+
+ // We arrive at a category of instructions with the same segment value.
+ // Now delegate to the sub filter chooser for further decodings.
+ // The case may fallthrough, which happens if the remaining well-known
+ // encoding bits do not match exactly.
+ if (!DefaultCase) { ++Indentation; ++Indentation; }
+
+ bool finished = filterIterator->second->emit(o, Indentation);
+ // For top level default case, there's no need for a break statement.
+ if (Owner->isTopLevel() && DefaultCase)
+ break;
+ if (!finished)
+ o.indent(Indentation) << "break;\n";
+
+ if (!DefaultCase) { --Indentation; --Indentation; }
+ }
+
+ // If there is no default case, we still need to supply a closing brace.
+ if (!DefaultCase) {
+ // Closing curly brace for the switch statement.
+ o.indent(Indentation) << "}\n";
+ }
+}
+
+// Returns the number of fanout produced by the filter. More fanout implies
+// the filter distinguishes more categories of instructions.
+unsigned Filter::usefulness() const {
+ if (VariableInstructions.size())
+ return FilteredInstructions.size();
+ else
+ return FilteredInstructions.size() + 1;
+}
+
+//////////////////////////////////
+// //
+// Filterchooser Implementation //
+// //
+//////////////////////////////////
+
+// Emit the top level typedef and decodeInstruction() function.
+void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) {
+ switch (BIT_WIDTH) {
+ case 8:
+ o.indent(Indentation) << "typedef uint8_t field_t;\n";
+ break;
+ case 16:
+ o.indent(Indentation) << "typedef uint16_t field_t;\n";
+ break;
+ case 32:
+ o.indent(Indentation) << "typedef uint32_t field_t;\n";
+ break;
+ case 64:
+ o.indent(Indentation) << "typedef uint64_t field_t;\n";
+ break;
+ default:
+ assert(0 && "Unexpected instruction size!");
+ }
+
+ o << '\n';
+
+ o.indent(Indentation) << "static field_t " <<
+ "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
+
+ o.indent(Indentation) << "{\n";
+
+ ++Indentation; ++Indentation;
+ o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
+ << " && \"Instruction field out of bounds!\");\n";
+ o << '\n';
+ o.indent(Indentation) << "field_t fieldMask;\n";
+ o << '\n';
+ o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
+
+ ++Indentation; ++Indentation;
+ o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
+ --Indentation; --Indentation;
+
+ o.indent(Indentation) << "else\n";
+
+ ++Indentation; ++Indentation;
+ o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
+ --Indentation; --Indentation;
+
+ o << '\n';
+ o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
+ --Indentation; --Indentation;
+
+ o.indent(Indentation) << "}\n";
+
+ o << '\n';
+
+ o.indent(Indentation) <<
+ "static bool decodeInstruction(MCInst &MI, field_t insn) {\n";
+ o.indent(Indentation) << " unsigned tmp = 0;\n";
+
+ ++Indentation; ++Indentation;
+ // Emits code to decode the instructions.
+ emit(o, Indentation);
+
+ o << '\n';
+ o.indent(Indentation) << "return false;\n";
+ --Indentation; --Indentation;
+
+ o.indent(Indentation) << "}\n";
+
+ o << '\n';
+}
+
+// Populates the field of the insn given the start position and the number of
+// consecutive bits to scan for.
+//
+// Returns false if and on the first uninitialized bit value encountered.
+// Returns true, otherwise.
+bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
+ unsigned StartBit, unsigned NumBits) const {
+ Field = 0;
+
+ for (unsigned i = 0; i < NumBits; ++i) {
+ if (Insn[StartBit + i] == BIT_UNSET)
+ return false;
+
+ if (Insn[StartBit + i] == BIT_TRUE)
+ Field = Field | (1ULL << i);
+ }
+
+ return true;
+}
+
+/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
+/// filter array as a series of chars.
+void FilterChooser::dumpFilterArray(raw_ostream &o,
+ bit_value_t (&filter)[BIT_WIDTH]) {
+ unsigned bitIndex;
+
+ for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
+ switch (filter[bitIndex - 1]) {
+ case BIT_UNFILTERED:
+ o << ".";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ }
+ }
+}
+
+/// dumpStack - dumpStack traverses the filter chooser chain and calls
+/// dumpFilterArray on each filter chooser up to the top level one.
+void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
+ FilterChooser *current = this;
+
+ while (current) {
+ o << prefix;
+ dumpFilterArray(o, current->FilterBitValues);
+ o << '\n';
+ current = current->Parent;
+ }
+}
+
+// Called from Filter::recurse() when singleton exists. For debug purpose.
+void FilterChooser::SingletonExists(unsigned Opc) {
+ insn_t Insn0;
+ insnWithID(Insn0, Opc);
+
+ errs() << "Singleton exists: " << nameWithID(Opc)
+ << " with its decoding dominating ";
+ for (unsigned i = 0; i < Opcodes.size(); ++i) {
+ if (Opcodes[i] == Opc) continue;
+ errs() << nameWithID(Opcodes[i]) << ' ';
+ }
+ errs() << '\n';
+
+ dumpStack(errs(), "\t\t");
+ for (unsigned i = 0; i < Opcodes.size(); i++) {
+ const std::string &Name = nameWithID(Opcodes[i]);
+
+ errs() << '\t' << Name << " ";
+ dumpBits(errs(),
+ getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
+ errs() << '\n';
+ }
+}
+
+// Calculates the island(s) needed to decode the instruction.
+// This returns a list of undecoded bits of an instructions, for example,
+// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
+// decoded bits in order to verify that the instruction matches the Opcode.
+unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
+ std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
+ insn_t &Insn) {
+ unsigned Num, BitNo;
+ Num = BitNo = 0;
+
+ uint64_t FieldVal = 0;
+
+ // 0: Init
+ // 1: Water (the bit value does not affect decoding)
+ // 2: Island (well-known bit value needed for decoding)
+ int State = 0;
+ int Val = -1;
+
+ for (unsigned i = 0; i < BIT_WIDTH; ++i) {
+ Val = Value(Insn[i]);
+ bool Filtered = PositionFiltered(i);
+ switch (State) {
+ default:
+ assert(0 && "Unreachable code!");
+ break;
+ case 0:
+ case 1:
+ if (Filtered || Val == -1)
+ State = 1; // Still in Water
+ else {
+ State = 2; // Into the Island
+ BitNo = 0;
+ StartBits.push_back(i);
+ FieldVal = Val;
+ }
+ break;
+ case 2:
+ if (Filtered || Val == -1) {
+ State = 1; // Into the Water
+ EndBits.push_back(i - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ } else {
+ State = 2; // Still in Island
+ ++BitNo;
+ FieldVal = FieldVal | Val << BitNo;
+ }
+ break;
+ }
+ }
+ // If we are still in Island after the loop, do some housekeeping.
+ if (State == 2) {
+ EndBits.push_back(BIT_WIDTH - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ }
+
+ assert(StartBits.size() == Num && EndBits.size() == Num &&
+ FieldVals.size() == Num);
+ return Num;
+}
+
+// Emits code to decode the singleton. Return true if we have matched all the
+// well-known bits.
+bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
+ unsigned Opc) {
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+ insnWithID(Insn, Opc);
+
+ // Look for islands of undecoded bits of the singleton.
+ getIslands(StartBits, EndBits, FieldVals, Insn);
+
+ unsigned Size = StartBits.size();
+ unsigned I, NumBits;
+
+ // If we have matched all the well-known bits, just issue a return.
+ if (Size == 0) {
+ o.indent(Indentation) << "{\n";
+ o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
+ std::vector<OperandInfo>& InsnOperands = Operands[Opc];
+ for (std::vector<OperandInfo>::iterator
+ I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
+ // If a custom instruction decoder was specified, use that.
+ if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
+ o.indent(Indentation) << " " << I->Decoder << "(MI, insn);\n";
+ break;
+ }
+
+ o.indent(Indentation)
+ << " tmp = fieldFromInstruction(insn, " << I->FieldBase
+ << ", " << I->FieldLength << ");\n";
+ if (I->Decoder != "") {
+ o.indent(Indentation) << " " << I->Decoder << "(MI, tmp);\n";
+ } else {
+ o.indent(Indentation)
+ << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
+ }
+ }
+
+ o.indent(Indentation) << " return true; // " << nameWithID(Opc)
+ << '\n';
+ o.indent(Indentation) << "}\n";
+ return true;
+ }
+
+ // Otherwise, there are more decodings to be done!
+
+ // Emit code to match the island(s) for the singleton.
+ o.indent(Indentation) << "// Check ";
+
+ for (I = Size; I != 0; --I) {
+ o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
+ if (I > 1)
+ o << "&& ";
+ else
+ o << "for singleton decoding...\n";
+ }
+
+ o.indent(Indentation) << "if (";
+
+ for (I = Size; I != 0; --I) {
+ NumBits = EndBits[I-1] - StartBits[I-1] + 1;
+ o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
+ << ") == " << FieldVals[I-1];
+ if (I > 1)
+ o << " && ";
+ else
+ o << ") {\n";
+ }
+ o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
+ std::vector<OperandInfo>& InsnOperands = Operands[Opc];
+ for (std::vector<OperandInfo>::iterator
+ I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
+ // If a custom instruction decoder was specified, use that.
+ if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
+ o.indent(Indentation) << " " << I->Decoder << "(MI, insn);\n";
+ break;
+ }
+
+ o.indent(Indentation)
+ << " tmp = fieldFromInstruction(insn, " << I->FieldBase
+ << ", " << I->FieldLength << ");\n";
+ if (I->Decoder != "") {
+ o.indent(Indentation) << " " << I->Decoder << "(MI, tmp);\n";
+ } else {
+ o.indent(Indentation)
+ << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
+ }
+ }
+ o.indent(Indentation) << " return true; // " << nameWithID(Opc)
+ << '\n';
+ o.indent(Indentation) << "}\n";
+
+ return false;
+}
+
+// Emits code to decode the singleton, and then to decode the rest.
+void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
+ Filter &Best) {
+
+ unsigned Opc = Best.getSingletonOpc();
+
+ emitSingletonDecoder(o, Indentation, Opc);
+
+ // Emit code for the rest.
+ o.indent(Indentation) << "else\n";
+
+ Indentation += 2;
+ Best.getVariableFC().emit(o, Indentation);
+ Indentation -= 2;
+}
+
+// Assign a single filter and run with it. Top level API client can initialize
+// with a single filter to start the filtering process.
+void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
+ unsigned numBit, bool mixed) {
+ Filters.clear();
+ Filter F(*this, startBit, numBit, true);
+ Filters.push_back(F);
+ BestIndex = 0; // Sole Filter instance to choose from.
+ bestFilter().recurse();
+}
+
+// reportRegion is a helper function for filterProcessor to mark a region as
+// eligible for use as a filter region.
+void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
+ unsigned BitIndex, bool AllowMixed) {
+ if (RA == ATTR_MIXED && AllowMixed)
+ Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
+ else if (RA == ATTR_ALL_SET && !AllowMixed)
+ Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
+}
+
+// FilterProcessor scans the well-known encoding bits of the instructions and
+// builds up a list of candidate filters. It chooses the best filter and
+// recursively descends down the decoding tree.
+bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
+ Filters.clear();
+ BestIndex = -1;
+ unsigned numInstructions = Opcodes.size();
+
+ assert(numInstructions && "Filter created with no instructions");
+
+ // No further filtering is necessary.
+ if (numInstructions == 1)
+ return true;
+
+ // Heuristics. See also doFilter()'s "Heuristics" comment when num of
+ // instructions is 3.
+ if (AllowMixed && !Greedy) {
+ assert(numInstructions == 3);
+
+ for (unsigned i = 0; i < Opcodes.size(); ++i) {
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+
+ insnWithID(Insn, Opcodes[i]);
+
+ // Look for islands of undecoded bits of any instruction.
+ if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
+ // Found an instruction with island(s). Now just assign a filter.
+ runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
+ true);
+ return true;
+ }
+ }
+ }
+
+ unsigned BitIndex, InsnIndex;
+
+ // We maintain BIT_WIDTH copies of the bitAttrs automaton.
+ // The automaton consumes the corresponding bit from each
+ // instruction.
+ //
+ // Input symbols: 0, 1, and _ (unset).
+ // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
+ // Initial state: NONE.
+ //
+ // (NONE) ------- [01] -> (ALL_SET)
+ // (NONE) ------- _ ----> (ALL_UNSET)
+ // (ALL_SET) ---- [01] -> (ALL_SET)
+ // (ALL_SET) ---- _ ----> (MIXED)
+ // (ALL_UNSET) -- [01] -> (MIXED)
+ // (ALL_UNSET) -- _ ----> (ALL_UNSET)
+ // (MIXED) ------ . ----> (MIXED)
+ // (FILTERED)---- . ----> (FILTERED)
+
+ bitAttr_t bitAttrs[BIT_WIDTH];
+
+ // FILTERED bit positions provide no entropy and are not worthy of pursuing.
+ // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
+ for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
+ if (FilterBitValues[BitIndex] == BIT_TRUE ||
+ FilterBitValues[BitIndex] == BIT_FALSE)
+ bitAttrs[BitIndex] = ATTR_FILTERED;
+ else
+ bitAttrs[BitIndex] = ATTR_NONE;
+
+ for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
+ insn_t insn;
+
+ insnWithID(insn, Opcodes[InsnIndex]);
+
+ for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
+ switch (bitAttrs[BitIndex]) {
+ case ATTR_NONE:
+ if (insn[BitIndex] == BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_ALL_UNSET;
+ else
+ bitAttrs[BitIndex] = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_SET:
+ if (insn[BitIndex] == BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_ALL_UNSET:
+ if (insn[BitIndex] != BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_MIXED:
+ case ATTR_FILTERED:
+ break;
+ }
+ }
+ }
+
+ // The regionAttr automaton consumes the bitAttrs automatons' state,
+ // lowest-to-highest.
+ //
+ // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
+ // States: NONE, ALL_SET, MIXED
+ // Initial state: NONE
+ //
+ // (NONE) ----- F --> (NONE)
+ // (NONE) ----- S --> (ALL_SET) ; and set region start
+ // (NONE) ----- U --> (NONE)
+ // (NONE) ----- M --> (MIXED) ; and set region start
+ // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- S --> (ALL_SET)
+ // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
+ // (MIXED) ---- F --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
+ // (MIXED) ---- U --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- M --> (MIXED)
+
+ bitAttr_t RA = ATTR_NONE;
+ unsigned StartBit = 0;
+
+ for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
+ bitAttr_t bitAttr = bitAttrs[BitIndex];
+
+ assert(bitAttr != ATTR_NONE && "Bit without attributes");
+
+ switch (RA) {
+ case ATTR_NONE:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ StartBit = BitIndex;
+ RA = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ StartBit = BitIndex;
+ RA = ATTR_MIXED;
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_SET:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ break;
+ case ATTR_ALL_UNSET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_MIXED;
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_MIXED:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_UNSET:
+ assert(0 && "regionAttr state machine has no ATTR_UNSET state");
+ case ATTR_FILTERED:
+ assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
+ }
+ }
+
+ // At the end, if we're still in ALL_SET or MIXED states, report a region
+ switch (RA) {
+ case ATTR_NONE:
+ break;
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ break;
+ }
+
+ // We have finished with the filter processings. Now it's time to choose
+ // the best performing filter.
+ BestIndex = 0;
+ bool AllUseless = true;
+ unsigned BestScore = 0;
+
+ for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
+ unsigned Usefulness = Filters[i].usefulness();
+
+ if (Usefulness)
+ AllUseless = false;
+
+ if (Usefulness > BestScore) {
+ BestIndex = i;
+ BestScore = Usefulness;
+ }
+ }
+
+ if (!AllUseless)
+ bestFilter().recurse();
+
+ return !AllUseless;
+} // end of FilterChooser::filterProcessor(bool)
+
+// Decides on the best configuration of filter(s) to use in order to decode
+// the instructions. A conflict of instructions may occur, in which case we
+// dump the conflict set to the standard error.
+void FilterChooser::doFilter() {
+ unsigned Num = Opcodes.size();
+ assert(Num && "FilterChooser created with no instructions");
+
+ // Try regions of consecutive known bit values first.
+ if (filterProcessor(false))
+ return;
+
+ // Then regions of mixed bits (both known and unitialized bit values allowed).
+ if (filterProcessor(true))
+ return;
+
+ // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
+ // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
+ // well-known encoding pattern. In such case, we backtrack and scan for the
+ // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
+ if (Num == 3 && filterProcessor(true, false))
+ return;
+
+ // If we come to here, the instruction decoding has failed.
+ // Set the BestIndex to -1 to indicate so.
+ BestIndex = -1;
+}
+
+// Emits code to decode our share of instructions. Returns true if the
+// emitted code causes a return, which occurs if we know how to decode
+// the instruction at this level or the instruction is not decodeable.
+bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
+ if (Opcodes.size() == 1)
+ // There is only one instruction in the set, which is great!
+ // Call emitSingletonDecoder() to see whether there are any remaining
+ // encodings bits.
+ return emitSingletonDecoder(o, Indentation, Opcodes[0]);
+
+ // Choose the best filter to do the decodings!
+ if (BestIndex != -1) {
+ Filter &Best = bestFilter();
+ if (Best.getNumFiltered() == 1)
+ emitSingletonDecoder(o, Indentation, Best);
+ else
+ bestFilter().emit(o, Indentation);
+ return false;
+ }
+
+ // We don't know how to decode these instructions! Return 0 and dump the
+ // conflict set!
+ o.indent(Indentation) << "return 0;" << " // Conflict set: ";
+ for (int i = 0, N = Opcodes.size(); i < N; ++i) {
+ o << nameWithID(Opcodes[i]);
+ if (i < (N - 1))
+ o << ", ";
+ else
+ o << '\n';
+ }
+
+ // Print out useful conflict information for postmortem analysis.
+ errs() << "Decoding Conflict:\n";
+
+ dumpStack(errs(), "\t\t");
+
+ for (unsigned i = 0; i < Opcodes.size(); i++) {
+ const std::string &Name = nameWithID(Opcodes[i]);
+
+ errs() << '\t' << Name << " ";
+ dumpBits(errs(),
+ getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
+ errs() << '\n';
+ }
+
+ return true;
+}
+
+bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI,
+ unsigned Opc){
+ const Record &Def = *CGI.TheDef;
+ // If all the bit positions are not specified; do not decode this instruction.
+ // We are bound to fail! For proper disassembly, the well-known encoding bits
+ // of the instruction must be fully specified.
+ //
+ // This also removes pseudo instructions from considerations of disassembly,
+ // which is a better design and less fragile than the name matchings.
+ BitsInit &Bits = getBitsField(Def, "Inst");
+ if (Bits.allInComplete()) return false;
+
+ // Ignore "asm parser only" instructions.
+ if (Def.getValueAsBit("isAsmParserOnly"))
+ return false;
+
+ std::vector<OperandInfo> InsnOperands;
+
+ // If the instruction has specified a custom decoding hook, use that instead
+ // of trying to auto-generate the decoder.
+ std::string InstDecoder = Def.getValueAsString("DecoderMethod");
+ if (InstDecoder != "") {
+ InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder));
+ Operands[Opc] = InsnOperands;
+ return true;
+ }
+
+ // Generate a description of the operand of the instruction that we know
+ // how to decode automatically.
+ // FIXME: We'll need to have a way to manually override this as needed.
+
+ // Gather the outputs/inputs of the instruction, so we can find their
+ // positions in the encoding. This assumes for now that they appear in the
+ // MCInst in the order that they're listed.
+ std::vector<std::pair<Init*, std::string> > InOutOperands;
+ DagInit *Out = Def.getValueAsDag("OutOperandList");
+ DagInit *In = Def.getValueAsDag("InOperandList");
+ for (unsigned i = 0; i < Out->getNumArgs(); ++i)
+ InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
+ for (unsigned i = 0; i < In->getNumArgs(); ++i)
+ InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
+
+ // For each operand, see if we can figure out where it is encoded.
+ for (std::vector<std::pair<Init*, std::string> >::iterator
+ NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
+ unsigned PrevBit = ~0;
+ unsigned Base = ~0;
+ unsigned PrevPos = ~0;
+ std::string Decoder = "";
+
+ for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
+ VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
+ if (!BI) continue;
+
+ VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable());
+ assert(Var);
+ unsigned CurrBit = BI->getBitNum();
+ if (Var->getName() != NI->second) continue;
+
+ // Figure out the lowest bit of the value, and the width of the field.
+ // Deliberately don't try to handle cases where the field is scattered,
+ // or where not all bits of the the field are explicit.
+ if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) {
+ if (CurrBit == 0)
+ Base = bi;
+ else
+ continue;
+ }
+
+ if ((PrevPos != ~0U && bi-1 != PrevPos) ||
+ (CurrBit != ~0U && CurrBit-1 != PrevBit)) {
+ PrevBit = ~0;
+ Base = ~0;
+ PrevPos = ~0;
+ }
+
+ PrevPos = bi;
+ PrevBit = CurrBit;
+
+ // At this point, we can locate the field, but we need to know how to
+ // interpret it. As a first step, require the target to provide callbacks
+ // for decoding register classes.
+ // FIXME: This need to be extended to handle instructions with custom
+ // decoder methods, and operands with (simple) MIOperandInfo's.
+ TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
+ RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
+ Record *TypeRecord = Type->getRecord();
+ bool isReg = false;
+ if (TypeRecord->isSubClassOf("RegisterClass")) {
+ Decoder = "Decode" + Type->getRecord()->getName() + "RegisterClass";
+ isReg = true;
+ }
+
+ RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
+ StringInit *String = DecoderString ?
+ dynamic_cast<StringInit*>(DecoderString->getValue()) :
+ 0;
+ if (!isReg && String && String->getValue() != "")
+ Decoder = String->getValue();
+ }
+
+ if (Base != ~0U) {
+ InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder));
+ DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ ("
+ << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n");
+ }
+ }
+
+ Operands[Opc] = InsnOperands;
+
+
+#if 0
+ DEBUG({
+ // Dumps the instruction encoding bits.
+ dumpBits(errs(), Bits);
+
+ errs() << '\n';
+
+ // Dumps the list of operand info.
+ for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
+ const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
+ const std::string &OperandName = Info.Name;
+ const Record &OperandDef = *Info.Rec;
+
+ errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
+ }
+ });
+#endif
+
+ return true;
+}
+
+void FixedLenDecoderEmitter::populateInstructions() {
+ for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) {
+ Record *R = NumberedInstructions[i]->TheDef;
+ if (R->getValueAsString("Namespace") == "TargetOpcode")
+ continue;
+
+ if (populateInstruction(*NumberedInstructions[i], i))
+ Opcodes.push_back(i);
+ }
+}
+
+// Emits disassembler code for instruction decoding.
+void FixedLenDecoderEmitter::run(raw_ostream &o)
+{
+ o << "#include \"llvm/MC/MCInst.h\"\n";
+ o << "#include \"llvm/Support/DataTypes.h\"\n";
+ o << "#include <assert.h>\n";
+ o << '\n';
+ o << "namespace llvm {\n\n";
+
+ NumberedInstructions = Target.getInstructionsByEnumValue();
+ populateInstructions();
+ FilterChooser FC(NumberedInstructions, Opcodes, Operands);
+ FC.emitTop(o, 0);
+
+ o << "\n} // End llvm namespace \n";
+}
diff --git a/utils/TableGen/FixedLenDecoderEmitter.h b/utils/TableGen/FixedLenDecoderEmitter.h
new file mode 100644
index 0000000..d46a495
--- /dev/null
+++ b/utils/TableGen/FixedLenDecoderEmitter.h
@@ -0,0 +1,56 @@
+//===------------ FixedLenDecoderEmitter.h - Decoder Generator --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// It contains the tablegen backend that emits the decoder functions for
+// targets with fixed length instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef FixedLenDECODEREMITTER_H
+#define FixedLenDECODEREMITTER_H
+
+#include "CodeGenTarget.h"
+#include "TableGenBackend.h"
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+struct OperandInfo {
+ unsigned FieldBase;
+ unsigned FieldLength;
+ std::string Decoder;
+
+ OperandInfo(unsigned FB, unsigned FL, std::string D)
+ : FieldBase(FB), FieldLength(FL), Decoder(D) { }
+};
+
+class FixedLenDecoderEmitter : public TableGenBackend {
+public:
+ FixedLenDecoderEmitter(RecordKeeper &R) :
+ Records(R), Target(R),
+ NumberedInstructions(Target.getInstructionsByEnumValue()) {}
+
+ // run - Output the code emitter
+ void run(raw_ostream &o);
+
+private:
+ RecordKeeper &Records;
+ CodeGenTarget Target;
+ std::vector<const CodeGenInstruction*> NumberedInstructions;
+ std::vector<unsigned> Opcodes;
+ std::map<unsigned, std::vector<OperandInfo> > Operands;
+
+ bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc);
+ void populateInstructions();
+};
+
+} // end llvm namespace
+
+#endif