aboutsummaryrefslogtreecommitdiffstats
path: root/utils/shuffle_fuzz.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/shuffle_fuzz.py')
-rwxr-xr-xutils/shuffle_fuzz.py256
1 files changed, 256 insertions, 0 deletions
diff --git a/utils/shuffle_fuzz.py b/utils/shuffle_fuzz.py
new file mode 100755
index 0000000..384a93a
--- /dev/null
+++ b/utils/shuffle_fuzz.py
@@ -0,0 +1,256 @@
+#!/usr/bin/env python
+
+"""A shuffle vector fuzz tester.
+
+This is a python program to fuzz test the LLVM shufflevector instruction. It
+generates a function with a random sequnece of shufflevectors, maintaining the
+element mapping accumulated across the function. It then generates a main
+function which calls it with a different value in each element and checks that
+the result matches the expected mapping.
+
+Take the output IR printed to stdout, compile it to an executable using whatever
+set of transforms you want to test, and run the program. If it crashes, it found
+a bug.
+"""
+
+import argparse
+import itertools
+import random
+import sys
+import uuid
+
+def main():
+ element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
+ parser = argparse.ArgumentParser(description=__doc__)
+ parser.add_argument('-v', '--verbose', action='store_true',
+ help='Show verbose output')
+ parser.add_argument('--seed', default=str(uuid.uuid4()),
+ help='A string used to seed the RNG')
+ parser.add_argument('--max-shuffle-height', type=int, default=16,
+ help='Specify a fixed height of shuffle tree to test')
+ parser.add_argument('--no-blends', dest='blends', action='store_false',
+ help='Include blends of two input vectors')
+ parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
+ help='Specify a fixed bit width of vector to test')
+ parser.add_argument('--fixed-element-type', choices=element_types,
+ help='Specify a fixed element type to test')
+ parser.add_argument('--triple',
+ help='Specify a triple string to include in the IR')
+ args = parser.parse_args()
+
+ random.seed(args.seed)
+
+ if args.fixed_element_type is not None:
+ element_types=[args.fixed_element_type]
+
+ if args.fixed_bit_width is not None:
+ if args.fixed_bit_width == 128:
+ width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
+ (width, element_type) = random.choice(
+ [(width_map[t], t) for t in element_types])
+ elif args.fixed_bit_width == 256:
+ width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
+ (width, element_type) = random.choice(
+ [(width_map[t], t) for t in element_types])
+ else:
+ sys.exit(1) # Checked above by argument parsing.
+ else:
+ width = random.choice([2, 4, 8, 16, 32, 64])
+ element_type = random.choice(element_types)
+
+ element_modulus = {
+ 'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
+ 'f32': 1 << 32, 'f64': 1 << 64}[element_type]
+
+ shuffle_range = (2 * width) if args.blends else width
+
+ # Because undef (-1) saturates and is indistinguishable when testing the
+ # correctness of a shuffle, we want to bias our fuzz toward having a decent
+ # mixture of non-undef lanes in the end. With a deep shuffle tree, the
+ # probabilies aren't good so we need to bias things. The math here is that if
+ # we uniformly select between -1 and the other inputs, each element of the
+ # result will have the following probability of being undef:
+ #
+ # 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
+ #
+ # More generally, for any probability P of selecting a defined element in
+ # a single shuffle, the end result is:
+ #
+ # 1 - P^max_shuffle_height
+ #
+ # The power of the shuffle height is the real problem, as we want:
+ #
+ # 1 - shuffle_range/(shuffle_range+1)
+ #
+ # So we bias the selection of undef at any given node based on the tree
+ # height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
+ # and 'B' be the bias we use to compensate for
+ # C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
+ #
+ # 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
+ #
+ # So at each node we use:
+ #
+ # 1 - (B * A)/(A + 1)
+ # = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
+ # = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
+ #
+ # This is the formula we use to select undef lanes in the shuffle.
+ A = float(shuffle_range)
+ C = float(args.max_shuffle_height)
+ undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
+ (A * pow(A + 1.0, (C + 1.0)/C)))
+
+ shuffle_tree = [[[-1 if random.random() <= undef_prob
+ else random.choice(range(shuffle_range))
+ for _ in itertools.repeat(None, width)]
+ for _ in itertools.repeat(None, args.max_shuffle_height - i)]
+ for i in xrange(args.max_shuffle_height)]
+
+ if args.verbose:
+ # Print out the shuffle sequence in a compact form.
+ print >>sys.stderr, ('Testing shuffle sequence "%s" (v%d%s):' %
+ (args.seed, width, element_type))
+ for i, shuffles in enumerate(shuffle_tree):
+ print >>sys.stderr, ' tree level %d:' % (i,)
+ for j, s in enumerate(shuffles):
+ print >>sys.stderr, ' shuffle %d: %s' % (j, s)
+ print >>sys.stderr, ''
+
+ # Symbolically evaluate the shuffle tree.
+ inputs = [[int(j % element_modulus)
+ for j in xrange(i * width + 1, (i + 1) * width + 1)]
+ for i in xrange(args.max_shuffle_height + 1)]
+ results = inputs
+ for shuffles in shuffle_tree:
+ results = [[((results[i] if j < width else results[i + 1])[j % width]
+ if j != -1 else -1)
+ for j in s]
+ for i, s in enumerate(shuffles)]
+ if len(results) != 1:
+ print >>sys.stderr, 'ERROR: Bad results: %s' % (results,)
+ sys.exit(1)
+ result = results[0]
+
+ if args.verbose:
+ print >>sys.stderr, 'Which transforms:'
+ print >>sys.stderr, ' from: %s' % (inputs,)
+ print >>sys.stderr, ' into: %s' % (result,)
+ print >>sys.stderr, ''
+
+ # The IR uses silly names for floating point types. We also need a same-size
+ # integer type.
+ integral_element_type = element_type
+ if element_type == 'f32':
+ integral_element_type = 'i32'
+ element_type = 'float'
+ elif element_type == 'f64':
+ integral_element_type = 'i64'
+ element_type = 'double'
+
+ # Now we need to generate IR for the shuffle function.
+ subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
+ print """
+define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
+entry:""" % dict(subst,
+ arguments=', '.join(
+ ['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
+ for i in xrange(args.max_shuffle_height + 1)]))
+
+ for i, shuffles in enumerate(shuffle_tree):
+ for j, s in enumerate(shuffles):
+ print """
+ %%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
+""".strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
+ S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
+ for si in s]))
+
+ print """
+ ret <%(N)d x %(T)s> %%s.%(i)d.0
+}
+""" % dict(subst, i=len(shuffle_tree))
+
+ # Generate some string constants that we can use to report errors.
+ for i, r in enumerate(result):
+ if r != -1:
+ s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\\0A' %
+ {'seed': args.seed, 'lane': i, 'result': r})
+ s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
+ print """
+@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
+""".strip() % {'i': i, 's': s}
+
+ # Define a wrapper function which is marked 'optnone' to prevent
+ # interprocedural optimizations from deleting the test.
+ print """
+define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
+ %%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
+ ret <%(N)d x %(T)s> %%result
+}
+""" % dict(subst,
+ arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
+ for i in xrange(args.max_shuffle_height + 1)]))
+
+ # Finally, generate a main function which will trap if any lanes are mapped
+ # incorrectly (in an observable way).
+ print """
+define i32 @main() {
+entry:
+ ; Create a scratch space to print error messages.
+ %%str = alloca [128 x i8]
+ %%str.ptr = getelementptr inbounds [128 x i8]* %%str, i32 0, i32 0
+
+ ; Build the input vector and call the test function.
+ %%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
+ ; We need to cast this back to an integer type vector to easily check the
+ ; result.
+ %%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
+ br label %%test.0
+""" % dict(subst,
+ inputs=', '.join(
+ [('<%(N)d x %(T)s> bitcast '
+ '(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
+ dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
+ for i in input])))
+ for input in inputs]))
+
+ # Test that each non-undef result lane contains the expected value.
+ for i, r in enumerate(result):
+ if r == -1:
+ print """
+test.%(i)d:
+ ; Skip this lane, its value is undef.
+ br label %%test.%(next_i)d
+""" % dict(subst, i=i, next_i=i + 1)
+ else:
+ print """
+test.%(i)d:
+ %%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
+ %%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
+ br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
+
+die.%(i)d:
+ ; Capture the actual value and print an error message.
+ %%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
+ %%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
+ call i32 (i8*, i8*, ...)* @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
+ %%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
+ %%size.%(i)d = add i32 %%length.%(i)d, 1
+ call i32 @write(i32 2, i8* %%str.ptr, i32 %%size.%(i)d)
+ call void @llvm.trap()
+ unreachable
+""" % dict(subst, i=i, next_i=i + 1, r=r)
+
+ print """
+test.%d:
+ ret i32 0
+}
+
+declare i32 @strlen(i8*)
+declare i32 @write(i32, i8*, i32)
+declare i32 @sprintf(i8*, i8*, ...)
+declare void @llvm.trap() noreturn nounwind
+""" % (len(result),)
+
+if __name__ == '__main__':
+ main()