aboutsummaryrefslogtreecommitdiffstats
path: root/docs/CodingStandards.rst
blob: 9418680edc74a14a9cc39423b37eb70ade0051ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
=====================
LLVM Coding Standards
=====================

.. contents::
   :local:

Introduction
============

This document attempts to describe a few coding standards that are being used in
the LLVM source tree.  Although no coding standards should be regarded as
absolute requirements to be followed in all instances, coding standards are
particularly important for large-scale code bases that follow a library-based
design (like LLVM).

This document intentionally does not prescribe fixed standards for religious
issues such as brace placement and space usage.  For issues like this, follow
the golden rule:

.. _Golden Rule:

    **If you are extending, enhancing, or bug fixing already implemented code,
    use the style that is already being used so that the source is uniform and
    easy to follow.**

Note that some code bases (e.g. ``libc++``) have really good reasons to deviate
from the coding standards.  In the case of ``libc++``, this is because the
naming and other conventions are dictated by the C++ standard.  If you think
there is a specific good reason to deviate from the standards here, please bring
it up on the LLVMdev mailing list.

There are some conventions that are not uniformly followed in the code base
(e.g. the naming convention).  This is because they are relatively new, and a
lot of code was written before they were put in place.  Our long term goal is
for the entire codebase to follow the convention, but we explicitly *do not*
want patches that do large-scale reformating of existing code.  On the other
hand, it is reasonable to rename the methods of a class if you're about to
change it in some other way.  Just do the reformating as a separate commit from
the functionality change.
  
The ultimate goal of these guidelines is the increase readability and
maintainability of our common source base. If you have suggestions for topics to
be included, please mail them to `Chris <mailto:sabre@nondot.org>`_.

Mechanical Source Issues
========================

Source Code Formatting
----------------------

Commenting
^^^^^^^^^^

Comments are one critical part of readability and maintainability.  Everyone
knows they should comment their code, and so should you.  When writing comments,
write them as English prose, which means they should use proper capitalization,
punctuation, etc.  Aim to describe what the code is trying to do and why, not
*how* it does it at a micro level. Here are a few critical things to document:

.. _header file comment:

File Headers
""""""""""""

Every source file should have a header on it that describes the basic purpose of
the file.  If a file does not have a header, it should not be checked into the
tree.  The standard header looks like this:

.. code-block:: c++

  //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
  //
  //                     The LLVM Compiler Infrastructure
  //
  // This file is distributed under the University of Illinois Open Source
  // License. See LICENSE.TXT for details.
  //
  //===----------------------------------------------------------------------===//
  ///
  /// \file
  /// \brief This file contains the declaration of the Instruction class, which is
  /// the base class for all of the VM instructions.
  ///
  //===----------------------------------------------------------------------===//

A few things to note about this particular format: The "``-*- C++ -*-``" string
on the first line is there to tell Emacs that the source file is a C++ file, not
a C file (Emacs assumes ``.h`` files are C files by default).

.. note::

    This tag is not necessary in ``.cpp`` files.  The name of the file is also
    on the first line, along with a very short description of the purpose of the
    file.  This is important when printing out code and flipping though lots of
    pages.

The next section in the file is a concise note that defines the license that the
file is released under.  This makes it perfectly clear what terms the source
code can be distributed under and should not be modified in any way.

The main body is a ``doxygen`` comment describing the purpose of the file.  It
should have a ``\brief`` command that describes the file in one or two
sentences.  Any additional information should be separated by a blank line.  If
an algorithm is being implemented or something tricky is going on, a reference
to the paper where it is published should be included, as well as any notes or
*gotchas* in the code to watch out for.

Class overviews
"""""""""""""""

Classes are one fundamental part of a good object oriented design.  As such, a
class definition should have a comment block that explains what the class is
used for and how it works.  Every non-trivial class is expected to have a
``doxygen`` comment block.

Method information
""""""""""""""""""

Methods defined in a class (as well as any global functions) should also be
documented properly.  A quick note about what it does and a description of the
borderline behaviour is all that is necessary here (unless something
particularly tricky or insidious is going on).  The hope is that people can
figure out how to use your interfaces without reading the code itself.

Good things to talk about here are what happens when something unexpected
happens: does the method return null?  Abort?  Format your hard disk?

Comment Formatting
^^^^^^^^^^^^^^^^^^

In general, prefer C++ style (``//``) comments.  They take less space, require
less typing, don't have nesting problems, etc.  There are a few cases when it is
useful to use C style (``/* */``) comments however:

#. When writing C code: Obviously if you are writing C code, use C style
   comments.

#. When writing a header file that may be ``#include``\d by a C source file.

#. When writing a source file that is used by a tool that only accepts C style
   comments.

To comment out a large block of code, use ``#if 0`` and ``#endif``. These nest
properly and are better behaved in general than C style comments.

Doxygen Use in Documentation Comments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use the ``\file`` command to turn the standard file header into a file-level
comment.

Include descriptive ``\brief`` paragraphs for all public interfaces (public
classes, member and non-member functions).  Explain API use and purpose in
``\brief`` paragraphs, don't just restate the information that can be inferred
from the API name.  Put detailed discussion into separate paragraphs.

To refer to parameter names inside a paragraph, use the ``\p name`` command.
Don't use the ``\arg name`` command since it starts a new paragraph that
contains documentation for the parameter.

Wrap non-inline code examples in ``\code ... \endcode``.

To document a function parameter, start a new paragraph with the
``\param name`` command.  If the parameter is used as an out or an in/out
parameter, use the ``\param [out] name`` or ``\param [in,out] name`` command,
respectively.

To describe function return value, start a new paragraph with the ``\returns``
command.

A minimal documentation comment:

.. code-block:: c++

  /// \brief Does foo and bar.
  void fooBar(bool Baz);

A documentation comment that uses all Doxygen features in a preferred way:

.. code-block:: c++

  /// \brief Does foo and bar.
  ///
  /// Does not do foo the usual way if \p Baz is true.
  ///
  /// Typical usage:
  /// \code
  ///   fooBar(false, "quux", Res);
  /// \endcode
  ///
  /// \param Quux kind of foo to do.
  /// \param [out] Result filled with bar sequence on foo success.
  ///
  /// \returns true on success.
  bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);

Don't duplicate the documentation comment in the header file and in the
implementation file.  Put the documentation comments for public APIs into the
header file.  Documentation comments for private APIs can go to the
implementation file.  In any case, implementation files can include additional
comments (not necessarily in Doxygen markup) to explain implementation details
as needed.

Don't duplicate function or class name at the beginning of the comment.
For humans it is obvious which function or class is being documented;
automatic documentation processing tools are smart enough to bind the comment
to the correct declaration.

Wrong:

.. code-block:: c++

  // In Something.h:

  /// Something - An abstraction for some complicated thing.
  class Something {
  public:
    /// fooBar - Does foo and bar.
    void fooBar();
  };

  // In Something.cpp:

  /// fooBar - Does foo and bar.
  void Something::fooBar() { ... }

Correct:

.. code-block:: c++

  // In Something.h:

  /// \brief An abstraction for some complicated thing.
  class Something {
  public:
    /// \brief Does foo and bar.
    void fooBar();
  };

  // In Something.cpp:

  // Builds a B-tree in order to do foo.  See paper by...
  void Something::fooBar() { ... }

It is not required to use additional Doxygen features, but sometimes it might
be a good idea to do so.

Consider:

* adding comments to any narrow namespace containing a collection of
  related functions or types;

* using top-level groups to organize a collection of related functions at
  namespace scope where the grouping is smaller than the namespace;

* using member groups and additional comments attached to member
  groups to organize within a class.

For example:

.. code-block:: c++

  class Something {
    /// \name Functions that do Foo.
    /// @{
    void fooBar();
    void fooBaz();
    /// @}
    ...
  };

``#include`` Style
^^^^^^^^^^^^^^^^^^

Immediately after the `header file comment`_ (and include guards if working on a
header file), the `minimal list of #includes`_ required by the file should be
listed.  We prefer these ``#include``\s to be listed in this order:

.. _Main Module Header:
.. _Local/Private Headers:

#. Main Module Header
#. Local/Private Headers
#. ``llvm/...``
#. System ``#include``\s

and each category should be sorted lexicographically by the full path.

The `Main Module Header`_ file applies to ``.cpp`` files which implement an
interface defined by a ``.h`` file.  This ``#include`` should always be included
**first** regardless of where it lives on the file system.  By including a
header file first in the ``.cpp`` files that implement the interfaces, we ensure
that the header does not have any hidden dependencies which are not explicitly
``#include``\d in the header, but should be. It is also a form of documentation
in the ``.cpp`` file to indicate where the interfaces it implements are defined.

.. _fit into 80 columns:

Source Code Width
^^^^^^^^^^^^^^^^^

Write your code to fit within 80 columns of text.  This helps those of us who
like to print out code and look at your code in an ``xterm`` without resizing
it.

The longer answer is that there must be some limit to the width of the code in
order to reasonably allow developers to have multiple files side-by-side in
windows on a modest display.  If you are going to pick a width limit, it is
somewhat arbitrary but you might as well pick something standard.  Going with 90
columns (for example) instead of 80 columns wouldn't add any significant value
and would be detrimental to printing out code.  Also many other projects have
standardized on 80 columns, so some people have already configured their editors
for it (vs something else, like 90 columns).

This is one of many contentious issues in coding standards, but it is not up for
debate.

Use Spaces Instead of Tabs
^^^^^^^^^^^^^^^^^^^^^^^^^^

In all cases, prefer spaces to tabs in source files.  People have different
preferred indentation levels, and different styles of indentation that they
like; this is fine.  What isn't fine is that different editors/viewers expand
tabs out to different tab stops.  This can cause your code to look completely
unreadable, and it is not worth dealing with.

As always, follow the `Golden Rule`_ above: follow the style of
existing code if you are modifying and extending it.  If you like four spaces of
indentation, **DO NOT** do that in the middle of a chunk of code with two spaces
of indentation.  Also, do not reindent a whole source file: it makes for
incredible diffs that are absolutely worthless.

Indent Code Consistently
^^^^^^^^^^^^^^^^^^^^^^^^

Okay, in your first year of programming you were told that indentation is
important.  If you didn't believe and internalize this then, now is the time.
Just do it.

Compiler Issues
---------------

Treat Compiler Warnings Like Errors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If your code has compiler warnings in it, something is wrong --- you aren't
casting values correctly, you have "questionable" constructs in your code, or
you are doing something legitimately wrong.  Compiler warnings can cover up
legitimate errors in output and make dealing with a translation unit difficult.

It is not possible to prevent all warnings from all compilers, nor is it
desirable.  Instead, pick a standard compiler (like ``gcc``) that provides a
good thorough set of warnings, and stick to it.  At least in the case of
``gcc``, it is possible to work around any spurious errors by changing the
syntax of the code slightly.  For example, a warning that annoys me occurs when
I write code like this:

.. code-block:: c++

  if (V = getValue()) {
    ...
  }

``gcc`` will warn me that I probably want to use the ``==`` operator, and that I
probably mistyped it.  In most cases, I haven't, and I really don't want the
spurious errors.  To fix this particular problem, I rewrite the code like
this:

.. code-block:: c++

  if ((V = getValue())) {
    ...
  }

which shuts ``gcc`` up.  Any ``gcc`` warning that annoys you can be fixed by
massaging the code appropriately.

Write Portable Code
^^^^^^^^^^^^^^^^^^^

In almost all cases, it is possible and within reason to write completely
portable code.  If there are cases where it isn't possible to write portable
code, isolate it behind a well defined (and well documented) interface.

In practice, this means that you shouldn't assume much about the host compiler
(and Visual Studio tends to be the lowest common denominator).  If advanced
features are used, they should only be an implementation detail of a library
which has a simple exposed API, and preferably be buried in ``libSystem``.

Do not use RTTI or Exceptions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In an effort to reduce code and executable size, LLVM does not use RTTI
(e.g. ``dynamic_cast<>;``) or exceptions.  These two language features violate
the general C++ principle of *"you only pay for what you use"*, causing
executable bloat even if exceptions are never used in the code base, or if RTTI
is never used for a class.  Because of this, we turn them off globally in the
code.

That said, LLVM does make extensive use of a hand-rolled form of RTTI that use
templates like `isa<>, cast<>, and dyn_cast<> <ProgrammersManual.html#isa>`_.
This form of RTTI is opt-in and can be
:doc:`added to any class <HowToSetUpLLVMStyleRTTI>`. It is also
substantially more efficient than ``dynamic_cast<>``.

.. _static constructor:

Do not use Static Constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Static constructors and destructors (e.g. global variables whose types have a
constructor or destructor) should not be added to the code base, and should be
removed wherever possible.  Besides `well known problems
<http://yosefk.com/c++fqa/ctors.html#fqa-10.12>`_ where the order of
initialization is undefined between globals in different source files, the
entire concept of static constructors is at odds with the common use case of
LLVM as a library linked into a larger application.
  
Consider the use of LLVM as a JIT linked into another application (perhaps for
`OpenGL, custom languages <http://llvm.org/Users.html>`_, `shaders in movies
<http://llvm.org/devmtg/2010-11/Gritz-OpenShadingLang.pdf>`_, etc). Due to the
design of static constructors, they must be executed at startup time of the
entire application, regardless of whether or how LLVM is used in that larger
application.  There are two problems with this:

* The time to run the static constructors impacts startup time of applications
  --- a critical time for GUI apps, among others.
  
* The static constructors cause the app to pull many extra pages of memory off
  the disk: both the code for the constructor in each ``.o`` file and the small
  amount of data that gets touched. In addition, touched/dirty pages put more
  pressure on the VM system on low-memory machines.

We would really like for there to be zero cost for linking in an additional LLVM
target or other library into an application, but static constructors violate
this goal.
  
That said, LLVM unfortunately does contain static constructors.  It would be a
`great project <http://llvm.org/PR11944>`_ for someone to purge all static
constructors from LLVM, and then enable the ``-Wglobal-constructors`` warning
flag (when building with Clang) to ensure we do not regress in the future.

Use of ``class`` and ``struct`` Keywords
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In C++, the ``class`` and ``struct`` keywords can be used almost
interchangeably. The only difference is when they are used to declare a class:
``class`` makes all members private by default while ``struct`` makes all
members public by default.

Unfortunately, not all compilers follow the rules and some will generate
different symbols based on whether ``class`` or ``struct`` was used to declare
the symbol.  This can lead to problems at link time.

So, the rule for LLVM is to always use the ``class`` keyword, unless **all**
members are public and the type is a C++ `POD
<http://en.wikipedia.org/wiki/Plain_old_data_structure>`_ type, in which case
``struct`` is allowed.

Style Issues
============

The High-Level Issues
---------------------

A Public Header File **is** a Module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C++ doesn't do too well in the modularity department.  There is no real
encapsulation or data hiding (unless you use expensive protocol classes), but it
is what we have to work with.  When you write a public header file (in the LLVM
source tree, they live in the top level "``include``" directory), you are
defining a module of functionality.

Ideally, modules should be completely independent of each other, and their
header files should only ``#include`` the absolute minimum number of headers
possible. A module is not just a class, a function, or a namespace: it's a
collection of these that defines an interface.  This interface may be several
functions, classes, or data structures, but the important issue is how they work
together.

In general, a module should be implemented by one or more ``.cpp`` files.  Each
of these ``.cpp`` files should include the header that defines their interface
first.  This ensures that all of the dependences of the module header have been
properly added to the module header itself, and are not implicit.  System
headers should be included after user headers for a translation unit.

.. _minimal list of #includes:

``#include`` as Little as Possible
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``#include`` hurts compile time performance.  Don't do it unless you have to,
especially in header files.

But wait! Sometimes you need to have the definition of a class to use it, or to
inherit from it.  In these cases go ahead and ``#include`` that header file.  Be
aware however that there are many cases where you don't need to have the full
definition of a class.  If you are using a pointer or reference to a class, you
don't need the header file.  If you are simply returning a class instance from a
prototyped function or method, you don't need it.  In fact, for most cases, you
simply don't need the definition of a class. And not ``#include``\ing speeds up
compilation.

It is easy to try to go too overboard on this recommendation, however.  You
**must** include all of the header files that you are using --- you can include
them either directly or indirectly through another header file.  To make sure
that you don't accidentally forget to include a header file in your module
header, make sure to include your module header **first** in the implementation
file (as mentioned above).  This way there won't be any hidden dependencies that
you'll find out about later.

Keep "Internal" Headers Private
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Many modules have a complex implementation that causes them to use more than one
implementation (``.cpp``) file.  It is often tempting to put the internal
communication interface (helper classes, extra functions, etc) in the public
module header file.  Don't do this!

If you really need to do something like this, put a private header file in the
same directory as the source files, and include it locally.  This ensures that
your private interface remains private and undisturbed by outsiders.

.. note::

    It's okay to put extra implementation methods in a public class itself. Just
    make them private (or protected) and all is well.

.. _early exits:

Use Early Exits and ``continue`` to Simplify Code
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When reading code, keep in mind how much state and how many previous decisions
have to be remembered by the reader to understand a block of code.  Aim to
reduce indentation where possible when it doesn't make it more difficult to
understand the code.  One great way to do this is by making use of early exits
and the ``continue`` keyword in long loops.  As an example of using an early
exit from a function, consider this "bad" code:

.. code-block:: c++

  Value *doSomething(Instruction *I) {
    if (!isa<TerminatorInst>(I) &&
        I->hasOneUse() && doOtherThing(I)) {
      ... some long code ....
    }

    return 0;
  }

This code has several problems if the body of the ``'if'`` is large.  When
you're looking at the top of the function, it isn't immediately clear that this
*only* does interesting things with non-terminator instructions, and only
applies to things with the other predicates.  Second, it is relatively difficult
to describe (in comments) why these predicates are important because the ``if``
statement makes it difficult to lay out the comments.  Third, when you're deep
within the body of the code, it is indented an extra level.  Finally, when
reading the top of the function, it isn't clear what the result is if the
predicate isn't true; you have to read to the end of the function to know that
it returns null.

It is much preferred to format the code like this:

.. code-block:: c++

  Value *doSomething(Instruction *I) {
    // Terminators never need 'something' done to them because ... 
    if (isa<TerminatorInst>(I))
      return 0;

    // We conservatively avoid transforming instructions with multiple uses
    // because goats like cheese.
    if (!I->hasOneUse())
      return 0;

    // This is really just here for example.
    if (!doOtherThing(I))
      return 0;
    
    ... some long code ....
  }

This fixes these problems.  A similar problem frequently happens in ``for``
loops.  A silly example is something like this:

.. code-block:: c++

  for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(II)) {
      Value *LHS = BO->getOperand(0);
      Value *RHS = BO->getOperand(1);
      if (LHS != RHS) {
        ...
      }
    }
  }

When you have very, very small loops, this sort of structure is fine. But if it
exceeds more than 10-15 lines, it becomes difficult for people to read and
understand at a glance. The problem with this sort of code is that it gets very
nested very quickly. Meaning that the reader of the code has to keep a lot of
context in their brain to remember what is going immediately on in the loop,
because they don't know if/when the ``if`` conditions will have ``else``\s etc.
It is strongly preferred to structure the loop like this:

.. code-block:: c++

  for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    BinaryOperator *BO = dyn_cast<BinaryOperator>(II);
    if (!BO) continue;

    Value *LHS = BO->getOperand(0);
    Value *RHS = BO->getOperand(1);
    if (LHS == RHS) continue;

    ...
  }

This has all the benefits of using early exits for functions: it reduces nesting
of the loop, it makes it easier to describe why the conditions are true, and it
makes it obvious to the reader that there is no ``else`` coming up that they
have to push context into their brain for.  If a loop is large, this can be a
big understandability win.

Don't use ``else`` after a ``return``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For similar reasons above (reduction of indentation and easier reading), please
do not use ``'else'`` or ``'else if'`` after something that interrupts control
flow --- like ``return``, ``break``, ``continue``, ``goto``, etc. For
example, this is *bad*:

.. code-block:: c++

  case 'J': {
    if (Signed) {
      Type = Context.getsigjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_sigjmp_buf;
        return QualType();
      } else {
        break;
      }
    } else {
      Type = Context.getjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_jmp_buf;
        return QualType();
      } else {
        break;
      }
    }
  }

It is better to write it like this:

.. code-block:: c++

  case 'J':
    if (Signed) {
      Type = Context.getsigjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_sigjmp_buf;
        return QualType();
      }
    } else {
      Type = Context.getjmp_bufType();
      if (Type.isNull()) {
        Error = ASTContext::GE_Missing_jmp_buf;
        return QualType();
      }
    }
    break;

Or better yet (in this case) as:

.. code-block:: c++

  case 'J':
    if (Signed)
      Type = Context.getsigjmp_bufType();
    else
      Type = Context.getjmp_bufType();
    
    if (Type.isNull()) {
      Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :
                       ASTContext::GE_Missing_jmp_buf;
      return QualType();
    }
    break;

The idea is to reduce indentation and the amount of code you have to keep track
of when reading the code.
              
Turn Predicate Loops into Predicate Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is very common to write small loops that just compute a boolean value.  There
are a number of ways that people commonly write these, but an example of this
sort of thing is:

.. code-block:: c++

  bool FoundFoo = false;
  for (unsigned I = 0, E = BarList.size(); I != E; ++I)
    if (BarList[I]->isFoo()) {
      FoundFoo = true;
      break;
    }

  if (FoundFoo) {
    ...
  }

This sort of code is awkward to write, and is almost always a bad sign.  Instead
of this sort of loop, we strongly prefer to use a predicate function (which may
be `static`_) that uses `early exits`_ to compute the predicate.  We prefer the
code to be structured like this:

.. code-block:: c++

  /// \returns true if the specified list has an element that is a foo.
  static bool containsFoo(const std::vector<Bar*> &List) {
    for (unsigned I = 0, E = List.size(); I != E; ++I)
      if (List[I]->isFoo())
        return true;
    return false;
  }
  ...

  if (containsFoo(BarList)) {
    ...
  }

There are many reasons for doing this: it reduces indentation and factors out
code which can often be shared by other code that checks for the same predicate.
More importantly, it *forces you to pick a name* for the function, and forces
you to write a comment for it.  In this silly example, this doesn't add much
value.  However, if the condition is complex, this can make it a lot easier for
the reader to understand the code that queries for this predicate.  Instead of
being faced with the in-line details of how we check to see if the BarList
contains a foo, we can trust the function name and continue reading with better
locality.

The Low-Level Issues
--------------------

Name Types, Functions, Variables, and Enumerators Properly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Poorly-chosen names can mislead the reader and cause bugs. We cannot stress
enough how important it is to use *descriptive* names.  Pick names that match
the semantics and role of the underlying entities, within reason.  Avoid
abbreviations unless they are well known.  After picking a good name, make sure
to use consistent capitalization for the name, as inconsistency requires clients
to either memorize the APIs or to look it up to find the exact spelling.

In general, names should be in camel case (e.g. ``TextFileReader`` and
``isLValue()``).  Different kinds of declarations have different rules:

* **Type names** (including classes, structs, enums, typedefs, etc) should be
  nouns and start with an upper-case letter (e.g. ``TextFileReader``).

* **Variable names** should be nouns (as they represent state).  The name should
  be camel case, and start with an upper case letter (e.g. ``Leader`` or
  ``Boats``).
  
* **Function names** should be verb phrases (as they represent actions), and
  command-like function should be imperative.  The name should be camel case,
  and start with a lower case letter (e.g. ``openFile()`` or ``isFoo()``).

* **Enum declarations** (e.g. ``enum Foo {...}``) are types, so they should
  follow the naming conventions for types.  A common use for enums is as a
  discriminator for a union, or an indicator of a subclass.  When an enum is
  used for something like this, it should have a ``Kind`` suffix
  (e.g. ``ValueKind``).
  
* **Enumerators** (e.g. ``enum { Foo, Bar }``) and **public member variables**
  should start with an upper-case letter, just like types.  Unless the
  enumerators are defined in their own small namespace or inside a class,
  enumerators should have a prefix corresponding to the enum declaration name.
  For example, ``enum ValueKind { ... };`` may contain enumerators like
  ``VK_Argument``, ``VK_BasicBlock``, etc.  Enumerators that are just
  convenience constants are exempt from the requirement for a prefix.  For
  instance:

  .. code-block:: c++

      enum {
        MaxSize = 42,
        Density = 12
      };
  
As an exception, classes that mimic STL classes can have member names in STL's
style of lower-case words separated by underscores (e.g. ``begin()``,
``push_back()``, and ``empty()``). Classes that provide multiple
iterators should add a singular prefix to ``begin()`` and ``end()``
(e.g. ``global_begin()`` and ``use_begin()``).

Here are some examples of good and bad names:

.. code-block:: c++

  class VehicleMaker {
    ...
    Factory<Tire> F;            // Bad -- abbreviation and non-descriptive.
    Factory<Tire> Factory;      // Better.
    Factory<Tire> TireFactory;  // Even better -- if VehicleMaker has more than one
                                // kind of factories.
  };

  Vehicle MakeVehicle(VehicleType Type) {
    VehicleMaker M;                         // Might be OK if having a short life-span.
    Tire Tmp1 = M.makeTire();               // Bad -- 'Tmp1' provides no information.
    Light Headlight = M.makeLight("head");  // Good -- descriptive.
    ...
  }

Assert Liberally
^^^^^^^^^^^^^^^^

Use the "``assert``" macro to its fullest.  Check all of your preconditions and
assumptions, you never know when a bug (not necessarily even yours) might be
caught early by an assertion, which reduces debugging time dramatically.  The
"``<cassert>``" header file is probably already included by the header files you
are using, so it doesn't cost anything to use it.

To further assist with debugging, make sure to put some kind of error message in
the assertion statement, which is printed if the assertion is tripped. This
helps the poor debugger make sense of why an assertion is being made and
enforced, and hopefully what to do about it.  Here is one complete example:

.. code-block:: c++

  inline Value *getOperand(unsigned I) {
    assert(I < Operands.size() && "getOperand() out of range!");
    return Operands[I];
  }

Here are more examples:

.. code-block:: c++

  assert(Ty->isPointerType() && "Can't allocate a non pointer type!");

  assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");

  assert(idx < getNumSuccessors() && "Successor # out of range!");

  assert(V1.getType() == V2.getType() && "Constant types must be identical!");

  assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");

You get the idea.

In the past, asserts were used to indicate a piece of code that should not be
reached.  These were typically of the form:

.. code-block:: c++

  assert(0 && "Invalid radix for integer literal");

This has a few issues, the main one being that some compilers might not
understand the assertion, or warn about a missing return in builds where
assertions are compiled out.

Today, we have something much better: ``llvm_unreachable``:

.. code-block:: c++

  llvm_unreachable("Invalid radix for integer literal");

When assertions are enabled, this will print the message if it's ever reached
and then exit the program. When assertions are disabled (i.e. in release
builds), ``llvm_unreachable`` becomes a hint to compilers to skip generating
code for this branch. If the compiler does not support this, it will fall back
to the "abort" implementation.

Another issue is that values used only by assertions will produce an "unused
value" warning when assertions are disabled.  For example, this code will warn:

.. code-block:: c++

  unsigned Size = V.size();
  assert(Size > 42 && "Vector smaller than it should be");

  bool NewToSet = Myset.insert(Value);
  assert(NewToSet && "The value shouldn't be in the set yet");

These are two interesting different cases. In the first case, the call to
``V.size()`` is only useful for the assert, and we don't want it executed when
assertions are disabled.  Code like this should move the call into the assert
itself.  In the second case, the side effects of the call must happen whether
the assert is enabled or not.  In this case, the value should be cast to void to
disable the warning.  To be specific, it is preferred to write the code like
this:

.. code-block:: c++

  assert(V.size() > 42 && "Vector smaller than it should be");

  bool NewToSet = Myset.insert(Value); (void)NewToSet;
  assert(NewToSet && "The value shouldn't be in the set yet");

Do Not Use ``using namespace std``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In LLVM, we prefer to explicitly prefix all identifiers from the standard
namespace with an "``std::``" prefix, rather than rely on "``using namespace
std;``".

In header files, adding a ``'using namespace XXX'`` directive pollutes the
namespace of any source file that ``#include``\s the header.  This is clearly a
bad thing.

In implementation files (e.g. ``.cpp`` files), the rule is more of a stylistic
rule, but is still important.  Basically, using explicit namespace prefixes
makes the code **clearer**, because it is immediately obvious what facilities
are being used and where they are coming from. And **more portable**, because
namespace clashes cannot occur between LLVM code and other namespaces.  The
portability rule is important because different standard library implementations
expose different symbols (potentially ones they shouldn't), and future revisions
to the C++ standard will add more symbols to the ``std`` namespace.  As such, we
never use ``'using namespace std;'`` in LLVM.

The exception to the general rule (i.e. it's not an exception for the ``std``
namespace) is for implementation files.  For example, all of the code in the
LLVM project implements code that lives in the 'llvm' namespace.  As such, it is
ok, and actually clearer, for the ``.cpp`` files to have a ``'using namespace
llvm;'`` directive at the top, after the ``#include``\s.  This reduces
indentation in the body of the file for source editors that indent based on
braces, and keeps the conceptual context cleaner.  The general form of this rule
is that any ``.cpp`` file that implements code in any namespace may use that
namespace (and its parents'), but should not use any others.

Provide a Virtual Method Anchor for Classes in Headers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If a class is defined in a header file and has a vtable (either it has virtual
methods or it derives from classes with virtual methods), it must always have at
least one out-of-line virtual method in the class.  Without this, the compiler
will copy the vtable and RTTI into every ``.o`` file that ``#include``\s the
header, bloating ``.o`` file sizes and increasing link times.

Don't use default labels in fully covered switches over enumerations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``-Wswitch`` warns if a switch, without a default label, over an enumeration
does not cover every enumeration value. If you write a default label on a fully
covered switch over an enumeration then the ``-Wswitch`` warning won't fire
when new elements are added to that enumeration. To help avoid adding these
kinds of defaults, Clang has the warning ``-Wcovered-switch-default`` which is
off by default but turned on when building LLVM with a version of Clang that
supports the warning.

A knock-on effect of this stylistic requirement is that when building LLVM with
GCC you may get warnings related to "control may reach end of non-void function"
if you return from each case of a covered switch-over-enum because GCC assumes
that the enum expression may take any representable value, not just those of
individual enumerators. To suppress this warning, use ``llvm_unreachable`` after
the switch.

Use ``LLVM_DELETED_FUNCTION`` to mark uncallable methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Prior to C++11, a common pattern to make a class uncopyable was to declare an
unimplemented copy constructor and copy assignment operator and make them
private. This would give a compiler error for accessing a private method or a
linker error because it wasn't implemented.

With C++11, we can mark methods that won't be implemented with ``= delete``.
This will trigger a much better error message and tell the compiler that the
method will never be implemented. This enables other checks like
``-Wunused-private-field`` to run correctly on classes that contain these
methods.

To maintain compatibility with C++03, ``LLVM_DELETED_FUNCTION`` should be used
which will expand to ``= delete`` if the compiler supports it. These methods
should still be declared private. Example of the uncopyable pattern:

.. code-block:: c++

  class DontCopy {
  private:
    DontCopy(const DontCopy&) LLVM_DELETED_FUNCTION;
    DontCopy &operator =(const DontCopy&) LLVM_DELETED_FUNCTION;
  public:
    ...
  };

Don't evaluate ``end()`` every time through a loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Because C++ doesn't have a standard "``foreach``" loop (though it can be
emulated with macros and may be coming in C++'0x) we end up writing a lot of
loops that manually iterate from begin to end on a variety of containers or
through other data structures.  One common mistake is to write a loop in this
style:

.. code-block:: c++

  BasicBlock *BB = ...
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
    ... use I ...

The problem with this construct is that it evaluates "``BB->end()``" every time
through the loop.  Instead of writing the loop like this, we strongly prefer
loops to be written so that they evaluate it once before the loop starts.  A
convenient way to do this is like so:

.. code-block:: c++

  BasicBlock *BB = ...
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    ... use I ...

The observant may quickly point out that these two loops may have different
semantics: if the container (a basic block in this case) is being mutated, then
"``BB->end()``" may change its value every time through the loop and the second
loop may not in fact be correct.  If you actually do depend on this behavior,
please write the loop in the first form and add a comment indicating that you
did it intentionally.

Why do we prefer the second form (when correct)?  Writing the loop in the first
form has two problems. First it may be less efficient than evaluating it at the
start of the loop.  In this case, the cost is probably minor --- a few extra
loads every time through the loop.  However, if the base expression is more
complex, then the cost can rise quickly.  I've seen loops where the end
expression was actually something like: "``SomeMap[X]->end()``" and map lookups
really aren't cheap.  By writing it in the second form consistently, you
eliminate the issue entirely and don't even have to think about it.

The second (even bigger) issue is that writing the loop in the first form hints
to the reader that the loop is mutating the container (a fact that a comment
would handily confirm!).  If you write the loop in the second form, it is
immediately obvious without even looking at the body of the loop that the
container isn't being modified, which makes it easier to read the code and
understand what it does.

While the second form of the loop is a few extra keystrokes, we do strongly
prefer it.

``#include <iostream>`` is Forbidden
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The use of ``#include <iostream>`` in library files is hereby **forbidden**,
because many common implementations transparently inject a `static constructor`_
into every translation unit that includes it.
  
Note that using the other stream headers (``<sstream>`` for example) is not
problematic in this regard --- just ``<iostream>``. However, ``raw_ostream``
provides various APIs that are better performing for almost every use than
``std::ostream`` style APIs.

.. note::

  New code should always use `raw_ostream`_ for writing, or the
  ``llvm::MemoryBuffer`` API for reading files.

.. _raw_ostream:

Use ``raw_ostream``
^^^^^^^^^^^^^^^^^^^

LLVM includes a lightweight, simple, and efficient stream implementation in
``llvm/Support/raw_ostream.h``, which provides all of the common features of
``std::ostream``.  All new code should use ``raw_ostream`` instead of
``ostream``.

Unlike ``std::ostream``, ``raw_ostream`` is not a template and can be forward
declared as ``class raw_ostream``.  Public headers should generally not include
the ``raw_ostream`` header, but use forward declarations and constant references
to ``raw_ostream`` instances.

Avoid ``std::endl``
^^^^^^^^^^^^^^^^^^^

The ``std::endl`` modifier, when used with ``iostreams`` outputs a newline to
the output stream specified.  In addition to doing this, however, it also
flushes the output stream.  In other words, these are equivalent:

.. code-block:: c++

  std::cout << std::endl;
  std::cout << '\n' << std::flush;

Most of the time, you probably have no reason to flush the output stream, so
it's better to use a literal ``'\n'``.

Don't use ``inline`` when defining a function in a class definition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A member function defined in a class definition is implicitly inline, so don't
put the ``inline`` keyword in this case.

Don't:

.. code-block:: c++

  class Foo {
  public:
    inline void bar() {
      // ...
    }
  };

Do:

.. code-block:: c++

  class Foo {
  public:
    void bar() {
      // ...
    }
  };

Microscopic Details
-------------------

This section describes preferred low-level formatting guidelines along with
reasoning on why we prefer them.

Spaces Before Parentheses
^^^^^^^^^^^^^^^^^^^^^^^^^

We prefer to put a space before an open parenthesis only in control flow
statements, but not in normal function call expressions and function-like
macros.  For example, this is good:

.. code-block:: c++

  if (X) ...
  for (I = 0; I != 100; ++I) ...
  while (LLVMRocks) ...

  somefunc(42);
  assert(3 != 4 && "laws of math are failing me");
  
  A = foo(42, 92) + bar(X);

and this is bad:

.. code-block:: c++

  if(X) ...
  for(I = 0; I != 100; ++I) ...
  while(LLVMRocks) ...

  somefunc (42);
  assert (3 != 4 && "laws of math are failing me");
  
  A = foo (42, 92) + bar (X);

The reason for doing this is not completely arbitrary.  This style makes control
flow operators stand out more, and makes expressions flow better. The function
call operator binds very tightly as a postfix operator.  Putting a space after a
function name (as in the last example) makes it appear that the code might bind
the arguments of the left-hand-side of a binary operator with the argument list
of a function and the name of the right side.  More specifically, it is easy to
misread the "``A``" example as:

.. code-block:: c++

  A = foo ((42, 92) + bar) (X);

when skimming through the code.  By avoiding a space in a function, we avoid
this misinterpretation.

Prefer Preincrement
^^^^^^^^^^^^^^^^^^^

Hard fast rule: Preincrement (``++X``) may be no slower than postincrement
(``X++``) and could very well be a lot faster than it.  Use preincrementation
whenever possible.

The semantics of postincrement include making a copy of the value being
incremented, returning it, and then preincrementing the "work value".  For
primitive types, this isn't a big deal. But for iterators, it can be a huge
issue (for example, some iterators contains stack and set objects in them...
copying an iterator could invoke the copy ctor's of these as well).  In general,
get in the habit of always using preincrement, and you won't have a problem.


Namespace Indentation
^^^^^^^^^^^^^^^^^^^^^

In general, we strive to reduce indentation wherever possible.  This is useful
because we want code to `fit into 80 columns`_ without wrapping horribly, but
also because it makes it easier to understand the code.  Namespaces are a funny
thing: they are often large, and we often desire to put lots of stuff into them
(so they can be large).  Other times they are tiny, because they just hold an
enum or something similar.  In order to balance this, we use different
approaches for small versus large namespaces.

If a namespace definition is small and *easily* fits on a screen (say, less than
35 lines of code), then you should indent its body.  Here's an example:

.. code-block:: c++

  namespace llvm {
    namespace X86 {
      /// \brief An enum for the x86 relocation codes.  Note that
      /// the terminology here doesn't follow x86 convention - word means
      /// 32-bit and dword means 64-bit.
      enum RelocationType {
        /// \brief PC relative relocation, add the relocated value to
        /// the value already in memory, after we adjust it for where the PC is.
        reloc_pcrel_word = 0,

        /// \brief PIC base relative relocation, add the relocated value to
        /// the value already in memory, after we adjust it for where the
        /// PIC base is.
        reloc_picrel_word = 1,

        /// \brief Absolute relocation, just add the relocated value to the
        /// value already in memory.
        reloc_absolute_word = 2,
        reloc_absolute_dword = 3
      };
    }
  }

Since the body is small, indenting adds value because it makes it very clear
where the namespace starts and ends, and it is easy to take the whole thing in
in one "gulp" when reading the code.  If the blob of code in the namespace is
larger (as it typically is in a header in the ``llvm`` or ``clang`` namespaces),
do not indent the code, and add a comment indicating what namespace is being
closed.  For example:

.. code-block:: c++

  namespace llvm {
  namespace knowledge {

  /// This class represents things that Smith can have an intimate
  /// understanding of and contains the data associated with it.
  class Grokable {
  ...
  public:
    explicit Grokable() { ... }
    virtual ~Grokable() = 0;
  
    ...

  };

  } // end namespace knowledge
  } // end namespace llvm

Because the class is large, we don't expect that the reader can easily
understand the entire concept in a glance, and the end of the file (where the
namespaces end) may be a long ways away from the place they open.  As such,
indenting the contents of the namespace doesn't add any value, and detracts from
the readability of the class.  In these cases it is best to *not* indent the
contents of the namespace.

.. _static:

Anonymous Namespaces
^^^^^^^^^^^^^^^^^^^^

After talking about namespaces in general, you may be wondering about anonymous
namespaces in particular.  Anonymous namespaces are a great language feature
that tells the C++ compiler that the contents of the namespace are only visible
within the current translation unit, allowing more aggressive optimization and
eliminating the possibility of symbol name collisions.  Anonymous namespaces are
to C++ as "static" is to C functions and global variables.  While "``static``"
is available in C++, anonymous namespaces are more general: they can make entire
classes private to a file.

The problem with anonymous namespaces is that they naturally want to encourage
indentation of their body, and they reduce locality of reference: if you see a
random function definition in a C++ file, it is easy to see if it is marked
static, but seeing if it is in an anonymous namespace requires scanning a big
chunk of the file.

Because of this, we have a simple guideline: make anonymous namespaces as small
as possible, and only use them for class declarations.  For example, this is
good:

.. code-block:: c++

  namespace {
    class StringSort {
    ...
    public:
      StringSort(...)
      bool operator<(const char *RHS) const;
    };
  } // end anonymous namespace

  static void runHelper() { 
    ... 
  }

  bool StringSort::operator<(const char *RHS) const {
    ...
  }

This is bad:

.. code-block:: c++

  namespace {
  class StringSort {
  ...
  public:
    StringSort(...)
    bool operator<(const char *RHS) const;
  };

  void runHelper() { 
    ... 
  }

  bool StringSort::operator<(const char *RHS) const {
    ...
  }

  } // end anonymous namespace

This is bad specifically because if you're looking at "``runHelper``" in the middle
of a large C++ file, that you have no immediate way to tell if it is local to
the file.  When it is marked static explicitly, this is immediately obvious.
Also, there is no reason to enclose the definition of "``operator<``" in the
namespace just because it was declared there.

See Also
========

A lot of these comments and recommendations have been culled from other sources.
Two particularly important books for our work are:

#. `Effective C++
   <http://www.amazon.com/Effective-Specific-Addison-Wesley-Professional-Computing/dp/0321334876>`_
   by Scott Meyers.  Also interesting and useful are "More Effective C++" and
   "Effective STL" by the same author.

#. `Large-Scale C++ Software Design
   <http://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620/ref=sr_1_1>`_
   by John Lakos

If you get some free time, and you haven't read them: do so, you might learn
something.