aboutsummaryrefslogtreecommitdiffstats
path: root/docs/LangRef.html
blob: cf514490a8a2de2ed084e4d2eee2bb2c1f352605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>llvm Assembly Language Reference Manual</title></head>
<body bgcolor=white>

<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp; <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>llvm Assembly Language Reference Manual</b></font></td>
</tr></table>

<ol>
  <li><a href="#abstract">Abstract</a>
  <li><a href="#introduction">Introduction</a>
  <li><a href="#identifiers">Identifiers</a>
  <li><a href="#typesystem">Type System</a>
    <ol>
      <li><a href="#t_primitive">Primitive Types</a>
	<ol>
          <li><a href="#t_classifications">Type Classifications</a>
        </ol>
      <li><a href="#t_derived">Derived Types</a>
        <ol>
          <li><a href="#t_array"  >Array Type</a>
          <li><a href="#t_function">Function Type</a>
          <li><a href="#t_pointer">Pointer Type</a>
          <li><a href="#t_struct" >Structure Type</a>
          <li><a href="#t_packed" >Packed Type</a>
        </ol>
    </ol>
  <li><a href="#highlevel">High Level Structure</a>
    <ol>
      <li><a href="#modulestructure">Module Structure</a>
      <li><a href="#functionstructure">Function Structure</a>
    </ol>
  <li><a href="#instref">Instruction Reference</a>
    <ol>
      <li><a href="#terminators">Terminator Instructions</a>
        <ol>
          <li><a href="#i_ret"   >'<tt>ret</tt>' Instruction</a>
          <li><a href="#i_br"    >'<tt>br</tt>' Instruction</a>
          <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
          <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
        </ol>
      <li><a href="#unaryops">Unary Operations</a>
        <ol>
          <li><a href="#i_not" >'<tt>not</tt>' Instruction</a>
        </ol>
      <li><a href="#binaryops">Binary Operations</a>
        <ol>
          <li><a href="#i_add"  >'<tt>add</tt>' Instruction</a>
          <li><a href="#i_sub"  >'<tt>sub</tt>' Instruction</a>
          <li><a href="#i_mul"  >'<tt>mul</tt>' Instruction</a>
          <li><a href="#i_div"  >'<tt>div</tt>' Instruction</a>
          <li><a href="#i_rem"  >'<tt>rem</tt>' Instruction</a>
          <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
        </ol>
      <li><a href="#bitwiseops">Bitwise Binary Operations</a>
        <ol>
          <li><a href="#i_and">'<tt>and</tt>' Instruction</a>
          <li><a href="#i_or" >'<tt>or</tt>'  Instruction</a>
          <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
          <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
          <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
        </ol>
      <li><a href="#memoryops">Memory Access Operations</a>
        <ol>
          <li><a href="#i_malloc"  >'<tt>malloc</tt>'   Instruction</a>
          <li><a href="#i_free"    >'<tt>free</tt>'     Instruction</a>
          <li><a href="#i_alloca"  >'<tt>alloca</tt>'   Instruction</a>
	  <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
	  <li><a href="#i_load"    >'<tt>load</tt>'     Instruction</a>
	  <li><a href="#i_store"   >'<tt>store</tt>'    Instruction</a>
        </ol>
      <li><a href="#otherops">Other Operations</a>
        <ol>
          <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
          <li><a href="#i_call" >'<tt>call</tt>'  Instruction</a>
          <li><a href="#i_icall">'<tt>icall</tt>' Instruction</a>
          <li><a href="#i_phi"  >'<tt>phi</tt>'   Instruction</a>
        </ol>
      <li><a href="#builtinfunc">Builtin Functions</a>
    </ol>
  <li><a href="#todo">TODO List</a>
    <ol>
      <li><a href="#exception">Exception Handling Instructions</a>
      <li><a href="#synchronization">Synchronization Instructions</a>
    </ol>
  <li><a href="#extensions">Possible Extensions</a>
    <ol>
      <li><a href="#i_tailcall">'<tt>tailcall</tt>' Instruction</a>
      <li><a href="#globalvars">Global Variables</a>
      <li><a href="#explicitparrellelism">Explicit Parrellelism</a>
    </ol>
  <li><a href="#related">Related Work</a>
</ol>


<!-- *********************************************************************** -->
<p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="abstract">Abstract
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

<blockquote>
  This document describes the LLVM assembly language.  LLVM is an SSA based
  representation that is a useful midlevel IR, providing type safety, low level
  operations, flexibility, and the capability to represent 'all' high level
  languages cleanly.
</blockquote>




<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="introduction">Introduction
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

The LLVM code representation is designed to be used in three different forms: as
an in-memory compiler IR, as an on-disk bytecode representation, suitable for
fast loading by a dynamic compiler, and as a human readable assembly language
representation.  This allows LLVM to provide a powerful intermediate
representation for efficient compiler transformations and analysis, while
providing a natural means to debug and visualize the transformations.  The three
different forms of LLVM are all equivalent.  This document describes the human
readable representation and notation.<p>

The LLVM representation aims to be a light weight and low level while being
expressive, type safe, and extensible at the same time.  It aims to be a
"universal IR" of sorts, by being at a low enough level that high level ideas
may be cleanly mapped to it (similar to how microprocessors are "universal
IR's", allowing many source languages to be mapped to them).  By providing type
safety, LLVM can be used as the target of optimizations: for example, through
pointer analysis, it can be proven that a C automatic variable is never accessed
outside of the current function... allowing it to be promoted to a simple SSA
value instead of a memory location.<p>

<!-- _______________________________________________________________________ -->
</ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>

It is important to note that this document describes 'well formed' llvm assembly
language.  There is a difference between what the parser accepts and what is
considered 'well formed'.  For example, the following instruction is
syntactically okay, but not well formed:<p>

<pre>
  %x = <a href="#i_add">add</a> int 1, %x
</pre>

...because only a <tt><a href="#i_phi">phi</a></tt> node may refer to itself.
The LLVM api provides a verification pass (created by the
<tt>createVerifierPass</tt> function) that may be used to verify that an LLVM
module is well formed.  This pass is automatically run by the parser after
parsing input assembly, and by the optimizer before it outputs bytecode.  Often,
violations pointed out by the verifier pass indicate bugs in transformation
passes.<p>


Describe the typesetting conventions here. 


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="identifiers">Identifiers
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

LLVM uses three different forms of identifiers, for different purposes:<p>

<ol>
<li>Numeric constants are represented as you would expect: 12, -3 123.421, etc.
<li>Named values are represented as a string of characters with a '%' prefix.  For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
<li>Unnamed values are represented as an unsigned numeric value with a '%' prefix.  For example, %12, %2, %44.
</ol><p>

LLVM requires the values start with a '%' sign for two reasons: Compilers don't
need to worry about name clashes with reserved words, and the set of reserved
words may be expanded in the future without penalty.  Additionally, unnamed
identifiers allow a compiler to quickly come up with a temporary variable
without having to avoid symbol table conflicts.<p>

Reserved words in LLVM are very similar to reserved words in other languages.
There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
'<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
'<tt><a href="#t_uint">uint</a></tt>', etc...), and others.  These reserved
words cannot conflict with variable names, because none of them start with a '%'
character.<p>

Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
by 8:<p>

The easy way:
<pre>
  %result = <a href="#i_mul">mul</a> int %X, 8
</pre>

After strength reduction:
<pre>
  %result = <a href="#i_shl">shl</a> int %X, ubyte 3
</pre>

And the hard way:
<pre>
  <a href="#i_add">add</a> int %X, %X           <i>; yields {int}:%0</i>
  <a href="#i_add">add</a> int %0, %0           <i>; yields {int}:%1</i>
  %result = <a href="#i_add">add</a> int %1, %1
</pre>

This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>

<ol>
<li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
<li>Unnamed temporaries are created when the result of a computation is not
    assigned to a named value.
<li>Unnamed temporaries are numbered sequentially
</ol><p>

...and it also show a convention that we follow in this document.  When
demonstrating instructions, we will follow an instruction with a comment that
defines the type and name of value produced.  Comments are shown in italic
text.<p>



<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="typesystem">Type System
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

The LLVM type system is critical to the overall usefulness of the language and
runtime.  Being strongly typed enables a number of optimizations to be performed
on the IR directly, without having to do extra analyses on the side before the
transformation.  A strong type system makes it easier to read the generated code
and enables novel analyses and transformations that are not feasible to perform
on normal three address code representations.<p>

The assembly language form for the type system was heavily influenced by the
type problems in the C language<sup><a href="#rw_stroustrup">1</a></sup>.<p>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="t_primitive">Primitive Types
</b></font></td></tr></table><ul>

The primitive types are the fundemental building blocks of the LLVM system.  The
current set of primitive types are as follows:<p>

<table border=0 align=center><tr><td>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><tt>void</tt></td>  <td>No value</td></tr>
<tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
<tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
<tr><td><tt>uint</tt></td>  <td>Unsigned 32 bit value</td></tr>
<tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
<tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
<tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
</table>

</td><td valign=top>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><tt>bool</tt></td>  <td>True or False value</td></tr>
<tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
<tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
<tr><td><tt>int</tt></td>   <td>Signed 32 bit value</td></tr>
<tr><td><tt>long</tt></td>  <td>Signed 64 bit value</td></tr>
<tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
</table>

</td></tr></table><p>



<!-- _______________________________________________________________________ -->
</ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>

These different primitive types fall into a few useful classifications:<p>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><a name="t_signed">signed</td>    <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
<tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
<tr><td><a name="t_integral">integral</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
<tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
<tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double</tt></td></tr>
</table><p>





<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="t_derived">Derived Types
</b></font></td></tr></table><ul>

The real power in LLVM comes from the derived types in the system.  This is what
allows a programmer to represent arrays, functions, pointers, and other useful
types.  Note that these derived types may be recursive: For example, it is
possible to have a two dimensional array.<p>



<!-- _______________________________________________________________________ -->
</ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>

<h5>Overview:</h5>

The array type is a very simple derived type that arranges elements sequentially
in memory.  The array type requires a size (number of elements) and an
underlying data type.<p>

<h5>Syntax:</h5>
<pre>
  [&lt;# elements&gt; x &lt;elementtype&gt;]
</pre>

The number of elements is a constant integer value, elementtype may be any time
with a size.<p>

<h5>Examples:</h5>
<ul>
   <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
   <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
   <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
</ul>

Here are some examples of multidimensional arrays:<p>
<ul>
<table border=0 cellpadding=0 cellspacing=0>
<tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
<tr><td><tt>[12 x [10 x float]]</tt></td><td>: 2x10 array of single precision floating point values.</td></tr>
<tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
</table>
</ul>


<!-- _______________________________________________________________________ -->
</ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>

<h5>Overview:</h5>

The function type can be thought of as a function signature.  It consists of a
return type and a list of formal parameter types.  Function types are usually
used when to build virtual function tables (which are structures of pointers to
functions), for indirect function calls, and when defining a function.<p>

<h5>Syntax:</h5>
<pre>
  &lt;returntype&gt; (&lt;parameter list&gt;)
</pre>

Where '<tt>&lt;parameter list&gt;</tt>' is a comma seperated list of type
specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
which indicates that the function takes a variable number of arguments.  Note
that there currently is no way to define a function in LLVM that takes a
variable number of arguments, but it is possible to <b>call</b> a function that
is vararg.<p>

<h5>Examples:</h5>
<ul>
<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
an <tt>int</tt></td></tr>

<tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
to <tt>int</tt>, returning <tt>float</tt>.</td></tr>

<tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
which returns an integer.  This is the signature for <tt>printf</tt> in
LLVM.</td></tr>

</table>
</ul>



<!-- _______________________________________________________________________ -->
</ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>

<h5>Overview:</h5>

The structure type is used to represent a collection of data members together in memory.  Although the runtime is allowed to lay out the data members any way that it would like, they are guaranteed to be "close" to each other.<p>

Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>

<h5>Syntax:</h5>
<pre>
  { &lt;type list&gt; }
</pre>


<h5>Examples:</h5>
<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
values</td></tr>

<tr><td><tt>{ float, int (int *) * }</tt></td><td>: A pair, where the first
element is a <tt>float</tt> and the second element is a <a
href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>

</table>


<!-- _______________________________________________________________________ -->
</ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>

<h5>Overview:</h5>

As in many languages, the pointer type represents a pointer or reference to
another object, which must live in memory.<p>

<h5>Syntax:</h5>
<pre>
  &lt;type&gt; *
</pre>

<h5>Examples:</h5>

<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
href="#t_array">array</a> of four <tt>int</tt> values</td></tr>

<tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
<a href="t_function">function</a> that takes an <tt>int</tt>, returning an
<tt>int</tt>.</td></tr>

</table>
<p>


<!-- _______________________________________________________________________ -->
<!--
</ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>

Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>

Packed types should be 'nonsaturated' because standard data types are not saturated.  Maybe have a saturated packed type?<p>

-->


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="highlevel">High Level Structure
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="modulestructure">Module Structure
</b></font></td></tr></table><ul>


talk about the elements of a module: constant pool and function list.<p>


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="functionstructure">Function Structure
</b></font></td></tr></table><ul>


talk about the optional constant pool<p>
talk about how basic blocks delinate labels<p>
talk about how basic blocks end with terminators<p>


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="instref">Instruction Reference
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

List all of the instructions, list valid types that they accept. Tell what they
do and stuff also.

<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="terminators">Terminator Instructions
</b></font></td></tr></table><ul>



As was mentioned <a href="#functionstructure">previously</a>, every basic block
in a program ends with a "Terminator" instruction.  All of these terminator
instructions yield a '<tt>void</tt>' value: they produce control flow, not
values.<p>

There are four different terminator instructions: the '<a
href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
href="#i_br"><tt>br</tt></a>' instruction, the '<a
href="#i_switch"><tt>switch</tt></a>' instruction, and the '<a
href="#i_invoke"><tt>invoke</tt></a>' instruction.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
  ret void                 <i>; Return from void function</i>
</pre>

<h5>Overview:</h5>

 The '<tt>ret</tt>' instruction is used to return control flow (and optionally a
 value) from a function, back to the caller.<p>

There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
value and then causes control flow, and one that just causes control flow to
occur.<p>

<h5>Arguments:</h5>

The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
class</a>' type.  Notice that a function is not <a href="#wellformed">well
formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
that returns a value that does not match the return type of the function.<p>

<h5>Semantics:</h5>

When the '<tt>ret</tt>' instruction is executed, control flow returns back to
the calling function's context.  If the instruction returns a value, that value
shall be propogated into the calling function's data space.<p>

<h5>Example:</h5>
<pre>
  ret int 5                       <i>; Return an integer value of 5</i>
  ret void                        <i>; Return from a void function</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
  br label &lt;dest&gt;          <i>; Unconditional branch</i>
</pre>

<h5>Overview:</h5>

The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
different basic block in the current function.  There are two forms of this
instruction, corresponding to a conditional branch and an unconditional
branch.<p>

<h5>Arguments:</h5>

The conditional branch form of the '<tt>br</tt>' instruction takes a single
'<tt>bool</tt>' value and two '<tt>label</tt>' values.  The unconditional form
of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
target.<p>

<h5>Semantics:</h5>

Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
argument is evaluated.  If the value is <tt>true</tt>, control flows to the
'<tt>iftrue</tt>' '<tt>label</tt>' argument.  If "cond" is <tt>false</tt>,
control flows to the '<tt>iffalse</tt>' '<tt>label</tt>' argument.<p>

<h5>Example:</h5>
<pre>
Test:
  %cond = <a href="#i_setcc">seteq</a> int %a, %b
  br bool %cond, label %IfEqual, label %IfUnequal
IfEqual:
  <a href="#i_ret">ret</a> bool true
IfUnequal:
  <a href="#i_ret">ret</a> bool false
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  <i>; Definitions for lookup indirect branch</i>
  %switchtype = type [&lt;anysize&gt; x { uint, label }]

  <i>; Lookup indirect branch</i>
  switch uint &lt;value&gt;, label &lt;defaultdest&gt;, %switchtype &lt;switchtable&gt;

  <i>; Indexed indirect branch</i>
  switch uint &lt;idxvalue&gt;, label &lt;defaultdest&gt;, [&lt;anysize&gt; x label] &lt;desttable&gt;
</pre>

<h5>Overview:</h5>

The '<tt>switch</tt>' instruction is used to transfer control flow to one of
several different places.  It is a generalization of the '<tt>br</tt>'
instruction, allowing a branch to occur to one of many possible destinations.<p>

The '<tt>switch</tt>' statement supports two different styles of indirect
branching: lookup branching and indexed branching.  Lookup branching is
generally useful if the values to switch on are spread far appart, where index
branching is useful if the values to switch on are generally dense.<p>

The two different forms of the '<tt>switch</tt>' statement are simple hints to
the underlying virtual machine implementation.  For example, a virtual machine
may choose to implement a small indirect branch table as a series of predicated
comparisons: if it is faster for the target architecture.<p>

<h5>Arguments:</h5>

The lookup form of the '<tt>switch</tt>' instruction uses three parameters: a
'<tt>uint</tt>' comparison value '<tt>value</tt>', a default '<tt>label</tt>'
destination, and an array of pairs of comparison value constants and
'<tt>label</tt>'s.  The sized array must be a constant value.<p>

The indexed form of the '<tt>switch</tt>' instruction uses three parameters: an
'<tt>uint</tt>' index value, a default '<tt>label</tt>' and a sized array of
'<tt>label</tt>'s.  The '<tt>dests</tt>' array must be a constant array.

<h5>Semantics:</h5>

The lookup style switch statement specifies a table of values and destinations.
When the '<tt>switch</tt>' instruction is executed, this table is searched for
the given value.  If the value is found, the corresponding destination is
branched to. <p>

The index branch form simply looks up a label element directly in a table and
branches to it.<p>

In either case, the compiler knows the static size of the array, because it is
provided as part of the constant values type.<p>

<h5>Example:</h5>
<pre>
  <i>; Emulate a conditional br instruction</i>
  %Val = <a href="#i_cast">cast</a> bool %value to uint
  switch uint %Val, label %truedest, [1 x label] [label %falsedest ]

  <i>; Emulate an unconditional br instruction</i>
  switch uint 0, label %dest, [ 0 x label] [ ]

  <i>; Implement a jump table using the constant pool:</i>
  void "testmeth"(int %arg0)
    %switchdests = [3 x label] [ label %onzero, label %onone, label %ontwo ]
  begin
  ...
    switch uint %val, label %otherwise, [3 x label] %switchdests...
  ...
  end

  <i>; Implement the equivilent jump table directly:</i>
  switch uint %val, label %otherwise, [3 x label] [ label %onzero, 
                                                    label %onone, 
                                                    label %ontwo ]

</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = invoke &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
                 to label &lt;normal label&gt; except label &lt;exception label&gt;
</pre>

<h5>Overview:</h5> The '<tt>invoke</tt>' instruction is used to cause control
flow to transfer to a specified function, with the possibility of control flow
transfer to either the '<tt>normal label</tt>' label or the '<tt>exception
label</tt>'.  The '<tt><a href="#i_call">call</a></tt>' instruction is closely
related, but guarantees that control flow either never returns from the called
function, or that it returns to the instruction succeeding the '<tt><a
href="#i_call">call</a></tt>' instruction.<p>

<h5>Arguments:</h5>

This instruction requires several arguments:<p>
<ol>

<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
function value being invoked.  In most cases, this is a direct method
invocation, but indirect <tt>invoke</tt>'s are just as possible, branching off
an arbitrary pointer to function value.<p>

<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
function to be invoked.

<li>'<tt>function args</tt>': argument list whose types match the function
signature argument types.

<li>'<tt>normal label</tt>': the label reached when the called function executes
a '<tt><a href="#i_ret">ret</a></tt>' instruction.

<li>'<tt>exception label</tt>': the label reached when an exception is thrown.
</ol>

<h5>Semantics:</h5>

This instruction is designed to operate as a standard '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The primary difference is that it assiciates a label with the function invocation that may be accessed via the runtime library provided by the execution environment.  This instruction is used in languages with destructors to ensure that proper cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown exception.  Additionally, this is important for implementation of '<tt>catch</tt>' clauses in high-level languages that support them.<p>

For a more comprehensive explanation of this instruction look in the llvm/docs/2001-05-18-ExceptionHandling.txt document.<p>

<h5>Example:</h5>
<pre>
  %retval = invoke int %Test(int 15)
              to label %Continue except label %TestCleanup     <i>; {int}:retval set</i>
</pre>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="unaryops">Unary Operations
</b></font></td></tr></table><ul>

Unary operators are used to do a simple operation to a single value.<p>

There is only one unary operator: the '<a href="#i_not"><tt>not</tt></a>' instruction.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_not"><h4><hr size=0>'<tt>not</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = not &lt;ty&gt; &lt;var&gt;       <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The  '<tt>not</tt>' instruction returns the <a href="#logical_integrals">logical</a> inverse of its operand.<p>

<h5>Arguments:</h5>
The single argument to '<tt>not</tt>' must be of of <a href="#t_integral">integral</a> type.<p>


<h5>Semantics:</h5>
The '<tt>not</tt>' instruction returns the <a href="#logical_integrals">logical</a> inverse of an <a href="#t_integral">integral</a> type.<p>

<pre>
  &lt;result&gt; = xor bool true, &lt;var&gt; <i>; yields {bool}:result</i>
</pre>

<h5>Example:</h5>
<pre>
  %x = not int 1                  <i>; {int}:x is now equal to 0</i>
  %x = not bool true              <i>; {bool}:x is now equal to false</i>
</pre>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="binaryops">Binary Operations
</b></font></td></tr></table><ul>

Binary operators are used to do most of the computation in a program.  They
require two operands, execute an operation on them, and produce a single value.
The result value of a binary operator is not neccesarily the same type as its
operands.<p>

There are several different binary operators:<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>add</tt>' instruction returns the sum of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integral">integral</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>
...<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = add int 4, %var          <i>; yields {int}:result = 4 + %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>

Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
instruction present in most other intermediate representations.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>sub</tt>' instruction must be either <a
href="#t_integral">integral</a> or <a href="#t_floating">floating point</a>
values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>
...<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i>
  &lt;result&gt; = sub int 0, %val          <i>; yields {int}:result = -%var</i>
</pre>

<!-- _______________________________________________________________________ -->
</ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The  '<tt>mul</tt>' instruction returns the product of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integral">integral</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>
...<p>

There is no signed vs unsigned multiplication.  The appropriate action is taken
based on the type of the operand. <p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = div &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The  '<tt>div</tt>' instruction returns the quotient of its two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>div</tt>' instruction must be either <a
href="#t_integral">integral</a> or <a href="#t_floating">floating point</a>
values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>
...<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = div int 4, %var          <i>; yields {int}:result = 4 / %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = rem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The  '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integral">integral</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>
TODO: remainder or modulus?<p>
...<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = seteq &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setne &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setlt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setgt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setle &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setge &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean value based on a comparison of their two operands.<p>

<h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
instructions must be of <a href="#t_firstclass">first class</a> or <a
href="#t_pointer">pointer</a> type (it is not possible to compare
'<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
values).  Both arguments must have identical types.<p>

The '<tt>setlt</tt>', '<tt>setgt</tt>', '<tt>setle</tt>', and '<tt>setge</tt>' instructions do not operate on '<tt>bool</tt>' typed arguments.<p>

<h5>Semantics:</h5>
The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if both operands are equal.<br>
The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if both operands are unequal.<br>
The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if the first operand is less than the second operand.<br>
The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if the first operand is greater than the second operand.<br>
The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if the first operand is less than or equal to the second operand.<br>
The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if the first operand is greater than or equal to the second operand.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = seteq int   4, 5        <i>; yields {bool}:result = false</i>
  &lt;result&gt; = setne float 4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setlt uint  4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i>
  &lt;result&gt; = setle sbyte 4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setge sbyte 4, 5        <i>; yields {bool}:result = false</i>
</pre>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="bitwiseops">Bitwise Binary Operations
</b></font></td></tr></table><ul>

Bitwise binary operators are used to do various forms of bit-twiddling in a program.  They are generally very efficient instructions, and can commonly be strength reduced from other instructions.  They require two operands, execute an operation on them, and produce a single value.  The resulting value of the bitwise binary operators is always the same type as its first operand.<p>

<!-- _______________________________________________________________________ -->
</ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>and</tt>' instruction must be either <a href="#t_integral">integral</a> or <a href="#t_bool"><tt>bool</tt></a> values.  Both arguments must have identical types.<p>


<h5>Semantics:</h5>
...<p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = and int 4, %var         <i>; yields {int}:result = 4 & %var</i>
  &lt;result&gt; = and int 15, 40          <i>; yields {int}:result = 8</i>
  &lt;result&gt; = and int 4, 8            <i>; yields {int}:result = 0</i>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
inclusive or of its two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>or</tt>' instruction must be either <a
href="#t_integral">integral</a> or <a href="#t_bool"><tt>bool</tt></a> values.
Both arguments must have identical types.<p>


<h5>Semantics:</h5>
...<p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = or int 4, %var         <i>; yields {int}:result = 4 | %var</i>
  &lt;result&gt; = or int 15, 40          <i>; yields {int}:result = 47</i>
  &lt;result&gt; = or int 4, 8            <i>; yields {int}:result = 12</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>xor</tt>' instruction must be either <a
href="#t_integral">integral</a> or <a href="#t_bool"><tt>bool</tt></a> values.
Both arguments must have identical types.<p>


<h5>Semantics:</h5>
...<p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i>
  &lt;result&gt; = xor int 15, 40          <i>; yields {int}:result = 39</i>
  &lt;result&gt; = xor int 4, 8            <i>; yields {int}:result = 12</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
specified number of bits.

<h5>Arguments:</h5>

The first argument to the '<tt>shl</tt>' instruction must be an <a
href="#t_integral">integral</a> type.  The second argument must be an
'<tt>ubyte</tt>' type.<p>

<h5>Semantics:</h5>
... 0 bits are shifted into the emptied bit positions...<p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i>
  &lt;result&gt; = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i>
  &lt;result&gt; = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>


<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = shr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.

<h5>Arguments:</h5>
The first argument to the '<tt>shr</tt>' instruction must be an  <a href="#t_integral">integral</a> type.  The second argument must be an '<tt>ubyte</tt>' type.<p>

<h5>Semantics:</h5>
... if the first argument is a <a href="#t_signed">signed</a> type, the most significant bit is duplicated in the newly free'd bit positions.  If the first argument is unsigned, zeros shall fill the empty positions...<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i>
  &lt;result&gt; = shr int 4, ubyte 1      <i>; yields {int}:result = 2</i>
  &lt;result&gt; = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i>
  &lt;result&gt; = shr int 4, ubyte 3      <i>; yields {int}:result = 0</i>
</pre>





<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="memoryops">Memory Access Operations
</b></font></td></tr></table><ul>

Accessing memory in SSA form is, well, sticky at best.  This section describes how to read and write memory in LLVM.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = malloc &lt;type&gt;, uint &lt;NumElements&gt;     <i>; yields {type*}:result</i>
  &lt;result&gt; = malloc &lt;type&gt;                         <i>; yields {type*}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>

<h5>Arguments:</h5>

The the '<tt>malloc</tt>' instruction allocates
<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
system, and returns a pointer of the appropriate type to the program.  The
second form of the instruction is a shorter version of the first instruction
that defaults to allocating one element.<p>

'<tt>type</tt>' must be a sized type<p>

<h5>Semantics:</h5>
Memory is allocated, a pointer is returned.<p>

<h5>Example:</h5>
<pre>
  %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i>

  %size   = <a href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i>
  %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i>
  %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  free &lt;type&gt; &lt;value&gt;                              <i>; yields {void}</i>
</pre>


<h5>Overview:</h5>
The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>


<h5>Arguments:</h5>

'<tt>value</tt>' shall be a pointer value that points to a value that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>


<h5>Semantics:</h5>
Memory is available for use after this point.  The contents of the '<tt>value</tt>' pointer are undefined after this instruction.<p>


<h5>Example:</h5>
<pre>
  %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i>
            free   [4 x ubyte]* %array
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = alloca &lt;type&gt;, uint &lt;NumElements&gt;  <i>; yields {type*}:result</i>
  &lt;result&gt; = alloca &lt;type&gt;                      <i>; yields {type*}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
the procedure that is live until the current function returns to its caller.<p>

<h5>Arguments:</h5>

The the '<tt>alloca</tt>' instruction allocates
<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the runtime stack,
returning a pointer of the appropriate type to the program.  The second form of
the instruction is a shorter version of the first that defaults to allocating
one element.<p>

'<tt>type</tt>' may be any sized type.<p>

<h5>Semantics:</h5>

Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d memory is
automatically released when the function returns.  The '<tt>alloca</tt>'
instruction is commonly used to represent automatic variables that must have an
address available, as well as spilled variables.<p>

<h5>Example:</h5>
<pre>
  %ptr = alloca int                              <i>; yields {int*}:ptr</i>
  %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, uint &lt;aidx&gt;|, ubyte &lt;sidx&gt;}*
</pre>

<h5>Overview:</h5>

The '<tt>getelementptr</tt>' instruction is used to get the address of a
subelement of an aggregate data structure.  In addition to being present as an
explicit instruction, the '<tt>getelementptr</tt>' functionality is present in
both the '<tt><a href="#i_load">load</a></tt>' and '<tt><a
href="#i_store">store</a></tt>' instructions to allow more compact specification
of common expressions.<p>

<h5>Arguments:</h5>

This instruction takes a list of <tt>uint</tt> values and <tt>ubyte</tt>
constants that indicate what form of addressing to perform.  The actual types of
the arguments provided depend on the type of the first pointer argument.  The
'<tt>getelementptr</tt>' instruction is used to index down through the type
levels of a structure.<p>

TODO.

<h5>Semantics:</h5>


<h5>Example:</h5>
<pre>
  %aptr = getelementptr {int, [12 x ubyte]}* %sptr, 1   <i>; yields {[12 x ubyte]*}:aptr</i>
  %ub   = load [12x ubyte]* %aptr, 4                    <i>;yields {ubyte}:ub</i>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;
  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt; &lt;index list&gt;
</pre>

<h5>Overview:</h5>
The '<tt>load</tt>' instruction is used to read from memory.<p>

<h5>Arguments:</h5>

There are three forms of the '<tt>load</tt>' instruction: one for reading from a general pointer, one for reading from a pointer to an array, and one for reading from a pointer to a structure.<p>

In the first form, '<tt>&lt;ty&gt;</tt>' must be a pointer to a simple type (a primitive type or another pointer).<p>

In the second form, '<tt>&lt;ty&gt;</tt>' must be a pointer to an array, and a list of one or more indices is provided as indexes into the (possibly multidimensional) array.  No bounds checking is performed on array reads.<p>

In the third form, the pointer must point to a (possibly nested) structure.  There shall be one ubyte argument for each level of dereferencing involved.<p>

<h5>Semantics:</h5>
...

<h5>Examples:</h5>
<pre>
  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
  <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
  %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>

  %array = <a href="#i_malloc">malloc</a> [4 x ubyte]                     <i>; yields {[4 x ubyte]*}:array</i>
  <a href="#i_store">store</a> ubyte 124, [4 x ubyte]* %array, uint 4
  %val   = load [4 x ubyte]* %array, uint 4       <i>; yields {ubyte}:val = ubyte 124</i>
  %val   = load {{int, float}}* %stptr, 0, 1      <i>; yields {float}:val</i>
</pre>




<!-- _______________________________________________________________________ -->
</ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;                   <i>; yields {void}</i>
  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;arrayptr&gt;{, uint &lt;idx&gt;}+   <i>; yields {void}</i>
  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;structptr&gt;{, ubyte &lt;idx&gt;}+ <i>; yields {void}e</i>
</pre>

<h5>Overview:</h5>
The '<tt>store</tt>' instruction is used to write to memory.<p>

<h5>Arguments:</h5>
There are three forms of the '<tt>store</tt>' instruction: one for writing through a general pointer, one for writing through a pointer to a (possibly multidimensional) array, and one for writing to an element of a (potentially nested) structure.<p>

The semantics of this instruction closely match that of the <a href="#i_load">load</a> instruction, except that memory is written to, not read from.

<h5>Semantics:</h5>
...

<h5>Example:</h5>
<pre>
  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
  <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
  %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>

  %array = <a href="#i_malloc">malloc</a> [4 x ubyte]                     <i>; yields {[4 x ubyte]*}:array</i>
  <a href="#i_store">store</a> ubyte 124, [4 x ubyte]* %array, uint 4
  %val   = load [4 x ubyte]* %array, uint 4       <i>; yields {ubyte}:val = ubyte 124</i>
  %val   = load {{int, float}}* %stptr, 0, 1      <i>; yields {float}:val</i>
</pre>




<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="otherops">Other Operations
</b></font></td></tr></table><ul>

The instructions in this catagory are the "miscellaneous" functions, that defy better classification.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>

<h1>TODO</h1>

<a name="logical_integrals">
  Talk about what is considered true or false for integrals.



<h5>Syntax:</h5>
<pre>
</pre>

<h5>Overview:</h5>


<h5>Arguments:</h5>


<h5>Semantics:</h5>


<h5>Example:</h5>
<pre>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>

</pre>

<h5>Overview:</h5>


<h5>Arguments:</h5>


<h5>Semantics:</h5>


<h5>Example:</h5>
<pre>
  %retval = call int %test(int %argc)
</pre>


<!-- _______________________________________________________________________ --></ul><a name="i_icall"><h3><hr size=0>'<tt>icall</tt>' Instruction</h3><ul>

Indirect calls are desperately needed to implement virtual function tables (C++, java) and function pointers (C, C++, ...).<p>

A new instruction <tt>icall</tt> or similar should be introduced to represent an indirect call.<p>

Example:
<pre>
  %retval = icall int %funcptr(int %arg1)          <i>; yields {int}:%retval</i>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
</pre>

<h5>Overview:</h5>


<h5>Arguments:</h5>


<h5>Semantics:</h5>


<h5>Example:</h5>
<pre>
</pre>


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="builtinfunc">Builtin Functions
</b></font></td></tr></table><ul>

<b>Notice:</b> Preliminary idea!<p>

Builtin functions are very similar to normal functions, except they are defined by the implementation.  Invocations of these functions are very similar to function invocations, except that the syntax is a little less verbose.<p>

Builtin functions are useful to implement semi-high level ideas like a '<tt>min</tt>' or '<tt>max</tt>' operation that can have important properties when doing program analysis.  For example:

<ul>
<li>Some optimizations can make use of identities defined over the functions, 
    for example a parrallelizing compiler could make use of '<tt>min</tt>' 
    identities to parrellelize a loop.
<li>Builtin functions would have polymorphic types, where normal function calls
    may only have a single type.
<li>Builtin functions would be known to not have side effects, simplifying 
    analysis over straight function calls.
<li>The syntax of the builtin are cleaner than the syntax of the 
    '<a href="#i_call"><tt>call</tt></a>' instruction (very minor point).
</ul>

Because these invocations are explicit in the representation, the runtime can choose to implement these builtin functions any way that they want, including:

<ul>
<li>Inlining the code directly into the invocation
<li>Implementing the functions in some sort of Runtime class, convert invocation
    to a standard function call.
<li>Implementing the functions in some sort of Runtime class, and perform 
    standard inlining optimizations on it.
</ul>

Note that these builtins do not use quoted identifiers: the name of the builtin effectively becomes an identifier in the language.<p>

Example:
<pre>
  ; Example of a normal function call
  %maximum = call int %maximum(int %arg1, int %arg2)   <i>; yields {int}:%maximum</i>

  ; Examples of potential builtin functions
  %max = max(int %arg1, int %arg2)                     <i>; yields {int}:%max</i>
  %min = min(int %arg1, int %arg2)                     <i>; yields {int}:%min</i>
  %sin = sin(double %arg)                              <i>; yields {double}:%sin</i>
  %cos = cos(double %arg)                              <i>; yields {double}:%cos</i>

  ; Show that builtin's are polymorphic, like instructions
  %max = max(float %arg1, float %arg2)                 <i>; yields {float}:%max</i>
  %cos = cos(float %arg)                               <i>; yields {float}:%cos</i>
</pre>

The '<tt>maximum</tt>' vs '<tt>max</tt>' example illustrates the difference in calling semantics between a '<a href="#i_call"><tt>call</tt></a>' instruction and a builtin function invocation.  Notice that the '<tt>maximum</tt>' example assumes that the function is defined local to the caller.<p>




<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="todo">TODO List
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

This list of random topics includes things that will <b>need</b> to be addressed before the llvm may be used to implement a java like langauge.  Right now, it is pretty much useless for any language, given to unavailable of structure types<p>

<!-- _______________________________________________________________________ -->
</ul><a name="synchronization"><h3><hr size=0>Synchronization Instructions</h3><ul>

We will need some type of synchronization instructions to be able to implement stuff in Java well.  The way I currently envision doing this is to introduce a '<tt>lock</tt>' type, and then add two (builtin or instructions) operations to lock and unlock the lock.<p>


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="extensions">Possible Extensions
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

These extensions are distinct from the TODO list, as they are mostly "interesting" ideas that could be implemented in the future by someone so motivated.  They are not directly required to get <a href="#rw_java">Java</a> like languages working.<p>

<!-- _______________________________________________________________________ -->
</ul><a name="i_tailcall"><h3><hr size=0>'<tt>tailcall</tt>' Instruction</h3><ul>

This could be useful.  Who knows.  '.net' does it, but is the optimization really worth the extra hassle?  Using strong typing would make this trivial to implement and a runtime could always callback to using downconverting this to a normal '<a href="#i_call"><tt>call</tt></a>' instruction.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="globalvars"><h3><hr size=0>Global Variables</h3><ul>

In order to represent programs written in languages like C, we need to be able to support variables at the module (global) scope.  Perhaps they should be written outside of the module definition even.  Maybe global functions should be handled like this as well.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="explicitparrellelism"><h3><hr size=0>Explicit Parrellelism</h3><ul>

With the rise of massively parrellel architectures (like <a href="#rw_ia64">the IA64 architecture</a>, multithreaded CPU cores, and SIMD data sets) it is becoming increasingly more important to extract all of the ILP from a code stream possible.  It would be interesting to research encoding functions that can explicitly represent this.  One straightforward way to do this would be to introduce a "stop" instruction that is equilivent to the IA64 stop bit.<p>



<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0><tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="related">Related Work
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->


Codesigned virtual machines.<p>

<dl>
<a name="rw_safetsa">
<dt>SafeTSA
<DD>Description here<p>

<a name="rw_java">
<dt><a href="http://www.javasoft.com">Java</a>
<DD>Desciption here<p>

<a name="rw_net">
<dt><a href="http://www.microsoft.com/net">Microsoft .net</a>
<DD>Desciption here<p>

<a name="rw_gccrtl">
<dt><a href="http://www.math.umn.edu/systems_guide/gcc-2.95.1/gcc_15.html">GNU RTL Intermediate Representation</a>
<DD>Desciption here<p>

<a name="rw_ia64">
<dt><a href="http://developer.intel.com/design/ia-64/index.htm">IA64 Architecture &amp; Instruction Set</a>
<DD>Desciption here<p>

<a name="rw_mmix">
<dt><a href="http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html">MMIX Instruction Set</a>
<DD>Desciption here<p>

<a name="rw_stroustrup">
<dt><a href="http://www.research.att.com/~bs/devXinterview.html">"Interview With Bjarne Stroustrup"</a>
<DD>This interview influenced the design and thought process behind LLVM in several ways, most notably the way that derived types are written in text format. See the question that starts with "you defined the C declarator syntax as an experiment that failed".<p>
</dl>

<!-- _______________________________________________________________________ -->
</ul><a name="rw_vectorization"><h3><hr size=0>Vectorized Architectures</h3><ul>

<dl>
<a name="rw_intel_simd">
<dt>Intel MMX, MMX2, SSE, SSE2
<DD>Description here<p>

<a name="rw_amd_simd">
<dt><a href="http://www.nondot.org/~sabre/os/H1ChipFeatures/3DNow!TechnologyManual.pdf">AMD 3Dnow!, 3Dnow! 2</a>
<DD>Desciption here<p>

<a name="rw_sun_simd">
<dt><a href="http://www.nondot.org/~sabre/os/H1ChipFeatures/VISInstructionSetUsersManual.pdf">Sun VIS ISA</a>
<DD>Desciption here<p>


</dl>

more...

<!-- *********************************************************************** -->
</ul>
<!-- *********************************************************************** -->


<hr>
<font size=-1>
<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
<!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
<!-- hhmts start -->
Last modified: Sun Apr 14 01:12:55 CDT 2002
<!-- hhmts end -->
</font>
</body></html>