aboutsummaryrefslogtreecommitdiffstats
path: root/docs/NVPTXUsage.rst
blob: e1c401df877af50146194a16a7770f7f2e1e7b4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
=============================
User Guide for NVPTX Back-end
=============================

.. contents::
   :local:
   :depth: 3


Introduction
============

To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
along with a defined set of conventions used to represent GPU programming
concepts. This document provides an overview of the general usage of the back-
end, including a description of the conventions used and the set of accepted
LLVM IR.

.. note:: 
   
   This document assumes a basic familiarity with CUDA and the PTX
   assembly language. Information about the CUDA Driver API and the PTX assembly
   language can be found in the `CUDA documentation
   <http://docs.nvidia.com/cuda/index.html>`_.



Conventions
===========

Marking Functions as Kernels
----------------------------

In PTX, there are two types of functions: *device functions*, which are only
callable by device code, and *kernel functions*, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
``nvvm.annotations`` named metadata object, and has the following format:

.. code-block:: llvm

   !0 = metadata !{<function-ref>, metadata !"kernel", i32 1}

The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.

.. code-block:: llvm

    define float @my_fmad(float %x, float %y, float %z) {
      %mul = fmul float %x, %y
      %add = fadd float %mul, %z
      ret float %add
    }

    define void @my_kernel(float* %ptr) {
      %val = load float* %ptr
      %ret = call float @my_fmad(float %val, float %val, float %val)
      store float %ret, float* %ptr
      ret void
    }

    !nvvm.annotations = !{!1}
    !1 = metadata !{void (float*)* @my_kernel, metadata !"kernel", i32 1}

When compiled, the PTX kernel functions are callable by host-side code.


.. _address_spaces:

Address Spaces
--------------

The NVPTX back-end uses the following address space mapping:

   ============= ======================
   Address Space Memory Space
   ============= ======================
   0             Generic
   1             Global
   2             Internal Use
   3             Shared
   4             Constant
   5             Local
   ============= ======================

Every global variable and pointer type is assigned to one of these address
spaces, with 0 being the default address space. Intrinsics are provided which
can be used to convert pointers between the generic and non-generic address
spaces.

As an example, the following IR will define an array ``@g`` that resides in
global device memory.

.. code-block:: llvm

    @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]

LLVM IR functions can read and write to this array, and host-side code can
copy data to it by name with the CUDA Driver API.

Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0.  Address space 0 is the default address
space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.


Triples
-------

The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
operating system should be one of ``cuda`` or ``nvcl``, which determines the
interface used by the generated code to communicate with the driver.  Most
users will want to use ``cuda`` as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.

Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``

Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``



.. _nvptx_intrinsics:

NVPTX Intrinsics
================

Address Space Conversion
------------------------

'``llvm.nvvm.ptr.*.to.gen``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

These are overloaded intrinsics.  You can use these on any pointer types.

.. code-block:: llvm

    declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
    declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
    declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
    declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)

Overview:
"""""""""

The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic
address space to a generic address space pointer.

Semantics:
""""""""""

These intrinsics modify the pointer value to be a valid generic address space
pointer.


'``llvm.nvvm.ptr.gen.to.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

These are overloaded intrinsics.  You can use these on any pointer types.

.. code-block:: llvm

    declare i8* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8 addrspace(1)*)
    declare i8* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8 addrspace(3)*)
    declare i8* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8 addrspace(4)*)
    declare i8* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8 addrspace(5)*)

Overview:
"""""""""

The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic
address space to a pointer in the target address space.  Note that these
intrinsics are only useful if the address space of the target address space of
the pointer is known.  It is not legal to use address space conversion
intrinsics to convert a pointer from one non-generic address space to another
non-generic address space.

Semantics:
""""""""""

These intrinsics modify the pointer value to be a valid pointer in the target
non-generic address space.


Reading PTX Special Registers
-----------------------------

'``llvm.nvvm.read.ptx.sreg.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()

Overview:
"""""""""

The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds.  These registers
map in the following way to CUDA builtins:

   ============ =====================================
   CUDA Builtin PTX Special Register Intrinsic
   ============ =====================================
   ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
   ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
   ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
   ``gridDim``  ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
   ============ =====================================


Barriers
--------

'``llvm.nvvm.barrier0``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.barrier0()

Overview:
"""""""""

The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
instruction, equivalent to the ``__syncthreads()`` call in CUDA.


Other Intrinsics
----------------

For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.


.. _libdevice:

Linking with Libdevice
======================

The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
there is a separate version for each compute architecture.

For a list of all math functions implemented in libdevice, see
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.

To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:

.. code-block:: c++

  float my_function(float a) {
    if (__nvvm_reflect("FASTMATH"))
      return my_function_fast(a);
    else
      return my_function_precise(a);
  }

The default value for all unspecified reflection parameters is zero. 

The ``NVVMReflect`` pass should be executed early in the optimization
pipeline, immediately after the link stage. The ``internalize`` pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module ``module.bc``, the following compilation flow is recommended:

1. Save list of external functions in ``module.bc``
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
3. Internalize all functions not in list from (1)
4. Eliminate all unused internal functions
5. Run ``NVVMReflect`` pass
6. Run standard optimization pipeline

.. note::

  ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
  libdevice functions. It is possible to link two IR modules that have been
  linked against libdevice using different reflection variables.

Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
often leave behind dead code of the form:

.. code-block:: llvm

  entry:
    ..
    br i1 true, label %foo, label %bar
  foo:
    ..
  bar:
    ; Dead code
    ..

Therefore, it is recommended that ``NVVMReflect`` is executed early in the
optimization pipeline before dead-code elimination.


Reflection Parameters
---------------------

The libdevice library currently uses the following reflection parameters to
control code generation:

==================== ======================================================
Flag                 Description
==================== ======================================================
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
==================== ======================================================


Invoking NVVMReflect
--------------------

To ensure that all dead code caused by the reflection pass is eliminated, it
is recommended that the reflection pass is executed early in the LLVM IR
optimization pipeline. The pass takes an optional mapping of reflection
parameter name to an integer value. This mapping can be specified as either a
command-line option to ``opt`` or as an LLVM ``StringMap<int>`` object when
programmatically creating a pass pipeline.

With ``opt``:

.. code-block:: text

  # opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o module.reflect.bc


With programmatic pass pipeline:

.. code-block:: c++

  extern ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping);

  StringMap<int> ReflectParams;
  ReflectParams["__CUDA_FTZ"] = 1;
  Passes.add(createNVVMReflectPass(ReflectParams));



Executing PTX
=============

The most common way to execute PTX assembly on a GPU device is to use the CUDA
Driver API. This API is a low-level interface to the GPU driver and allows for
JIT compilation of PTX code to native GPU machine code.

Initializing the Driver API:

.. code-block:: c++

    CUdevice device;
    CUcontext context;

    // Initialize the driver API
    cuInit(0);
    // Get a handle to the first compute device
    cuDeviceGet(&device, 0);
    // Create a compute device context
    cuCtxCreate(&context, 0, device);

JIT compiling a PTX string to a device binary:

.. code-block:: c++

    CUmodule module;
    CUfunction funcion;

    // JIT compile a null-terminated PTX string
    cuModuleLoadData(&module, (void*)PTXString);

    // Get a handle to the "myfunction" kernel function
    cuModuleGetFunction(&function, module, "myfunction");

For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.


Common Issues
=============

ptxas complains of undefined function: __nvvm_reflect
-----------------------------------------------------

When linking with libdevice, the ``NVVMReflect`` pass must be used. See
:ref:`libdevice` for more information.


Tutorial: A Simple Compute Kernel
=================================

To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B.  To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.


The Kernel
----------

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"

  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

  define void @kernel(float addrspace(1)* %A,
                      float addrspace(1)* %B,
                      float addrspace(1)* %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float addrspace(1)* %A, i32 %id
    %ptrB = getelementptr float addrspace(1)* %B, i32 %id
    %ptrC = getelementptr float addrspace(1)* %C, i32 %id

    ; Read A, B
    %valA = load float addrspace(1)* %ptrA, align 4
    %valB = load float addrspace(1)* %ptrB, align 4

    ; Compute C = A + B
    %valC = fadd float %valA, %valB

    ; Store back to C
    store float %valC, float addrspace(1)* %ptrC, align 4

    ret void
  }

  !nvvm.annotations = !{!0}
  !0 = metadata !{void (float addrspace(1)*,
                        float addrspace(1)*,
                        float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}


We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:

.. code-block:: text

  # llc -mcpu=sm_20 kernel.ll -o kernel.ptx


.. note::

  If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
  in the module data layout string and use ``nvptx-nvidia-cuda`` as the
  target triple.


The output we get from ``llc`` (as of LLVM 3.4):

.. code-block:: text

  //
  // Generated by LLVM NVPTX Back-End
  //

  .version 3.1
  .target sm_20
  .address_size 64

    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .f32   %f<4>;
    .reg .s32   %r<2>;
    .reg .s64   %rl<8>;

  // BB#0:                                // %entry
    ld.param.u64    %rl1, [kernel_param_0];
    mov.u32         %r1, %tid.x;
    mul.wide.s32    %rl2, %r1, 4;
    add.s64         %rl3, %rl1, %rl2;
    ld.param.u64    %rl4, [kernel_param_1];
    add.s64         %rl5, %rl4, %rl2;
    ld.param.u64    %rl6, [kernel_param_2];
    add.s64         %rl7, %rl6, %rl2;
    ld.global.f32   %f1, [%rl3];
    ld.global.f32   %f2, [%rl5];
    add.f32         %f3, %f1, %f2;
    st.global.f32   [%rl7], %f3;
    ret;
  }


Dissecting the Kernel
---------------------

Now let us dissect the LLVM IR that makes up this kernel. 

Data Layout
^^^^^^^^^^^

The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size.  For NVPTX, you should use one of the
following:

32-bit PTX:

.. code-block:: llvm

  target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

64-bit PTX:

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"


Target Intrinsics
^^^^^^^^^^^^^^^^^

In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
read the X component of the current thread's ID, which corresponds to a read
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
intrinsics.  A short list is shown below; please see
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.


================================================ ====================
Intrinsic                                        CUDA Equivalent
================================================ ====================
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}``     threadIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}``   blockIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}``    blockDim.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}``  gridDim.{x,y,z}
``void @llvm.cuda.syncthreads()``                __syncthreads()
================================================ ====================


Address Spaces
^^^^^^^^^^^^^^

You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:

- Global: Large, off-chip memory
- Shared: Small, on-chip memory shared among all threads in a CTA
- Local: Per-thread, private memory
- Constant: Read-only memory shared across all threads

These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the "generic" address space.  This address space can represent
addresses in any other address space (with a few exceptions).  This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.

See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.


Kernel Metadata
^^^^^^^^^^^^^^^

In PTX, a function can be either a `kernel` function (callable from the host
program), or a `device` function (callable only from GPU code). You can think
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
function as a `kernel` function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
``nvvm.annotations``. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the "kernel" attribute to the LLVM IR function that should be emitted
as a PTX `kernel` function. These metadata nodes take the form:

.. code-block:: text

  metadata !{<function ref>, metadata !"kernel", i32 1}

For the previous example, we have:

.. code-block:: llvm

  !nvvm.annotations = !{!0}
  !0 = metadata !{void (float addrspace(1)*,
                        float addrspace(1)*,
                        float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}

Here, we have a single metadata declaration in ``nvvm.annotations``. This
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.


Running the Kernel
------------------

Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL.  A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!

.. note::

  You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
  compile PTX to machine code (SASS) for a specific GPU architecture. Such
  binaries can be loaded by the CUDA Driver API in the same way as PTX. This
  can be useful for reducing startup time by precompiling the PTX kernels.


.. code-block:: c++

  #include <iostream>
  #include <fstream>
  #include <cassert>
  #include "cuda.h"


  void checkCudaErrors(CUresult err) {
    assert(err == CUDA_SUCCESS);
  }

  /// main - Program entry point
  int main(int argc, char **argv) {
    CUdevice    device;
    CUmodule    cudaModule;
    CUcontext   context;
    CUfunction  function;
    CUlinkState linker;
    int         devCount;

    // CUDA initialization
    checkCudaErrors(cuInit(0));
    checkCudaErrors(cuDeviceGetCount(&devCount));
    checkCudaErrors(cuDeviceGet(&device, 0));

    char name[128];
    checkCudaErrors(cuDeviceGetName(name, 128, device));
    std::cout << "Using CUDA Device [0]: " << name << "\n";

    int devMajor, devMinor;
    checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
    std::cout << "Device Compute Capability: "
              << devMajor << "." << devMinor << "\n";
    if (devMajor < 2) {
      std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
      return 1;
    }

    std::ifstream t("kernel.ptx");
    if (!t.is_open()) {
      std::cerr << "kernel.ptx not found\n";
      return 1;
    }
    std::string str((std::istreambuf_iterator<char>(t)),
                      std::istreambuf_iterator<char>());

    // Create driver context
    checkCudaErrors(cuCtxCreate(&context, 0, device));

    // Create module for object
    checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));

    // Get kernel function
    checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));

    // Device data
    CUdeviceptr devBufferA;
    CUdeviceptr devBufferB;
    CUdeviceptr devBufferC;

    checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));

    float* hostA = new float[16];
    float* hostB = new float[16];
    float* hostC = new float[16];

    // Populate input
    for (unsigned i = 0; i != 16; ++i) {
      hostA[i] = (float)i;
      hostB[i] = (float)(2*i);
      hostC[i] = 0.0f;
    }

    checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
    checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));


    unsigned blockSizeX = 16;
    unsigned blockSizeY = 1;
    unsigned blockSizeZ = 1;
    unsigned gridSizeX  = 1;
    unsigned gridSizeY  = 1;
    unsigned gridSizeZ  = 1;

    // Kernel parameters
    void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };

    std::cout << "Launching kernel\n";

    // Kernel launch
    checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
                                   blockSizeX, blockSizeY, blockSizeZ,
                                   0, NULL, KernelParams, NULL));

    // Retrieve device data
    checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));


    std::cout << "Results:\n";
    for (unsigned i = 0; i != 16; ++i) {
      std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
    }


    // Clean up after ourselves
    delete [] hostA;
    delete [] hostB;
    delete [] hostC;

    // Clean-up
    checkCudaErrors(cuMemFree(devBufferA));
    checkCudaErrors(cuMemFree(devBufferB));
    checkCudaErrors(cuMemFree(devBufferC));
    checkCudaErrors(cuModuleUnload(cudaModule));
    checkCudaErrors(cuCtxDestroy(context));

    return 0;
  }


You will need to link with the CUDA driver and specify the path to cuda.h.

.. code-block:: text

  # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda

We don't need to specify a path to ``libcuda.so`` since this is installed in a
system location by the driver, not the CUDA toolkit.

If everything goes as planned, you should see the following output when
running the compiled program:

.. code-block:: text

  Using CUDA Device [0]: GeForce GTX 680
  Device Compute Capability: 3.0
  Launching kernel
  Results:
  0 + 0 = 0
  1 + 2 = 3
  2 + 4 = 6
  3 + 6 = 9
  4 + 8 = 12
  5 + 10 = 15
  6 + 12 = 18
  7 + 14 = 21
  8 + 16 = 24
  9 + 18 = 27
  10 + 20 = 30
  11 + 22 = 33
  12 + 24 = 36
  13 + 26 = 39
  14 + 28 = 42
  15 + 30 = 45

.. note::

  You will likely see a different device identifier based on your hardware


Tutorial: Linking with Libdevice
================================

In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
Libdevice provides an ``__nv_powf`` function that we will use.

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"

  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
  ; libdevice function
  declare float @__nv_powf(float, float)

  define void @kernel(float addrspace(1)* %A,
                      float addrspace(1)* %B,
                      float addrspace(1)* %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float addrspace(1)* %A, i32 %id
    %ptrB = getelementptr float addrspace(1)* %B, i32 %id
    %ptrC = getelementptr float addrspace(1)* %C, i32 %id

    ; Read A, B
    %valA = load float addrspace(1)* %ptrA, align 4
    %valB = load float addrspace(1)* %ptrB, align 4

    ; Compute C = pow(A, B)
    %valC = call float @__nv_powf(float %valA, float %valB)

    ; Store back to C
    store float %valC, float addrspace(1)* %ptrC, align 4

    ret void
  }

  !nvvm.annotations = !{!0}
  !0 = metadata !{void (float addrspace(1)*,
                        float addrspace(1)*,
                        float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}


To compile this kernel, we perform the following steps:

1. Link with libdevice
2. Internalize all but the public kernel function
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
4. Optimize the linked module
5. Codegen the module


These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
:ref:`libdevice`).

.. code-block:: text

  # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
  # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
  # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx

.. note::

  The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
  undefined variables will default to zero. It is shown here for evaluation
  purposes.


This gives us the following PTX (excerpt):

.. code-block:: text

  //
  // Generated by LLVM NVPTX Back-End
  //

  .version 3.1
  .target sm_20
  .address_size 64

    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .pred  %p<30>;
    .reg .f32   %f<111>;
    .reg .s32   %r<21>;
    .reg .s64   %rl<8>;

  // BB#0:                                // %entry
    ld.param.u64  %rl2, [kernel_param_0];
    mov.u32   %r3, %tid.x;
    ld.param.u64  %rl3, [kernel_param_1];
    mul.wide.s32  %rl4, %r3, 4;
    add.s64   %rl5, %rl2, %rl4;
    ld.param.u64  %rl6, [kernel_param_2];
    add.s64   %rl7, %rl3, %rl4;
    add.s64   %rl1, %rl6, %rl4;
    ld.global.f32   %f1, [%rl5];
    ld.global.f32   %f2, [%rl7];
    setp.eq.f32 %p1, %f1, 0f3F800000;
    setp.eq.f32 %p2, %f2, 0f00000000;
    or.pred   %p3, %p1, %p2;
    @%p3 bra  BB0_1;
    bra.uni   BB0_2;
  BB0_1:
    mov.f32   %f110, 0f3F800000;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_2:                                  // %__nv_isnanf.exit.i
    abs.f32   %f4, %f1;
    setp.gtu.f32  %p4, %f4, 0f7F800000;
    @%p4 bra  BB0_4;
  // BB#3:                                // %__nv_isnanf.exit5.i
    abs.f32   %f5, %f2;
    setp.le.f32 %p5, %f5, 0f7F800000;
    @%p5 bra  BB0_5;
  BB0_4:                                  // %.critedge1.i
    add.f32   %f110, %f1, %f2;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_5:                                  // %__nv_isinff.exit.i

    ...

  BB0_26:                                 // %__nv_truncf.exit.i.i.i.i.i
    mul.f32   %f90, %f107, 0f3FB8AA3B;
    cvt.rzi.f32.f32 %f91, %f90;
    mov.f32   %f92, 0fBF317200;
    fma.rn.f32  %f93, %f91, %f92, %f107;
    mov.f32   %f94, 0fB5BFBE8E;
    fma.rn.f32  %f95, %f91, %f94, %f93;
    mul.f32   %f89, %f95, 0f3FB8AA3B;
    // inline asm
    ex2.approx.ftz.f32 %f88,%f89;
    // inline asm
    add.f32   %f96, %f91, 0f00000000;
    ex2.approx.f32  %f97, %f96;
    mul.f32   %f98, %f88, %f97;
    setp.lt.f32 %p15, %f107, 0fC2D20000;
    selp.f32  %f99, 0f00000000, %f98, %p15;
    setp.gt.f32 %p16, %f107, 0f42D20000;
    selp.f32  %f110, 0f7F800000, %f99, %p16;
    setp.eq.f32 %p17, %f110, 0f7F800000;
    @%p17 bra   BB0_28;
  // BB#27:
    fma.rn.f32  %f110, %f110, %f108, %f110;
  BB0_28:                                 // %__internal_accurate_powf.exit.i
    setp.lt.f32 %p18, %f1, 0f00000000;
    setp.eq.f32 %p19, %f3, 0f3F800000;
    and.pred    %p20, %p18, %p19;
    @!%p20 bra  BB0_30;
    bra.uni   BB0_29;
  BB0_29:
    mov.b32    %r9, %f110;
    xor.b32   %r10, %r9, -2147483648;
    mov.b32    %f110, %r10;
  BB0_30:                                 // %__nv_powf.exit
    st.global.f32   [%rl1], %f110;
    ret;
  }