1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>LLVM Programmer's Manual</title></head>
<body bgcolor=white>
<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td> <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
</tr></table>
<ol>
<li><a href="#introduction">Introduction</a>
<li><a href="#general">General Information</a>
<ul>
<li><a href="#stl">The C++ Standard Template Library</a>
<li>The isa<>, cast<> and dyn_cast<> templates
</ul>
<li><a href="#coreclasses">The Core LLVM Class Heirarchy</a>
<ul>
<li><a href="#Value">The <tt>Value</tt> class</a>
<ul>
<li><a href="#User">The <tt>User</tt> class</a>
<ul>
<li><a href="#Instruction">The <tt>Instruction</tt> class</a>
<ul>
<li>
<li>
</ul>
<li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
<ul>
<li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
<li><a href="#Function">The <tt>Function</tt> class</a>
<li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
</ul>
<li><a href="#Module">The <tt>Module</tt> class</a>
<li><a href="#Constant">The <tt>Constant</tt> class</a>
<ul>
<li>
<li>
</ul>
</ul>
<li><a href="#Type">The <tt>Type</tt> class</a>
<li><a href="#Argument">The <tt>Argument</tt> class</a>
</ul>
<li>The <tt>SymbolTable</tt> class
<li>The <tt>ilist</tt> and <tt>iplist</tt> classes
<ul>
<li>Creating, inserting, moving and deleting from LLVM lists
</ul>
<li>Important iterator invalidation semantics to be aware of
</ul>
<!--
III. Useful things to know about the LLVM source base:
III.1 Useful links that introduce the STL
III.2 isa<>, cast<>, dyn_cast<>
III.3 Makefiles, useful options
III.4 How to use opt & analyze to debug stuff
III.5 How to write a regression test
III.6 DEBUG() and Statistics (-debug & -stats)
III.7 The -time-passes option
III.8 ... more as needed ...
-->
<p><b>Written by <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>
and <a href="mailto:sabre@nondot.org">Chris Lattner</a></b><p>
</ol>
<!-- *********************************************************************** -->
<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="introduction">Introduction
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->
This document is meant to hi-light some of the important classes and interfaces
available in the LLVM source-base. This manual is not indended to explain what
LLVM is, how it works, and what LLVM code looks like. It assumes that you know
the basics of LLVM and are interested in writing transformations or otherwise
analyzing or manipulating the code.<p>
This document should get you oriented so that you can find your way in the
continuously growing source code that makes up the LLVM infrastructure. Note
that this manual is not intended to serve as a replacement for reading the
source code, so if you think there should be a method in one of these classes to
do something, but it's not listed, check the source. Links to the <a
href="/doxygen/">doxygen</a> sources are provided to make this as easy as
possible.<p>
The first section of this document describes general information that is useful
to know when working in the LLVM infrastructure, and the second describes the
Core LLVM classes. In the future this manual will be extended with information
describing how to use extension libraries, such as dominator information, CFG
traversal routines, and useful utilities like the <tt><a
href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="general">General Information
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->
This section contains general information that is useful if you are working in
the LLVM source-base, but that isn't specific to any particular API.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="stl">The C++ Standard Template Library</a>
</b></font></td></tr></table><ul>
LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
more than you are used to, or have seen before. Because of this, you might want
to do a little background reading in the techniques used and capabilities of the
library. There are many good pages that discuss the STL, and several books on
the subject that you can get, so it will not be discussed in this document.<p>
Here are some useful links:<p>
<ol>
<li><a href="http://www.dinkumware.com/htm_cpl/index.html">Dinkumware C++
Library reference</a> - an excellent reference for the STL and other parts of
the standard C++ library.<br>
<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
Questions</a>
<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
Contains a useful <a
href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
STL</a>.
<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
Page</a>
</ol><p>
You are also encouraged to take a look at the <a
href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
to write maintainable code more than where to put your curly braces.<p>
<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="coreclasses">The Core LLVM Class Heirarchy
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->
The Core LLVM classes are the primary means of representing the program being
inspected or transformed. The core LLVM classes are defined in header files in
the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
directory.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Value">The <tt>Value</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
The <tt>Value</tt> class is the most important class in LLVM Source base. It
represents a typed value that may be used (among other things) as an operand to
an instruction. There are many different types of <tt>Value</tt>s, such as <a
href="#Constant"><tt>Constant</tt></a>s, <a
href="#Argument"><tt>Argument</tt></a>s, and even <a
href="#Instruction"><tt>Instruction</tt></a>s and <a
href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
A particular <tt>Value</tt> may be used many times in the LLVM representation
for a program. For example, an incoming argument to a function (represented
with an instance of the <a href="#Argument">Argument</a> class) is "used" by
every instruction in the function that references the argument. To keep track
of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
href="#User"><tt>User</tt></a>s that is using it (the <a
href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
def-use information in the program, and is accessable through the <tt>use_</tt>*
methods, shown below.<p>
Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
method. <a name="#nameWarning">In addition, all LLVM values can be named. The
"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
<pre>
%<b>foo</b> = add int 1, 2
</pre>
The name of this instruction is "foo". <b>NOTE</b> that the name of any value
may be missing (an empty string), so names should <b>ONLY</b> be used for
debugging (making the source code easier to read, debugging printouts), they
should not be used to keep track of values or map between them. For this
purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
instead.<p>
One important aspect of LLVM is that there is no distinction between an SSA
variable and the operation that produces it. Because of this, any reference to
the value produced by an instruction (or the value available as an incoming
argument, for example) is represented as a direct pointer to the class that
represents this value. Although this may take some getting used to, it
simplifies the representation and makes it easier to manipulate.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
the <tt>Value</tt> class</h4><ul>
<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
<tt>Value::use_const_iterator</tt>
- Typedef for const_iterator over the use-list<br>
<tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
<tt>bool use_empty()</tt> - Returns true if there are no users.<br>
<tt>use_iterator use_begin()</tt>
- Get an iterator to the start of the use-list.<br>
<tt>use_iterator use_end()</tt>
- Get an iterator to the end of the use-list.<br>
<tt><a href="#User">User</a> *use_back()</tt>
- Returns the last element in the list.<p>
These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
This method returns the Type of the Value.
<li><tt>bool hasName() const</tt><br>
<tt>std::string getName() const</tt><br>
<tt>void setName(const std::string &Name)</tt><p>
This family of methods is used to access and assign a name to a <tt>Value</tt>,
be aware of the <a href="#nameWarning">precaution above</a>.<p>
<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
This method traverses the use list of a <tt>Value</tt> changing all <a
href="#User"><tt>User</tt>'s</a> of the current value to refer to "<tt>V</tt>"
instead. For example, if you detect that an instruction always produces a
constant value (for example through constant folding), you can replace all uses
of the instruction with the constant like this:<p>
<pre>
Inst->replaceAllUsesWith(ConstVal);
</pre><p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="User">The <tt>User</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
Superclass: <a href="#Value"><tt>Value</tt></a><p>
The <tt>User</tt> class is the common base class of all LLVM nodes that may
refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
referring to. The <tt>User</tt> class itself is a subclass of
<tt>Value</tt>.<p>
The operands of a <tt>User</tt> point directly to the LLVM <a
href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
Single Assignment (SSA) form, there can only be one definition referred to,
allowing this direct connection. This connection provides the use-def
information in LLVM.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_User"><hr size=0>Important Public Members of
the <tt>User</tt> class</h4><ul>
The <tt>User</tt> class exposes the operand list in two ways: through an index
access interface and through an iterator based interface.<p>
<li><tt>Value *getOperand(unsigned i)</tt><br>
<tt>unsigned getNumOperands()</tt><p>
These two methods expose the operands of the <tt>User</tt> in a convenient form
for direct access.<p>
<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
<tt>User::op_const_iterator</tt>
<tt>use_iterator op_begin()</tt>
- Get an iterator to the start of the operand list.<br>
<tt>use_iterator op_end()</tt>
- Get an iterator to the end of the operand list.<p>
Together, these methods make up the iterator based interface to the operands of
a <tt>User</tt>.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Instruction">The <tt>Instruction</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
Superclasses: <a href="#User"><tt>User</tt></a>, <a
href="#Value"><tt>Value</tt></a><p>
The <tt>Instruction</tt> class is the common base class for all LLVM
instructions. It provides only a few methods, but is a very commonly used
class. The primary data tracked by the <tt>Instruction</tt> class itself is the
opcode (instruction type) and the parent <a
href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
into. To represent a specific type of instruction, one of many subclasses of
<tt>Instruction</tt> are used.<p>
Because the <tt>Instruction</tt> class subclasses the <a
href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
way as for other <a href="#User"><tt>User</tt></a>s (with the
<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
the <tt>Instruction</tt> class</h4><ul>
<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
<tt>Instruction</tt> is embedded into.<p>
<li><tt>bool hasSideEffects()</tt><p>
Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>,
<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
<li><tt>unsigned getOpcode()</tt><p>
Returns the opcode for the <tt>Instruction</tt>.<p>
<!--
\subsection{Subclasses of Instruction :}
\begin{itemize}
<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
\begin{itemize}
<li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
\end{itemize}
<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
\begin{itemize}
<li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
<li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
<li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
\end{itemize}
<li>PHINode : This represents the PHI instructions in the SSA form.
\begin{itemize}
<li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
<li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
<li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
<li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
<li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
Add an incoming value to the end of the PHI list
<li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
\end{itemize}
<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
\begin{itemize}
<li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
\end{itemize}
<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
\begin{itemize}
<li><tt>Value * getPointerOperand ()</tt>: Returns the Pointer Operand which is typically the 0th operand.
\end{itemize}
<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
\begin{itemize}
<li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
<li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
<li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
\end{itemize}
\end{itemize}
-->
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
Superclass: <a href="#Value"><tt>Value</tt></a><p>
This class represents a single entry multiple exit section of the code, commonly
known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
the body of the block. Matching the language definition, the last element of
this list of instructions is always a terminator instruction (a subclass of the
<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
In addition to tracking the list of instructions that make up the block, the
<tt>BasicBlock</tt> class also keeps track of the <a
href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
Note that <tt>BasicBlock</tt>s themselves are <a
href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
<tt>label</tt>.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
the <tt>BasicBlock</tt> class</h4><ul>
<li><tt>BasicBlock(const std::string &Name = "", <a
href="#Function">Function</a> *Parent = 0)</tt><p>
The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
insertion into a function. The constructor simply takes a name for the new
block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
into. If the <tt>Parent</tt> parameter is specified, the new
<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
These methods and typedefs are forwarding functions that have the same semantics
as the standard library methods of the same names. These methods expose the
underlying instruction list of a basic block in a way that is easy to
manipulate. To get the full complement of container operations (including
operations to update the list), you must use the <tt>getInstList()</tt>
method.<p>
<li><tt>BasicBlock::InstListType &getInstList()</tt><p>
This method is used to get access to the underlying container that actually
holds the Instructions. This method must be used when there isn't a forwarding
function in the <tt>BasicBlock</tt> class for the operation that you would like
to perform. Because there are no forwarding functions for "updating"
operations, you need to use this if you want to update the contents of a
<tt>BasicBlock</tt>.<p>
<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
embedded into, or a null pointer if it is homeless.<p>
<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
Returns a pointer to the terminator instruction that appears at the end of the
<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
instruction in the block is not a terminator, then a null pointer is
returned.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
Superclasses: <a href="#User"><tt>User</tt></a>, <a
href="#Value"><tt>Value</tt></a><p>
Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
Because they are visible at global scope, they are also subject to linking with
other globals defined in different translation units. To control the linking
process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
<tt>static</tt> in C), it is not visible to code outside the current translation
unit, and does not participate in linking. If it has external linkage, it is
visible to external code, and does participate in linking. In addition to
linkage information, <tt>GlobalValue</tt>s keep track of which <a
href="#Module"><tt>Module</tt></a> they are currently part of.<p>
Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
always a pointer to its contents. This is explained in the LLVM Language
Reference Manual.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
the <tt>GlobalValue</tt> class</h4><ul>
<li><tt>bool hasInternalLinkage() const</tt><br>
<tt>bool hasExternalLinkage() const</tt><br>
<tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
These methods manipulate the linkage characteristics of the
<tt>GlobalValue</tt>.<p>
<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
currently embedded into.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Function">The <tt>Function</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
The <tt>Function</tt> class represents a single procedure in LLVM. It is
actually one of the more complex classes in the LLVM heirarchy because it must
keep track of a large amount of data. The <tt>Function</tt> class keeps track
of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
href="#Argument"><tt>Argument</tt></a>s, and a <a
href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
used part of <tt>Function</tt> objects. The list imposes an implicit ordering
of the blocks in the function, which indicate how the code will be layed out by
the backend. Additionally, the first <a
href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
block. There are no implicit exit nodes, and in fact there may be multiple exit
nodes from a single <tt>Function</tt>. If the <a
href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
the <tt>Function</tt> is actually a function declaration: the actual body of the
function hasn't been linked in yet.<p>
In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
<tt>Function</tt> class also keeps track of the list of formal <a
href="#Argument"><tt>Argument</tt></a>s that the function receives. This
container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
feature that is only used when you have to look up a value by name. Aside from
that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
make sure that there are not conflicts between the names of <a
href="#Instruction"><tt>Instruction</tt></a>s, <a
href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
the <tt>Function</tt> class</h4><ul>
<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &N = "")</tt><p>
Constructor used when you need to create new <tt>Function</tt>s to add the the
program. The constructor must specify the type of the function to create and
whether or not it should start out with internal or external linkage.<p>
<li><tt>bool isExternal()</tt><p>
Return whether or not the <tt>Function</tt> has a body defined. If the function
is "external", it does not have a body, and thus must be resolved by linking
with a function defined in a different translation unit.<p>
<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
<tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
These are forwarding methods that make it easy to access the contents of a
<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
list.<p>
<li><tt>Function::BasicBlockListType &getBasicBlockList()</tt><p>
Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
neccesary to use when you need to update the list or perform a complex action
that doesn't have a forwarding method.<p>
<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
<tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
<tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
<tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
These are forwarding methods that make it easy to access the contents of a
<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
<li><tt>Function::ArgumentListType &getArgumentList()</tt><p>
Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
neccesary to use when you need to update the list or perform a complex action
that doesn't have a forwarding method.<p>
<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
function. Because the entry block for the function is always the first block,
this returns the first block of the <tt>Function</tt>.<p>
<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
<tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
and returns the return type of the function, or the <a
href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
<li><tt>bool hasSymbolTable() const</tt><p>
Return true if the <tt>Function</tt> has a symbol table allocated to it and if
there is at least one entry in it.<p>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
<tt>Function</tt> or a null pointer if one has not been allocated (because there
are no named values in the function).<p>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
<tt>Function</tt> or allocate a new <a
href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
should only be used when adding elements to the <a
href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
not left laying around.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
Global variables are represented with the (suprise suprise)
<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
are always referenced by their address (global values must live in memory, so
their "name" refers to their address). Global variables may have an initial
value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
have an initializer, they may be marked as "constant" themselves (indicating
that their contents never change at runtime).<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
<tt>GlobalVariable</tt> class</h4><ul>
<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
&Name = "")</tt><p>
Create a new global variable of the specified type. If <tt>isConstant</tt> is
true then the global variable will be marked as unchanging for the program, and
if <tt>isInternal</tt> is true the resultant global variable will have internal
linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
<li><tt>bool isConstant() const</tt><p>
Returns true if this is a global variable is known not to be modified at
runtime.<p>
<li><tt>bool hasInitializer()</tt><p>
Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
this method if there is no initializer.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Module">The <tt>Module</tt> class</a>
</b></font></td></tr></table><ul>
<tt>#include "<a
href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
The <tt>Module</tt> class represents the top level structure present in LLVM
programs. An LLVM module is effectively either a translation unit of the
original program or a combination of several translation units merged by the
linker. The <tt>Module</tt> class keeps track of a list of <a
href="#Function"><tt>Function</tt></a>s, a list of <a
href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
helpful member functions that try to make common operations easy.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
<tt>Module</tt> class</h4><ul>
<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
<tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
These are forwarding methods that make it easy to access the contents of a
<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
list.<p>
<li><tt>Module::FunctionListType &getFunctionList()</tt><p>
Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
neccesary to use when you need to update the list or perform a complex action
that doesn't have a forwarding method.<p>
<!-- Global Variable -->
<hr size=0>
<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
<tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
<tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
<tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
These are forwarding methods that make it easy to access the contents of a
<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
list.<p>
<li><tt>Module::GlobalListType &getGlobalList()</tt><p>
Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
This is neccesary to use when you need to update the list or perform a complex
action that doesn't have a forwarding method.<p>
<!-- Symbol table stuff -->
<hr size=0>
<li><tt>bool hasSymbolTable() const</tt><p>
Return true if the <tt>Module</tt> has a symbol table allocated to it and if
there is at least one entry in it.<p>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
<tt>Module</tt> or a null pointer if one has not been allocated (because there
are no named values in the function).<p>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
<tt>Module</tt> or allocate a new <a
href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
should only be used when adding elements to the <a
href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
not left laying around.<p>
<!-- Convenience methods -->
<hr size=0>
<li><tt><a href="#Function">Function</a> *getFunction(const std::string &Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
Look up the specified function in the <tt>Module</tt> <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
<tt>null</tt>.<p>
<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
&Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
Look up the specified function in the <tt>Module</tt> <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
external declaration for the function and return it.<p>
<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
If there is at least one entry in the <a
href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
string.<p>
<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
*Ty)</tt><p>
Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
modified.<p>
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
</b></font></td></tr></table><ul>
Constant represents a base class for different types of constants. It is
subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
ConstantArray etc for representing the various types of Constants.<p>
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
\subsection{Important Subclasses of Constant}
\begin{itemize}
<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
\begin{itemize}
<li><tt>int64_t getValue () const</tt>: Returns the underlying value of this constant.
\end{itemize}
<li>ConstantUInt : This class represents an unsigned integer.
\begin{itemize}
<li><tt>uint64_t getValue () const</tt>: Returns the underlying value of this constant.
\end{itemize}
<li>ConstantFP : This class represents a floating point constant.
\begin{itemize}
<li><tt>double getValue () const</tt>: Returns the underlying value of this constant.
\end{itemize}
<li>ConstantBool : This represents a boolean constant.
\begin{itemize}
<li><tt>bool getValue () const</tt>: Returns the underlying value of this constant.
\end{itemize}
<li>ConstantArray : This represents a constant array.
\begin{itemize}
<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
\end{itemize}
<li>ConstantStruct : This represents a constant struct.
\begin{itemize}
<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
\end{itemize}
<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
\begin{itemize}
<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
\end{itemize}
\end{itemize}
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Type">The <tt>Type</tt> class and Derived Types</a>
</b></font></td></tr></table><ul>
Type as noted earlier is also a subclass of a Value class. Any primitive
type (like int, short etc) in LLVM is an instance of Type Class. All
other types are instances of subclasses of type like FunctionType,
ArrayType etc. DerivedType is the interface for all such dervied types
including FunctionType, ArrayType, PointerType, StructType. Types can have
names. They can be recursive (StructType). There exists exactly one instance
of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
<!-- _______________________________________________________________________ -->
</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
<li><tt>PrimitiveID getPrimitiveID () const</tt>: Returns the base type of the type.
<li><tt> bool isSigned () const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
<li><tt>bool isUnsigned () const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
<li><tt> bool isInteger () const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
<li><tt>bool isIntegral () const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
<li><tt>bool isFloatingPoint ()</tt>: Return true if this is one of the two floating point types.
<li><tt>bool isRecursive () const</tt>: Returns rue if the type graph contains a cycle.
<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
<li><tt>bool isPrimitiveType () const</tt>: Returns true if it is a primitive type.
<li><tt>bool isDerivedType () const</tt>: Returns true if it is a derived type.
<li><tt>const Type * getContainedType (unsigned i) const</tt>:
This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
<li><tt>unsigned getNumContainedTypes () const</tt>: Return the number of types in the derived type.
\subsection{Derived Types}
\begin{itemize}
<li>SequentialType : This is subclassed by ArrayType and PointerType
\begin{itemize}
<li><tt>const Type * getElementType () const</tt>: Returns the type of each of the elements in the sequential type.
\end{itemize}
<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
\begin{itemize}
<li><tt>unsigned getNumElements () const</tt>: Returns the number of elements in the array.
\end{itemize}
<li>PointerType : Subclass of SequentialType for pointer types.
<li>StructType : subclass of DerivedTypes for struct types
<li>FunctionType : subclass of DerivedTypes for function types.
\begin{itemize}
<li><tt>bool isVarArg () const</tt>: Returns true if its a vararg function
<li><tt> const Type * getReturnType () const</tt>: Returns the return type of the function.
<li><tt> const ParamTypes &getParamTypes () const</tt>: Returns a vector of parameter types.
<li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
<li><tt> const unsigned getNumParams () const</tt>: Returns the number of formal parameters.
\end{itemize}
\end{itemize}
<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td> </td><td width="100%">
<font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="Argument">The <tt>Argument</tt> class</a>
</b></font></td></tr></table><ul>
This subclass of Value defines the interface for incoming formal arguments to a
function. A Function maitanis a list of its formal arguments. An argument has a
pointer to the parent Function.
<!-- *********************************************************************** -->
</ul>
<!-- *********************************************************************** -->
<hr><font size-1>
<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
<!-- hhmts start -->
Last modified: Fri Sep 6 09:47:35 CDT 2002
<!-- hhmts end -->
</font></body></html>
|