aboutsummaryrefslogtreecommitdiffstats
path: root/docs/TableGen/LangRef.rst
blob: bd28a9031d74ecdcdd95c2514ad996238a5207c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
===========================
TableGen Language Reference
===========================

.. sectionauthor:: Sean Silva <silvas@purdue.edu>

.. contents::
   :local:

.. warning::
   This document is extremely rough. If you find something lacking, please
   fix it, file a documentation bug, or ask about it on llvmdev.

Introduction
============

This document is meant to be a normative spec about the TableGen language
in and of itself (i.e. how to understand a given construct in terms of how
it affects the final set of records represented by the TableGen file). If
you are unsure if this document is really what you are looking for, please
read :doc:`/TableGenFundamentals` first.

Notation
========

The lexical and syntax notation used here is intended to imitate
`Python's`_. In particular, for lexical definitions, the productions
operate at the character level and there is no implied whitespace between
elements. The syntax definitions operate at the token level, so there is
implied whitespace between tokens.

.. _`Python's`: http://docs.python.org/py3k/reference/introduction.html#notation

Lexical Analysis
================

TableGen supports BCPL (``// ...``) and nestable C-style (``/* ... */``)
comments.

The following is a listing of the basic punctuation tokens::

   - + [ ] { } ( ) < > : ; .  = ? #

Numeric literals take one of the following forms:

.. TableGen actually will lex some pretty strange sequences an interpret
   them as numbers. What is shown here is an attempt to approximate what it
   "should" accept.

.. productionlist::
   TokInteger: `DecimalInteger` | `HexInteger` | `BinInteger`
   DecimalInteger: ["+" | "-"] ("0"..."9")+
   HexInteger: "0x" ("0"..."9" | "a"..."f" | "A"..."F")+
   BinInteger: "0b" ("0" | "1")+

One aspect to note is that the :token:`DecimalInteger` token *includes* the
``+`` or ``-``, as opposed to having ``+`` and ``-`` be unary operators as
most languages do.

TableGen has identifier-like tokens:

.. productionlist::
   ualpha: "a"..."z" | "A"..."Z" | "_"
   TokIdentifier: ("0"..."9")* `ualpha` (`ualpha` | "0"..."9")*
   TokVarName: "$" `ualpha` (`ualpha` |  "0"..."9")*

Note that unlike most languages, TableGen allows :token:`TokIdentifier` to
begin with a number. In case of ambiguity, a token will be interpreted as a
numeric literal rather than an identifier.

TableGen also has two string-like literals:

.. productionlist::
   TokString: '"' <non-'"' characters and C-like escapes> '"'
   TokCodeFragment: "[{" <shortest text not containing "}]"> "}]"

.. note::
   The current implementation accepts the following C-like escapes::

      \\ \' \" \t \n

TableGen also has the following keywords::

   bit   bits      class   code         dag
   def   foreach   defm    field        in
   int   let       list    multiclass   string

TableGen also has "bang operators" which have a
wide variety of meanings:

.. productionlist::
   BangOperator: one of
               :!eq     !if      !head    !tail      !con
               :!add    !shl     !sra     !srl
               :!cast   !empty   !subst   !foreach   !strconcat

Syntax
======

TableGen has an ``include`` mechanism. It does not play a role in the
syntax per se, since it is lexically replaced with the contents of the
included file.

.. productionlist::
   IncludeDirective: "include" `TokString`

TableGen's top-level production consists of "objects".

.. productionlist::
   TableGenFile: `Object`*
   Object: `Class` | `Def` | `Defm` | `Let` | `MultiClass` | `Foreach`

``class``\es
------------

.. productionlist::
   Class: "class" `TokIdentifier` [`TemplateArgList`] `ObjectBody`

A ``class`` declaration creates a record which other records can inherit
from. A class can be parametrized by a list of "template arguments", whose
values can be used in the class body.

A given class can only be defined once. A ``class`` declaration is
considered to define the class if any of the following is true:

.. break ObjectBody into its consituents so that they are present here?

#. The :token:`TemplateArgList` is present.
#. The :token:`Body` in the :token:`ObjectBody` is present and is not empty.
#. The :token:`BaseClassList` in the :token:`ObjectBody` is present.

You can declare an empty class by giving and empty :token:`TemplateArgList`
and an empty :token:`ObjectBody`. This can serve as a restricted form of
forward declaration: note that records deriving from the forward-declared
class will inherit no fields from it since the record expansion is done
when the record is parsed.

.. productionlist::
   TemplateArgList: "<" `Declaration` ("," `Declaration`)* ">"

Declarations
------------

.. Omitting mention of arcane "field" prefix to discourage its use.

The declaration syntax is pretty much what you would expect as a C++
programmer.

.. productionlist::
   Declaration: `Type` `TokIdentifier` ["=" `Value`]

It assigns the value to the identifer.

Types
-----

.. productionlist::
   Type: "string" | "code" | "bit" | "int" | "dag"
       :| "bits" "<" `TokInteger` ">"
       :| "list" "<" `Type` ">"
       :| `ClassID`
   ClassID: `TokIdentifier`

Both ``string`` and ``code`` correspond to the string type; the difference
is purely to indicate programmer intention.

The :token:`ClassID` must identify a class that has been previously
declared or defined.

Values
------

.. productionlist::
   Value: `SimpleValue` `ValueSuffix`*
   ValueSuffix: "{" `RangeList` "}"
              :| "[" `RangeList` "]"
              :| "." `TokIdentifier`
   RangeList: `RangePiece` ("," `RangePiece`)*
   RangePiece: `TokInteger`
             :| `TokInteger` "-" `TokInteger`
             :| `TokInteger` `TokInteger`

The peculiar last form of :token:`RangePiece` is due to the fact that the
"``-``" is included in the :token:`TokInteger`, hence ``1-5`` gets lexed as
two consecutive :token:`TokInteger`'s, with values ``1`` and ``-5``,
instead of "1", "-", and "5".
The :token:`RangeList` can be thought of as specifying "list slice" in some
contexts.


:token:`SimpleValue` has a number of forms:


.. productionlist::
   SimpleValue: `TokIdentifier`

The value will be the variable referenced by the identifier. It can be one
of:

.. The code for this is exceptionally abstruse. These examples are a
   best-effort attempt.

* name of a ``def``, such as the use of ``Bar`` in::

     def Bar : SomeClass {
       int X = 5;
     }

     def Foo {
       SomeClass Baz = Bar;
     }

* value local to a ``def``, such as the use of ``Bar`` in::

     def Foo {
       int Bar = 5;
       int Baz = Bar;
     }

* a template arg of a ``class``, such as the use of ``Bar`` in::

     class Foo<int Bar> {
       int Baz = Bar;
     }

* value local to a ``multiclass``, such as the use of ``Bar`` in::

     multiclass Foo {
       int Bar = 5;
       int Baz = Bar;
     }

* a template arg to a ``multiclass``, such as the use of ``Bar`` in::

     multiclass Foo<int Bar> {
       int Baz = Bar;
     }

.. productionlist::
   SimpleValue: `TokInteger`

This represents the numeric value of the integer.

.. productionlist::
   SimpleValue: `TokString`+

Multiple adjacent string literals are concatenated like in C/C++. The value
is the concatenation of the strings.

.. productionlist::
   SimpleValue: `TokCodeFragment`

The value is the string value of the code fragment.

.. productionlist::
   SimpleValue: "?"

``?`` represents an "unset" initializer.

.. productionlist::
   SimpleValue: "{" `ValueList` "}"
   ValueList: [`ValueListNE`]
   ValueListNE: `Value` ("," `Value`)*

This represents a sequence of bits, as would be used to initialize a
``bits<n>`` field (where ``n`` is the number of bits).

.. productionlist::
   SimpleValue: `ClassID` "<" `ValueListNE` ">"

This generates a new anonymous record definition (as would be created by an
unnamed ``def`` inheriting from the given class with the given template
arguments) and the value is the value of that record definition.

.. productionlist::
   SimpleValue: "[" `ValueList` "]" ["<" `Type` ">"]

A list initializer. The optional :token:`Type` can be used to indicate a
specific element type, otherwise the element type will be deduced from the
given values.

.. The initial `DagArg` of the dag must start with an identifier or
   !cast, but this is more of an implementation detail and so for now just
   leave it out.

.. productionlist::
   SimpleValue: "(" `DagArg` `DagArgList` ")"
   DagArgList: `DagArg` ("," `DagArg`)*
   DagArg: `Value` [":" `TokVarName`] | `TokVarName`

The initial :token:`DagArg` is called the "operator" of the dag.

.. productionlist::
   SimpleValue: `BangOperator` ["<" `Type` ">"] "(" `ValueListNE` ")"

Bodies
------

.. productionlist::
   ObjectBody: `BaseClassList` `Body`
   BaseClassList: [":" `BaseClassListNE`]
   BaseClassListNE: `SubClassRef` ("," `SubClassRef`)*
   SubClassRef: (`ClassID` | `MultiClassID`) ["<" `ValueList` ">"]
   DefmID: `TokIdentifier`

The version with the :token:`MultiClassID` is only valid in the
:token:`BaseClassList` of a ``defm``.
The :token:`MultiClassID` should be the name of a ``multiclass``.

.. put this somewhere else

It is after parsing the base class list that the "let stack" is applied.

.. productionlist::
   Body: ";" | "{" BodyList "}"
   BodyList: BodyItem*
   BodyItem: `Declaration` ";"
           :| "let" `TokIdentifier` [`RangeList`] "=" `Value` ";"

The ``let`` form allows overriding the value of an inherited field.

``def``
-------

.. TODO::
   There can be pastes in the names here, like ``#NAME#``. Look into that
   and document it (it boils down to ParseIDValue with IDParseMode ==
   ParseNameMode). ParseObjectName calls into the general ParseValue, with
   the only different from "arbitrary expression parsing" being IDParseMode
   == Mode.

.. productionlist::
   Def: "def" `TokIdentifier` `ObjectBody`

Defines a record whose name is given by the :token:`TokIdentifier`. The
fields of the record are inherited from the base classes and defined in the
body.

Special handling occurs if this ``def`` appears inside a ``multiclass`` or
a ``foreach``.

``defm``
--------

.. productionlist::
   Defm: "defm" `TokIdentifier` ":" `BaseClassListNE` ";"

Note that in the :token:`BaseClassList`, all of the ``multiclass``'s must
precede any ``class``'s that appear.

``foreach``
-----------

.. productionlist::
   Foreach: "foreach" `Declaration` "in" "{" `Object`* "}"
          :| "foreach" `Declaration` "in" `Object`

The value assigned to the variable in the declaration is iterated over and
the object or object list is reevaluated with the variable set at each
iterated value.

Top-Level ``let``
-----------------

.. productionlist::
   Let:  "let" `LetList` "in" "{" `Object`* "}"
      :| "let" `LetList` "in" `Object`
   LetList: `LetItem` ("," `LetItem`)*
   LetItem: `TokIdentifier` [`RangeList`] "=" `Value`

This is effectively equivalent to ``let`` inside the body of a record
except that it applies to multiple records at a time. The bindings are
applied at the end of parsing the base classes of a record.

``multiclass``
--------------

.. productionlist::
   MultiClass: "multiclass" `TokIdentifier` [`TemplateArgList`]
             : [":" `BaseMultiClassList`] "{" `MultiClassObject`+ "}"
   BaseMultiClassList: `MultiClassID` ("," `MultiClassID`)*
   MultiClassID: `TokIdentifier`
   MultiClassObject: `Def` | `Defm` | `Let` | `Foreach`