aboutsummaryrefslogtreecommitdiffstats
path: root/docs/WritingAnLLVMBackend.rst
blob: fdadbb04e94f73bf4e7c6e415101dbc8a7a87e5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
=======================
Writing an LLVM Backend
=======================

.. toctree::
   :hidden:

   HowToUseInstrMappings

.. contents::
   :local:

Introduction
============

This document describes techniques for writing compiler backends that convert
the LLVM Intermediate Representation (IR) to code for a specified machine or
other languages.  Code intended for a specific machine can take the form of
either assembly code or binary code (usable for a JIT compiler).

The backend of LLVM features a target-independent code generator that may
create output for several types of target CPUs --- including X86, PowerPC,
ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
of the Cell processor or GPUs to support the execution of compute kernels.

The document focuses on existing examples found in subdirectories of
``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
focuses on the example of creating a static compiler (one that emits text
assembly) for a SPARC target, because SPARC has fairly standard
characteristics, such as a RISC instruction set and straightforward calling
conventions.

Audience
--------

The audience for this document is anyone who needs to write an LLVM backend to
generate code for a specific hardware or software target.

Prerequisite Reading
--------------------

These essential documents must be read before reading this document:

* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
  the LLVM assembly language.

* :doc:`CodeGenerator` --- a guide to the components (classes and code
  generation algorithms) for translating the LLVM internal representation into
  machine code for a specified target.  Pay particular attention to the
  descriptions of code generation stages: Instruction Selection, Scheduling and
  Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
  Insertion, Late Machine Code Optimizations, and Code Emission.

* :doc:`TableGen/index` --- a document that describes the TableGen
  (``tblgen``) application that manages domain-specific information to support
  LLVM code generation.  TableGen processes input from a target description
  file (``.td`` suffix) and generates C++ code that can be used for code
  generation.

* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
  are several ``SelectionDAG`` processing steps.

To follow the SPARC examples in this document, have a copy of `The SPARC
Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
reference.  For details about the ARM instruction set, refer to the `ARM
Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
the GNU Assembler format (``GAS``), see `Using As
<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
assembly printer.  "Using As" contains a list of target machine dependent
features.

Basic Steps
-----------

To write a compiler backend for LLVM that converts the LLVM IR to code for a
specified target (machine or other language), follow these steps:

* Create a subclass of the ``TargetMachine`` class that describes
  characteristics of your target machine.  Copy existing examples of specific
  ``TargetMachine`` class and header files; for example, start with
  ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
  names for your target.  Similarly, change code that references "``Sparc``" to
  reference your target.

* Describe the register set of the target.  Use TableGen to generate code for
  register definition, register aliases, and register classes from a
  target-specific ``RegisterInfo.td`` input file.  You should also write
  additional code for a subclass of the ``TargetRegisterInfo`` class that
  represents the class register file data used for register allocation and also
  describes the interactions between registers.

* Describe the instruction set of the target.  Use TableGen to generate code
  for target-specific instructions from target-specific versions of
  ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
  additional code for a subclass of the ``TargetInstrInfo`` class to represent
  machine instructions supported by the target machine.

* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
  Graph (DAG) representation of instructions to native target-specific
  instructions.  Use TableGen to generate code that matches patterns and
  selects instructions based on additional information in a target-specific
  version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
  where ``XXX`` identifies the specific target, to perform pattern matching and
  DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
  to replace or remove operations and data types that are not supported
  natively in a SelectionDAG.

* Write code for an assembly printer that converts LLVM IR to a GAS format for
  your target machine.  You should add assembly strings to the instructions
  defined in your target-specific version of ``TargetInstrInfo.td``.  You
  should also write code for a subclass of ``AsmPrinter`` that performs the
  LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.

* Optionally, add support for subtargets (i.e., variants with different
  capabilities).  You should also write code for a subclass of the
  ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
  ``-mattr=`` command-line options.

* Optionally, add JIT support and create a machine code emitter (subclass of
  ``TargetJITInfo``) that is used to emit binary code directly into memory.

In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
implement them later.  Initially, you may not know which private members that
the class will need and which components will need to be subclassed.

Preliminaries
-------------

To actually create your compiler backend, you need to create and modify a few
files.  The absolute minimum is discussed here.  But to actually use the LLVM
target-independent code generator, you must perform the steps described in the
:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.

First, you should create a subdirectory under ``lib/Target`` to hold all the
files related to your target.  If your target is called "Dummy", create the
directory ``lib/Target/Dummy``.

In this new directory, create a ``Makefile``.  It is easiest to copy a
``Makefile`` of another target and modify it.  It should at least contain the
``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
example, see the MIPS target).  Alternatively, you can split the library into
``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
PowerPC target).

Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
any other naming scheme will confuse ``llvm-config`` and produce a lot of
(seemingly unrelated) linker errors when linking ``llc``.

To make your target actually do something, you need to implement a subclass of
``TargetMachine``.  This implementation should typically be in the file
``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
directory will be built and should work.  To use LLVM's target independent code
generator, you should do what all current machine backends do: create a
subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
subclass of ``TargetMachine``.)

To get LLVM to actually build and link your target, you need to add it to the
``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
know about your target when parsing the ``--enable-targets`` option.  Search
the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
there (some creativity required), and then reconfigure.  Alternatively, you can
change ``autoconf/configure.ac`` and regenerate configure by running
``./autoconf/AutoRegen.sh``.

Target Machine
==============

``LLVMTargetMachine`` is designed as a base class for targets implemented with
the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
should be specialized by a concrete target class that implements the various
virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
numerous command-line options.

To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
by copying an existing ``TargetMachine`` class and header.  You should name the
files that you create to reflect your specific target.  For instance, for the
SPARC target, name the files ``SparcTargetMachine.h`` and
``SparcTargetMachine.cpp``.

For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
have access methods to obtain objects that represent target components.  These
methods are named ``get*Info``, and are intended to obtain the instruction set
(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
(``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
implement the ``getDataLayout`` method to access an object with target-specific
data characteristics, such as data type size and alignment requirements.

For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
simply return a class member.

.. code-block:: c++

  namespace llvm {

  class Module;

  class SparcTargetMachine : public LLVMTargetMachine {
    const DataLayout DataLayout;       // Calculates type size & alignment
    SparcSubtarget Subtarget;
    SparcInstrInfo InstrInfo;
    TargetFrameInfo FrameInfo;

  protected:
    virtual const TargetAsmInfo *createTargetAsmInfo() const;

  public:
    SparcTargetMachine(const Module &M, const std::string &FS);

    virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
    virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
    virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
    virtual const TargetRegisterInfo *getRegisterInfo() const {
      return &InstrInfo.getRegisterInfo();
    }
    virtual const DataLayout *getDataLayout() const { return &DataLayout; }
    static unsigned getModuleMatchQuality(const Module &M);

    // Pass Pipeline Configuration
    virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
    virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
  };

  } // end namespace llvm

* ``getInstrInfo()``
* ``getRegisterInfo()``
* ``getFrameInfo()``
* ``getDataLayout()``
* ``getSubtargetImpl()``

For some targets, you also need to support the following methods:

* ``getTargetLowering()``
* ``getJITInfo()``

Some architectures, such as GPUs, do not support jumping to an arbitrary
program location and implement branching using masked execution and loop using
special instructions around the loop body. In order to avoid CFG modifications
that introduce irreducible control flow not handled by such hardware, a target
must call `setRequiresStructuredCFG(true)` when being initialized.

In addition, the ``XXXTargetMachine`` constructor should specify a
``TargetDescription`` string that determines the data layout for the target
machine, including characteristics such as pointer size, alignment, and
endianness.  For example, the constructor for ``SparcTargetMachine`` contains
the following:

.. code-block:: c++

  SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
    : DataLayout("E-p:32:32-f128:128:128"),
      Subtarget(M, FS), InstrInfo(Subtarget),
      FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
  }

Hyphens separate portions of the ``TargetDescription`` string.

* An upper-case "``E``" in the string indicates a big-endian target data model.
  A lower-case "``e``" indicates little-endian.

* "``p:``" is followed by pointer information: size, ABI alignment, and
  preferred alignment.  If only two figures follow "``p:``", then the first
  value is pointer size, and the second value is both ABI and preferred
  alignment.

* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
  "``a``" (corresponding to integer, floating point, vector, or aggregate).
  "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
  alignment. "``f``" is followed by three values: the first indicates the size
  of a long double, then ABI alignment, and then ABI preferred alignment.

Target Registration
===================

You must also register your target with the ``TargetRegistry``, which is what
other LLVM tools use to be able to lookup and use your target at runtime.  The
``TargetRegistry`` can be used directly, but for most targets there are helper
templates which should take care of the work for you.

All targets should declare a global ``Target`` object which is used to
represent the target during registration.  Then, in the target's ``TargetInfo``
library, the target should define that object and use the ``RegisterTarget``
template to register the target.  For example, the Sparc registration code
looks like this:

.. code-block:: c++

  Target llvm::TheSparcTarget;

  extern "C" void LLVMInitializeSparcTargetInfo() {
    RegisterTarget<Triple::sparc, /*HasJIT=*/false>
      X(TheSparcTarget, "sparc", "Sparc");
  }

This allows the ``TargetRegistry`` to look up the target by name or by target
triple.  In addition, most targets will also register additional features which
are available in separate libraries.  These registration steps are separate,
because some clients may wish to only link in some parts of the target --- the
JIT code generator does not require the use of the assembler printer, for
example.  Here is an example of registering the Sparc assembly printer:

.. code-block:: c++

  extern "C" void LLVMInitializeSparcAsmPrinter() {
    RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
  }

For more information, see "`llvm/Target/TargetRegistry.h
</doxygen/TargetRegistry_8h-source.html>`_".

Register Set and Register Classes
=================================

You should describe a concrete target-specific class that represents the
register file of a target machine.  This class is called ``XXXRegisterInfo``
(where ``XXX`` identifies the target) and represents the class register file
data that is used for register allocation.  It also describes the interactions
between registers.

You also need to define register classes to categorize related registers.  A
register class should be added for groups of registers that are all treated the
same way for some instruction.  Typical examples are register classes for
integer, floating-point, or vector registers.  A register allocator allows an
instruction to use any register in a specified register class to perform the
instruction in a similar manner.  Register classes allocate virtual registers
to instructions from these sets, and register classes let the
target-independent register allocator automatically choose the actual
registers.

Much of the code for registers, including register definition, register
aliases, and register classes, is generated by TableGen from
``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
implementation of ``XXXRegisterInfo`` requires hand-coding.

Defining a Register
-------------------

The ``XXXRegisterInfo.td`` file typically starts with register definitions for
a target machine.  The ``Register`` class (specified in ``Target.td``) is used
to define an object for each register.  The specified string ``n`` becomes the
``Name`` of the register.  The basic ``Register`` object does not have any
subregisters and does not specify any aliases.

.. code-block:: llvm

  class Register<string n> {
    string Namespace = "";
    string AsmName = n;
    string Name = n;
    int SpillSize = 0;
    int SpillAlignment = 0;
    list<Register> Aliases = [];
    list<Register> SubRegs = [];
    list<int> DwarfNumbers = [];
  }

For example, in the ``X86RegisterInfo.td`` file, there are register definitions
that utilize the ``Register`` class, such as:

.. code-block:: llvm

  def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;

This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
representing 3 different modes: the first element is for X86-64, the second for
exception handling (EH) on X86-32, and the third is generic. -1 is a special
Dwarf number that indicates the gcc number is undefined, and -2 indicates the
register number is invalid for this mode.

From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
generates this code in the ``X86GenRegisterInfo.inc`` file:

.. code-block:: c++

  static const unsigned GR8[] = { X86::AL, ... };

  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };

  const TargetRegisterDesc RegisterDescriptors[] = {
    ...
  { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...

From the register info file, TableGen generates a ``TargetRegisterDesc`` object
for each register.  ``TargetRegisterDesc`` is defined in
``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:

.. code-block:: c++

  struct TargetRegisterDesc {
    const char     *AsmName;      // Assembly language name for the register
    const char     *Name;         // Printable name for the reg (for debugging)
    const unsigned *AliasSet;     // Register Alias Set
    const unsigned *SubRegs;      // Sub-register set
    const unsigned *ImmSubRegs;   // Immediate sub-register set
    const unsigned *SuperRegs;    // Super-register set
  };

TableGen uses the entire target description file (``.td``) to determine text
names for the register (in the ``AsmName`` and ``Name`` fields of
``TargetRegisterDesc``) and the relationships of other registers to the defined
register (in the other ``TargetRegisterDesc`` fields).  In this example, other
definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
aliases for one another, so TableGen generates a null-terminated array
(``AL_AliasSet``) for this register alias set.

The ``Register`` class is commonly used as a base class for more complex
classes.  In ``Target.td``, the ``Register`` class is the base for the
``RegisterWithSubRegs`` class that is used to define registers that need to
specify subregisters in the ``SubRegs`` list, as shown here:

.. code-block:: llvm

  class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    let SubRegs = subregs;
  }

In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
feature common to these subclasses.  Note the use of "``let``" expressions to
override values that are initially defined in a superclass (such as ``SubRegs``
field in the ``Rd`` class).

.. code-block:: llvm

  class SparcReg<string n> : Register<n> {
    field bits<5> Num;
    let Namespace = "SP";
  }
  // Ri - 32-bit integer registers
  class Ri<bits<5> num, string n> :
  SparcReg<n> {
    let Num = num;
  }
  // Rf - 32-bit floating-point registers
  class Rf<bits<5> num, string n> :
  SparcReg<n> {
    let Num = num;
  }
  // Rd - Slots in the FP register file for 64-bit floating-point values.
  class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
    let Num = num;
    let SubRegs = subregs;
  }

In the ``SparcRegisterInfo.td`` file, there are register definitions that
utilize these subclasses of ``Register``, such as:

.. code-block:: llvm

  def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
  def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
  ...
  def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
  def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
  ...
  def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
  def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;

The last two registers shown above (``D0`` and ``D1``) are double-precision
floating-point registers that are aliases for pairs of single-precision
floating-point sub-registers.  In addition to aliases, the sub-register and
super-register relationships of the defined register are in fields of a
register's ``TargetRegisterDesc``.

Defining a Register Class
-------------------------

The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
object that represents a group of related registers and also defines the
default allocation order of the registers.  A target description file
``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
using the following class:

.. code-block:: llvm

  class RegisterClass<string namespace,
  list<ValueType> regTypes, int alignment, dag regList> {
    string Namespace = namespace;
    list<ValueType> RegTypes = regTypes;
    int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
    int Alignment = alignment;

    // CopyCost is the cost of copying a value between two registers
    // default value 1 means a single instruction
    // A negative value means copying is extremely expensive or impossible
    int CopyCost = 1;
    dag MemberList = regList;

    // for register classes that are subregisters of this class
    list<RegisterClass> SubRegClassList = [];

    code MethodProtos = [{}];  // to insert arbitrary code
    code MethodBodies = [{}];
  }

To define a ``RegisterClass``, use the following 4 arguments:

* The first argument of the definition is the name of the namespace.

* The second argument is a list of ``ValueType`` register type values that are
  defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
  integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
  floating-point types (``f32``, ``f64``), and vector types (for example,
  ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
  must have the same ``ValueType``, but some registers may store vector data in
  different configurations.  For example a register that can process a 128-bit
  vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
  32-bit integers, and so on.

* The third argument of the ``RegisterClass`` definition specifies the
  alignment required of the registers when they are stored or loaded to
  memory.

* The final argument, ``regList``, specifies which registers are in this class.
  If an alternative allocation order method is not specified, then ``regList``
  also defines the order of allocation used by the register allocator.  Besides
  simply listing registers with ``(add R0, R1, ...)``, more advanced set
  operators are available.  See ``include/llvm/Target/Target.td`` for more
  information.

In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
first argument defines the namespace with the string "``SP``".  ``FPRegs``
defines a group of 32 single-precision floating-point registers (``F0`` to
``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
(``D0-D15``).

.. code-block:: llvm

  // F0, F1, F2, ..., F31
  def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;

  def DFPRegs : RegisterClass<"SP", [f64], 64,
                              (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
                                   D9, D10, D11, D12, D13, D14, D15)>;

  def IntRegs : RegisterClass<"SP", [i32], 32,
      (add L0, L1, L2, L3, L4, L5, L6, L7,
           I0, I1, I2, I3, I4, I5,
           O0, O1, O2, O3, O4, O5, O7,
           G1,
           // Non-allocatable regs:
           G2, G3, G4,
           O6,        // stack ptr
           I6,        // frame ptr
           I7,        // return address
           G0,        // constant zero
           G5, G6, G7 // reserved for kernel
      )>;

Using ``SparcRegisterInfo.td`` with TableGen generates several output files
that are intended for inclusion in other source code that you write.
``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
be included in the header file for the implementation of the SPARC register
implementation that you write (``SparcRegisterInfo.h``).  In
``SparcGenRegisterInfo.h.inc`` a new structure is defined called
``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
specifies types, based upon the defined register classes: ``DFPRegsClass``,
``FPRegsClass``, and ``IntRegsClass``.

``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
implementation.  The code below shows only the generated integer registers and
associated register classes.  The order of registers in ``IntRegs`` reflects
the order in the definition of ``IntRegs`` in the target description file.

.. code-block:: c++

  // IntRegs Register Class...
  static const unsigned IntRegs[] = {
    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
    SP::G6, SP::G7,
  };

  // IntRegsVTs Register Class Value Types...
  static const MVT::ValueType IntRegsVTs[] = {
    MVT::i32, MVT::Other
  };

  namespace SP {   // Register class instances
    DFPRegsClass    DFPRegsRegClass;
    FPRegsClass     FPRegsRegClass;
    IntRegsClass    IntRegsRegClass;
  ...
    // IntRegs Sub-register Classess...
    static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
      NULL
    };
  ...
    // IntRegs Super-register Classess...
    static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
      NULL
    };
  ...
    // IntRegs Register Class sub-classes...
    static const TargetRegisterClass* const IntRegsSubclasses [] = {
      NULL
    };
  ...
    // IntRegs Register Class super-classes...
    static const TargetRegisterClass* const IntRegsSuperclasses [] = {
      NULL
    };

    IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
      IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
      IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
  }

The register allocators will avoid using reserved registers, and callee saved
registers are not used until all the volatile registers have been used.  That
is usually good enough, but in some cases it may be necessary to provide custom
allocation orders.

Implement a subclass of ``TargetRegisterInfo``
----------------------------------------------

The final step is to hand code portions of ``XXXRegisterInfo``, which
implements the interface described in ``TargetRegisterInfo.h`` (see
:ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
``false``, unless overridden.  Here is a list of functions that are overridden
for the SPARC implementation in ``SparcRegisterInfo.cpp``:

* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
  order of the desired callee-save stack frame offset.

* ``getReservedRegs`` --- Returns a bitset indexed by physical register
  numbers, indicating if a particular register is unavailable.

* ``hasFP`` --- Return a Boolean indicating if a function should have a
  dedicated frame pointer register.

* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
  instructions are used, this can be called to eliminate them.

* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
  instructions that may use them.

* ``emitPrologue`` --- Insert prologue code into the function.

* ``emitEpilogue`` --- Insert epilogue code into the function.

.. _instruction-set:

Instruction Set
===============

During the early stages of code generation, the LLVM IR code is converted to a
``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
containing target instructions.  An ``SDNode`` has an opcode, operands, type
requirements, and operation properties.  For example, is an operation
commutative, does an operation load from memory.  The various operation node
types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
(values of the ``NodeType`` enum in the ``ISD`` namespace).

TableGen uses the following target description (``.td``) input files to
generate much of the code for instruction definition:

* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
  other fundamental classes are defined.

* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
  generators, contains ``SDTC*`` classes (selection DAG type constraint),
  definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
  ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
  ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.

* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
  instructions.

* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
  condition codes, and instructions of an instruction set.  For architecture
  modifications, a different file name may be used.  For example, for Pentium
  with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
  MMX, this file is ``X86InstrMMX.td``.

There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
its contents are only directly important for subtargets.

You should describe a concrete target-specific class ``XXXInstrInfo`` that
represents machine instructions supported by a target machine.
``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
which describes one instruction.  An instruction descriptor defines:

* Opcode mnemonic
* Number of operands
* List of implicit register definitions and uses
* Target-independent properties (such as memory access, is commutable)
* Target-specific flags

The Instruction class (defined in ``Target.td``) is mostly used as a base for
more complex instruction classes.

.. code-block:: llvm

  class Instruction {
    string Namespace = "";
    dag OutOperandList;    // A dag containing the MI def operand list.
    dag InOperandList;     // A dag containing the MI use operand list.
    string AsmString = ""; // The .s format to print the instruction with.
    list<dag> Pattern;     // Set to the DAG pattern for this instruction.
    list<Register> Uses = [];
    list<Register> Defs = [];
    list<Predicate> Predicates = [];  // predicates turned into isel match code
    ... remainder not shown for space ...
  }

A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
instruction objects should represent instructions from the architecture manual
of the target machine (such as the SPARC Architecture Manual for the SPARC
target).

A single instruction from the architecture manual is often modeled as multiple
target instructions, depending upon its operands.  For example, a manual might
describe an add instruction that takes a register or an immediate operand.  An
LLVM target could model this with two instructions named ``ADDri`` and
``ADDrr``.

You should define a class for each instruction category and define each opcode
as a subclass of the category with appropriate parameters such as the fixed
binary encoding of opcodes and extended opcodes.  You should map the register
bits to the bits of the instruction in which they are encoded (for the JIT).
Also you should specify how the instruction should be printed when the
automatic assembly printer is used.

As is described in the SPARC Architecture Manual, Version 8, there are three
major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
bits of a register) instructions.  Format 3 is for other instructions.

Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
``InstSP`` is a base class for other instruction classes.  Additional base
classes are specified for more precise formats: for example in
``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
branches.  There are three other base classes: ``F3_1`` for register/register
operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
``Pseudo`` for synthetic SPARC instructions.

``SparcInstrInfo.td`` largely consists of operand and instruction definitions
for the SPARC target.  In ``SparcInstrInfo.td``, the following target
description file entry, ``LDrr``, defines the Load Integer instruction for a
Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
category of operation.  The second parameter (``000000``\ :sub:`2`) is the
specific operation value for ``LD``/Load Word.  The third parameter is the
output destination, which is a register operand and defined in the ``Register``
target description file (``IntRegs``).

.. code-block:: llvm

  def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
                   "ld [$addr], $dst",
                   [(set i32:$dst, (load ADDRrr:$addr))]>;

The fourth parameter is the input source, which uses the address operand
``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:

.. code-block:: llvm

  def MEMrr : Operand<i32> {
    let PrintMethod = "printMemOperand";
    let MIOperandInfo = (ops IntRegs, IntRegs);
  }

The fifth parameter is a string that is used by the assembly printer and can be
left as an empty string until the assembly printer interface is implemented.
The sixth and final parameter is the pattern used to match the instruction
during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
This parameter is detailed in the next section, :ref:`instruction-selector`.

Instruction class definitions are not overloaded for different operand types,
so separate versions of instructions are needed for register, memory, or
immediate value operands.  For example, to perform a Load Integer instruction
for a Word from an immediate operand to a register, the following instruction
class is defined:

.. code-block:: llvm

  def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
                   "ld [$addr], $dst",
                   [(set i32:$dst, (load ADDRri:$addr))]>;

Writing these definitions for so many similar instructions can involve a lot of
cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
creation of templates to define several instruction classes at once (using the
``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
pattern ``F3_12`` is defined to create 2 instruction classes each time
``F3_12`` is invoked:

.. code-block:: llvm

  multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    def rr  : F3_1 <2, Op3Val,
                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
                   !strconcat(OpcStr, " $b, $c, $dst"),
                   [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
    def ri  : F3_2 <2, Op3Val,
                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
                   !strconcat(OpcStr, " $b, $c, $dst"),
                   [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
  }

So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
instructions, as seen below, it creates four instruction objects: ``XORrr``,
``XORri``, ``ADDrr``, and ``ADDri``.

.. code-block:: llvm

  defm XOR   : F3_12<"xor", 0b000011, xor>;
  defm ADD   : F3_12<"add", 0b000000, add>;

``SparcInstrInfo.td`` also includes definitions for condition codes that are
referenced by branch instructions.  The following definitions in
``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
For example, the 10\ :sup:`th` bit represents the "greater than" condition for
integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
floats.

.. code-block:: llvm

  def ICC_NE  : ICC_VAL< 9>;  // Not Equal
  def ICC_E   : ICC_VAL< 1>;  // Equal
  def ICC_G   : ICC_VAL<10>;  // Greater
  ...
  def FCC_U   : FCC_VAL<23>;  // Unordered
  def FCC_G   : FCC_VAL<22>;  // Greater
  def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
  ...

(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
condition codes.  Care must be taken to ensure the values in ``Sparc.h``
correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
``SPCC::FCC_U = 23`` and so on.)

Instruction Operand Mapping
---------------------------

The code generator backend maps instruction operands to fields in the
instruction.  Operands are assigned to unbound fields in the instruction in the
order they are defined.  Fields are bound when they are assigned a value.  For
example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
format instruction having three operands.

.. code-block:: llvm

  def XNORrr  : F3_1<2, 0b000111,
                     (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
                     "xnor $b, $c, $dst",
                     [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;

The instruction templates in ``SparcInstrFormats.td`` show the base class for
``F3_1`` is ``InstSP``.

.. code-block:: llvm

  class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
    field bits<32> Inst;
    let Namespace = "SP";
    bits<2> op;
    let Inst{31-30} = op;
    dag OutOperandList = outs;
    dag InOperandList = ins;
    let AsmString   = asmstr;
    let Pattern = pattern;
  }

``InstSP`` leaves the ``op`` field unbound.

.. code-block:: llvm

  class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
      : InstSP<outs, ins, asmstr, pattern> {
    bits<5> rd;
    bits<6> op3;
    bits<5> rs1;
    let op{1} = 1;   // Op = 2 or 3
    let Inst{29-25} = rd;
    let Inst{24-19} = op3;
    let Inst{18-14} = rs1;
  }

``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
``rs1`` fields.

.. code-block:: llvm

  class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
             string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
    bits<8> asi = 0; // asi not currently used
    bits<5> rs2;
    let op         = opVal;
    let op3        = op3val;
    let Inst{13}   = 0;     // i field = 0
    let Inst{12-5} = asi;   // address space identifier
    let Inst{4-0}  = rs2;
  }

``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.

Instruction Operand Name Mapping
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

TableGen will also generate a function called getNamedOperandIdx() which
can be used to look up an operand's index in a MachineInstr based on its
TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
TableGen definition will add all of its operands to an enumeration in the
llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
table, which can be queried using getNamedOperandIdx()

.. code-block:: llvm

  int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
  int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
  int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
  int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1

  ...

The entries in the OpName enum are taken verbatim from the TableGen definitions,
so operands with lowercase names will have lower case entries in the enum.

To include the getNamedOperandIdx() function in your backend, you will need
to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
For example:

XXXInstrInfo.cpp:

.. code-block:: c++ 

  #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
  #include "XXXGenInstrInfo.inc"

XXXInstrInfo.h:

.. code-block:: c++

  #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
  #include "XXXGenInstrInfo.inc"

  namespace XXX {
    int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
  } // End namespace XXX

Instruction Operand Types
^^^^^^^^^^^^^^^^^^^^^^^^^

TableGen will also generate an enumeration consisting of all named Operand
types defined in the backend, in the llvm::XXX::OpTypes namespace.
Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
are defined for all targets in ``include/llvm/Target/Target.td``, and are
available in each Target's OpTypes enum.  Also, only named Operand types appear
in the enumeration: anonymous types are ignored.
For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
instances of the TableGen ``Operand`` class, which represent branch target
operands:

.. code-block:: llvm

  def brtarget : Operand<OtherVT>;
  def brtarget8 : Operand<OtherVT>;

This results in:

.. code-block:: c++

  namespace X86 {
  namespace OpTypes {
  enum OperandType {
    ...
    brtarget,
    brtarget8,
    ...
    i32imm,
    i64imm,
    ...
    OPERAND_TYPE_LIST_END
  } // End namespace OpTypes
  } // End namespace X86

In typical TableGen fashion, to use the enum, you will need to define a
preprocessor macro:

.. code-block:: c++

  #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
  #include "XXXGenInstrInfo.inc"


Instruction Scheduling
----------------------

Instruction itineraries can be queried using MCDesc::getSchedClass(). The
value can be named by an enumemation in llvm::XXX::Sched namespace generated
by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
the same as provided in XXXSchedule.td plus a default NoItinerary class.

Instruction Relation Mapping
----------------------------

This TableGen feature is used to relate instructions with each other.  It is
particularly useful when you have multiple instruction formats and need to
switch between them after instruction selection.  This entire feature is driven
by relation models which can be defined in ``XXXInstrInfo.td`` files
according to the target-specific instruction set.  Relation models are defined
using ``InstrMapping`` class as a base.  TableGen parses all the models
and generates instruction relation maps using the specified information.
Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
along with the functions to query them.  For the detailed information on how to
use this feature, please refer to :doc:`HowToUseInstrMappings`.

Implement a subclass of ``TargetInstrInfo``
-------------------------------------------

The final step is to hand code portions of ``XXXInstrInfo``, which implements
the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
These functions return ``0`` or a Boolean or they assert, unless overridden.
Here's a list of functions that are overridden for the SPARC implementation in
``SparcInstrInfo.cpp``:

* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
  load from a stack slot, return the register number of the destination and the
  ``FrameIndex`` of the stack slot.

* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
  store to a stack slot, return the register number of the destination and the
  ``FrameIndex`` of the stack slot.

* ``copyPhysReg`` --- Copy values between a pair of physical registers.

* ``storeRegToStackSlot`` --- Store a register value to a stack slot.

* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.

* ``storeRegToAddr`` --- Store a register value to memory.

* ``loadRegFromAddr`` --- Load a register value from memory.

* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
  store instruction for the specified operand(s).

Branch Folding and If Conversion
--------------------------------

Performance can be improved by combining instructions or by eliminating
instructions that are never reached.  The ``AnalyzeBranch`` method in
``XXXInstrInfo`` may be implemented to examine conditional instructions and
remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
machine basic block (MBB) for opportunities for improvement, such as branch
folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
function passes (see the source files ``BranchFolding.cpp`` and
``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
to improve the control flow graph that represents the instructions.

Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
shown below.

``AnalyzeBranch`` returns a Boolean value and takes four parameters:

* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.

* ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
  conditional branch that evaluates to true, ``TBB`` is the destination.

* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
  false, ``FBB`` is returned as the destination.

* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
  condition for a conditional branch.

In the simplest case, if a block ends without a branch, then it falls through
to the successor block.  No destination blocks are specified for either ``TBB``
or ``FBB``, so both parameters return ``NULL``.  The start of the
``AnalyzeBranch`` (see code below for the ARM target) shows the function
parameters and the code for the simplest case.

.. code-block:: c++

  bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TBB,
                                   MachineBasicBlock *&FBB,
                                   std::vector<MachineOperand> &Cond) const
  {
    MachineBasicBlock::iterator I = MBB.end();
    if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
      return false;

If a block ends with a single unconditional branch instruction, then
``AnalyzeBranch`` (shown below) should return the destination of that branch in
the ``TBB`` parameter.

.. code-block:: c++

    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    }

If a block ends with two unconditional branches, then the second branch is
never reached.  In that situation, as shown below, remove the last branch
instruction and return the penultimate branch in the ``TBB`` parameter.

.. code-block:: c++

    if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
        (LastOpc == ARM::B || LastOpc == ARM::tB)) {
      TBB = SecondLastInst->getOperand(0).getMBB();
      I = LastInst;
      I->eraseFromParent();
      return false;
    }

A block may end with a single conditional branch instruction that falls through
to successor block if the condition evaluates to false.  In that case,
``AnalyzeBranch`` (shown below) should return the destination of that
conditional branch in the ``TBB`` parameter and a list of operands in the
``Cond`` parameter to evaluate the condition.

.. code-block:: c++

    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(0).getMBB();
      Cond.push_back(LastInst->getOperand(1));
      Cond.push_back(LastInst->getOperand(2));
      return false;
    }

If a block ends with both a conditional branch and an ensuing unconditional
branch, then ``AnalyzeBranch`` (shown below) should return the conditional
branch destination (assuming it corresponds to a conditional evaluation of
"``true``") in the ``TBB`` parameter and the unconditional branch destination
in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
list of operands to evaluate the condition should be returned in the ``Cond``
parameter.

.. code-block:: c++

    unsigned SecondLastOpc = SecondLastInst->getOpcode();

    if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
        (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
      TBB =  SecondLastInst->getOperand(0).getMBB();
      Cond.push_back(SecondLastInst->getOperand(1));
      Cond.push_back(SecondLastInst->getOperand(2));
      FBB = LastInst->getOperand(0).getMBB();
      return false;
    }

For the last two cases (ending with a single conditional branch or ending with
one conditional and one unconditional branch), the operands returned in the
``Cond`` parameter can be passed to methods of other instructions to create new
branches or perform other operations.  An implementation of ``AnalyzeBranch``
requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
subsequent operations.

``AnalyzeBranch`` should return false indicating success in most circumstances.
``AnalyzeBranch`` should only return true when the method is stumped about what
to do, for example, if a block has three terminating branches.
``AnalyzeBranch`` may return true if it encounters a terminator it cannot
handle, such as an indirect branch.

.. _instruction-selector:

Instruction Selector
====================

LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
the ``SelectionDAG`` ideally represent native target instructions.  During code
generation, instruction selection passes are performed to convert non-native
DAG instructions into native target-specific instructions.  The pass described
in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
instruction selection.  Optionally, a pass may be defined (in
``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
operations and data types not supported natively (legalizes) in a
``SelectionDAG``.

TableGen generates code for instruction selection using the following target
description input files:

* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
  target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
  included in ``XXXISelDAGToDAG.cpp``.

* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
  for the target architecture, and it generates ``XXXGenCallingConv.inc``,
  which is included in ``XXXISelLowering.cpp``.

The implementation of an instruction selection pass must include a header that
declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
selection pass into the queue of passes to run.

The LLVM static compiler (``llc``) is an excellent tool for visualizing the
contents of DAGs.  To display the ``SelectionDAG`` before or after specific
processing phases, use the command line options for ``llc``, described at
:ref:`SelectionDAG-Process`.

To describe instruction selector behavior, you should add patterns for lowering
LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
this entry defines a register store operation, and the last parameter describes
a pattern with the store DAG operator.

.. code-block:: llvm

  def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
                   "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;

``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:

.. code-block:: llvm

  def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;

The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
defined in an implementation of the Instructor Selector (such as
``SparcISelDAGToDAG.cpp``).

In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
below:

.. code-block:: llvm

  def store : PatFrag<(ops node:$val, node:$ptr),
                      (st node:$val, node:$ptr), [{
    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
      return !ST->isTruncatingStore() &&
             ST->getAddressingMode() == ISD::UNINDEXED;
    return false;
  }]>;

``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
``SelectCode`` method that is used to call the appropriate processing method
for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
for the ``ISD::STORE`` opcode.

.. code-block:: c++

  SDNode *SelectCode(SDValue N) {
    ...
    MVT::ValueType NVT = N.getNode()->getValueType(0);
    switch (N.getOpcode()) {
    case ISD::STORE: {
      switch (NVT) {
      default:
        return Select_ISD_STORE(N);
        break;
      }
      break;
    }
    ...

The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
instruction.

.. code-block:: c++

  SDNode *Select_ISD_STORE(const SDValue &N) {
    SDValue Chain = N.getOperand(0);
    if (Predicate_store(N.getNode())) {
      SDValue N1 = N.getOperand(1);
      SDValue N2 = N.getOperand(2);
      SDValue CPTmp0;
      SDValue CPTmp1;

      // Pattern: (st:void i32:i32:$src,
      //           ADDRrr:i32:$addr)<<P:Predicate_store>>
      // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
      // Pattern complexity = 13  cost = 1  size = 0
      if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
          N1.getNode()->getValueType(0) == MVT::i32 &&
          N2.getNode()->getValueType(0) == MVT::i32) {
        return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
      }
  ...

The SelectionDAG Legalize Phase
-------------------------------

The Legalize phase converts a DAG to use types and operations that are natively
supported by the target.  For natively unsupported types and operations, you
need to add code to the target-specific ``XXXTargetLowering`` implementation to
convert unsupported types and operations to supported ones.

In the constructor for the ``XXXTargetLowering`` class, first use the
``addRegisterClass`` method to specify which types are supported and which
register classes are associated with them.  The code for the register classes
are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
starts with the following code:

.. code-block:: c++

  addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
  addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
  addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);

You should examine the node types in the ``ISD`` namespace
(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
the target natively supports.  For operations that do **not** have native
support, add a callback to the constructor for the ``XXXTargetLowering`` class,
so the instruction selection process knows what to do.  The ``TargetLowering``
class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:

* ``setOperationAction`` --- General operation.
* ``setLoadExtAction`` --- Load with extension.
* ``setTruncStoreAction`` --- Truncating store.
* ``setIndexedLoadAction`` --- Indexed load.
* ``setIndexedStoreAction`` --- Indexed store.
* ``setConvertAction`` --- Type conversion.
* ``setCondCodeAction`` --- Support for a given condition code.

Note: on older releases, ``setLoadXAction`` is used instead of
``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
be supported.  Examine your release to see what methods are specifically
supported.

These callbacks are used to determine that an operation does or does not work
with a specified type (or types).  And in all cases, the third parameter is a
``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
``LegalAction`` values.

Promote
^^^^^^^

For an operation without native support for a given type, the specified type
may be promoted to a larger type that is supported.  For example, SPARC does
not support a sign-extending load for Boolean values (``i1`` type), so in
``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
``i1`` type values to a large type before loading.

.. code-block:: c++

  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);

Expand
^^^^^^

For a type without native support, a value may need to be broken down further,
rather than promoted.  For an operation without native support, a combination
of other operations may be used to similar effect.  In SPARC, the
floating-point sine and cosine trig operations are supported by expansion to
other operations, as indicated by the third parameter, ``Expand``, to
``setOperationAction``:

.. code-block:: c++

  setOperationAction(ISD::FSIN, MVT::f32, Expand);
  setOperationAction(ISD::FCOS, MVT::f32, Expand);

Custom
^^^^^^

For some operations, simple type promotion or operation expansion may be
insufficient.  In some cases, a special intrinsic function must be implemented.

For example, a constant value may require special treatment, or an operation
may require spilling and restoring registers in the stack and working with
register allocators.

As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
from a floating point value to a signed integer, first the
``setOperationAction`` should be called with ``Custom`` as the third parameter:

.. code-block:: c++

  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

In the ``LowerOperation`` method, for each ``Custom`` operation, a case
statement should be added to indicate what function to call.  In the following
code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:

.. code-block:: c++

  SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
    switch (Op.getOpcode()) {
    case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
    ...
    }
  }

Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
convert the floating-point value to an integer.

.. code-block:: c++

  static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
    assert(Op.getValueType() == MVT::i32);
    Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
    return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
  }

Legal
^^^^^

The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
**is** natively supported.  ``Legal`` represents the default condition, so it
is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
operation to count the bits set in an integer) is natively supported only for
SPARC v9.  The following code enables the ``Expand`` conversion technique for
non-v9 SPARC implementations.

.. code-block:: c++

  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
  ...
  if (TM.getSubtarget<SparcSubtarget>().isV9())
    setOperationAction(ISD::CTPOP, MVT::i32, Legal);

Calling Conventions
-------------------

To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
file ``XXXGenCallingConv.td`` and generate the header file
``XXXGenCallingConv.inc``, which is typically included in
``XXXISelLowering.cpp``.  You can use the interfaces in
``TargetCallingConv.td`` to specify:

* The order of parameter allocation.

* Where parameters and return values are placed (that is, on the stack or in
  registers).

* Which registers may be used.

* Whether the caller or callee unwinds the stack.

The following example demonstrates the use of the ``CCIfType`` and
``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
if the current argument is of type ``f32`` or ``f64``), then the action is
performed.  In this case, the ``CCAssignToReg`` action assigns the argument
value to the first available register: either ``R0`` or ``R1``.

.. code-block:: llvm

  CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>

``SparcCallingConv.td`` contains definitions for a target-specific return-value
calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
(``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
which registers are used for specified scalar return types.  A single-precision
float is returned to register ``F0``, and a double-precision float goes to
register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.

.. code-block:: llvm

  def RetCC_Sparc32 : CallingConv<[
    CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
    CCIfType<[f32], CCAssignToReg<[F0]>>,
    CCIfType<[f64], CCAssignToReg<[D0]>>
  ]>;

The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
``CCAssignToStack``, which assigns the value to a stack slot with the specified
size and alignment.  In the example below, the first parameter, 4, indicates
the size of the slot, and the second parameter, also 4, indicates the stack
alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
size is used; if alignment is zero, then the ABI alignment is used.)

.. code-block:: llvm

  def CC_Sparc32 : CallingConv<[
    // All arguments get passed in integer registers if there is space.
    CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
    CCAssignToStack<4, 4>
  ]>;

``CCDelegateTo`` is another commonly used interface, which tries to find a
specified sub-calling convention, and, if a match is found, it is invoked.  In
the following example (in ``X86CallingConv.td``), the definition of
``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
invoked.

.. code-block:: llvm

  def RetCC_X86_32_C : CallingConv<[
    CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
    CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
    CCDelegateTo<RetCC_X86Common>
  ]>;

``CCIfCC`` is an interface that attempts to match the given name to the current
calling convention.  If the name identifies the current calling convention,
then a specified action is invoked.  In the following example (in
``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
use, then ``RetCC_X86_32_SSE`` is invoked.

.. code-block:: llvm

  def RetCC_X86_32 : CallingConv<[
    CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
    CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
    CCDelegateTo<RetCC_X86_32_C>
  ]>;

Other calling convention interfaces include:

* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.

* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
  attribute, then apply the action.

* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
  attribute, then apply the action.

* ``CCIfNotVarArg <action>`` --- If the current function does not take a
  variable number of arguments, apply the action.

* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
  ``CCAssignToReg``, but with a shadow list of registers.

* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
  minimum specified size and alignment.

* ``CCPromoteToType <type>`` --- Promote the current value to the specified
  type.

* ``CallingConv <[actions]>`` --- Define each calling convention that is
  supported.

Assembly Printer
================

During the code emission stage, the code generator may utilize an LLVM pass to
produce assembly output.  To do this, you want to implement the code for a
printer that converts LLVM IR to a GAS-format assembly language for your target
machine, using the following steps:

* Define all the assembly strings for your target, adding them to the
  instructions defined in the ``XXXInstrInfo.td`` file.  (See
  :ref:`instruction-set`.)  TableGen will produce an output file
  (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
  method for the ``XXXAsmPrinter`` class.

* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
  the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).

* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
  ``TargetAsmInfo`` properties and sometimes new implementations for methods.

* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
  performs the LLVM-to-assembly conversion.

The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
replacement values that override the default values in ``TargetAsmInfo.cpp``.
For example in ``SparcTargetAsmInfo.cpp``:

.. code-block:: c++

  SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
    Data16bitsDirective = "\t.half\t";
    Data32bitsDirective = "\t.word\t";
    Data64bitsDirective = 0;  // .xword is only supported by V9.
    ZeroDirective = "\t.skip\t";
    CommentString = "!";
    ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
  }

The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
where the target specific ``TargetAsmInfo`` class uses an overridden methods:
``ExpandInlineAsm``.

A target-specific implementation of ``AsmPrinter`` is written in
``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
the LLVM to printable assembly.  The implementation must include the following
headers that have declarations for the ``AsmPrinter`` and
``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
``FunctionPass``.

.. code-block:: c++

  #include "llvm/CodeGen/AsmPrinter.h"
  #include "llvm/CodeGen/MachineFunctionPass.h"

As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
instantiated to process variable names.

In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
``MachineFunctionPass``, the ``runOnFunction`` method invokes
``runOnMachineFunction``.  Target-specific implementations of
``runOnMachineFunction`` differ, but generally do the following to process each
machine function:

* Call ``SetupMachineFunction`` to perform initialization.

* Call ``EmitConstantPool`` to print out (to the output stream) constants which
  have been spilled to memory.

* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
  function.

* Print out the label for the current function.

* Print out the code for the function, including basic block labels and the
  assembly for the instruction (using ``printInstruction``)

The ``XXXAsmPrinter`` implementation must also include the code generated by
TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
method that may call these methods:

* ``printOperand``
* ``printMemOperand``
* ``printCCOperand`` (for conditional statements)
* ``printDataDirective``
* ``printDeclare``
* ``printImplicitDef``
* ``printInlineAsm``

The implementations of ``printDeclare``, ``printImplicitDef``,
``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
adequate for printing assembly and do not need to be overridden.

The ``printOperand`` method is implemented with a long ``switch``/``case``
statement for the type of operand: register, immediate, basic block, external
symbol, global address, constant pool index, or jump table index.  For an
instruction with a memory address operand, the ``printMemOperand`` method
should be implemented to generate the proper output.  Similarly,
``printCCOperand`` should be used to print a conditional operand.

``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
called to shut down the assembly printer.  During ``doFinalization``, global
variables and constants are printed to output.

Subtarget Support
=================

Subtarget support is used to inform the code generation process of instruction
set variations for a given chip set.  For example, the LLVM SPARC
implementation provided covers three major versions of the SPARC microprocessor
architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
64-bit architecture), and the UltraSPARC architecture.  V8 has 16
double-precision floating-point registers that are also usable as either 32
single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
V9 has 32 double-precision floating-point registers that are also usable as 16
quad-precision registers, but cannot be used as single-precision registers.
The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
extensions.

If subtarget support is needed, you should implement a target-specific
``XXXSubtarget`` class for your architecture.  This class should process the
command-line options ``-mcpu=`` and ``-mattr=``.

TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
``SubtargetFeature`` interface is defined.  The first 4 string parameters of
the ``SubtargetFeature`` interface are a feature name, an attribute set by the
feature, the value of the attribute, and a description of the feature.  (The
fifth parameter is a list of features whose presence is implied, and its
default value is an empty array.)

.. code-block:: llvm

  class SubtargetFeature<string n, string a, string v, string d,
                         list<SubtargetFeature> i = []> {
    string Name = n;
    string Attribute = a;
    string Value = v;
    string Desc = d;
    list<SubtargetFeature> Implies = i;
  }

In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
following features.

.. code-block:: llvm

  def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
                       "Enable SPARC-V9 instructions">;
  def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
                       "V8DeprecatedInsts", "true",
                       "Enable deprecated V8 instructions in V9 mode">;
  def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
                       "Enable UltraSPARC Visual Instruction Set extensions">;

Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
define particular SPARC processor subtypes that may have the previously
described features.

.. code-block:: llvm

  class Proc<string Name, list<SubtargetFeature> Features>
    : Processor<Name, NoItineraries, Features>;

  def : Proc<"generic",         []>;
  def : Proc<"v8",              []>;
  def : Proc<"supersparc",      []>;
  def : Proc<"sparclite",       []>;
  def : Proc<"f934",            []>;
  def : Proc<"hypersparc",      []>;
  def : Proc<"sparclite86x",    []>;
  def : Proc<"sparclet",        []>;
  def : Proc<"tsc701",          []>;
  def : Proc<"v9",              [FeatureV9]>;
  def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
  def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
  def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;

From ``Target.td`` and ``Sparc.td`` files, the resulting
``SparcGenSubtarget.inc`` specifies enum values to identify the features,
arrays of constants to represent the CPU features and CPU subtypes, and the
``ParseSubtargetFeatures`` method that parses the features string that sets
specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
should be included in the ``SparcSubtarget.cpp``.  The target-specific
implementation of the ``XXXSubtarget`` method should follow this pseudocode:

.. code-block:: c++

  XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
    // Set the default features
    // Determine default and user specified characteristics of the CPU
    // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
    // Perform any additional operations
  }

JIT Support
===========

The implementation of a target machine optionally includes a Just-In-Time (JIT)
code generator that emits machine code and auxiliary structures as binary
output that can be written directly to memory.  To do this, implement JIT code
generation by performing the following steps:

* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
  that transforms target-machine instructions into relocatable machine
  code.

* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
  target-specific code-generation activities, such as emitting machine code and
  stubs.

* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
  through its ``getJITInfo`` method.

There are several different approaches to writing the JIT support code.  For
instance, TableGen and target descriptor files may be used for creating a JIT
code generator, but are not mandatory.  For the Alpha and PowerPC target
machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
contains the binary coding of machine instructions and the
``getBinaryCodeForInstr`` method to access those codes.  Other JIT
implementations do not.

Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
``MachineCodeEmitter`` class containing code for several callback functions
that write data (in bytes, words, strings, etc.) to the output stream.

Machine Code Emitter
--------------------

In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
implemented as a function pass (subclass of ``MachineFunctionPass``).  The
target-specific implementation of ``runOnMachineFunction`` (invoked by
``runOnFunction`` in ``MachineFunctionPass``) iterates through the
``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
emit binary code.  ``emitInstruction`` is largely implemented with case
statements on the instruction types defined in ``XXXInstrInfo.h``.  For
example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
around the following ``switch``/``case`` statements:

.. code-block:: c++

  switch (Desc->TSFlags & X86::FormMask) {
  case X86II::Pseudo:  // for not yet implemented instructions
     ...               // or pseudo-instructions
     break;
  case X86II::RawFrm:  // for instructions with a fixed opcode value
     ...
     break;
  case X86II::AddRegFrm: // for instructions that have one register operand
     ...                 // added to their opcode
     break;
  case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
     ...                 // to specify a destination (register)
     break;
  case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
     ...                 // to specify a destination (memory)
     break;
  case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
     ...                 // to specify a source (register)
     break;
  case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
     ...                 // to specify a source (memory)
     break;
  case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
  case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
  case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
  case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
     ...
     break;
  case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
  case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
  case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
  case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
     ...
     break;
  case X86II::MRMInitReg: // for instructions whose source and
     ...                  // destination are the same register
     break;
  }

The implementations of these case statements often first emit the opcode and
then get the operand(s).  Then depending upon the operand, helper methods may
be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
the opcode added to the register operand.  Then an object representing the
machine operand, ``MO1``, is extracted.  The helper methods such as
``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
and ``emitJumpTableAddress`` that emit the data into the output stream.)

.. code-block:: c++

  case X86II::AddRegFrm:
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));

    if (CurOp != NumOps) {
      const MachineOperand &MO1 = MI.getOperand(CurOp++);
      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
      if (MO1.isImmediate())
        emitConstant(MO1.getImm(), Size);
      else {
        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
        if (Opcode == X86::MOV64ri)
          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
        if (MO1.isGlobalAddress()) {
          bool NeedStub = isa<Function>(MO1.getGlobal());
          bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
                            NeedStub, isLazy);
        } else if (MO1.isExternalSymbol())
          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
        else if (MO1.isConstantPoolIndex())
          emitConstPoolAddress(MO1.getIndex(), rt);
        else if (MO1.isJumpTableIndex())
          emitJumpTableAddress(MO1.getIndex(), rt);
      }
    }
    break;

In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
is a ``RelocationType`` enum that may be used to relocate addresses (for
example, a global address with a PIC base offset).  The ``RelocationType`` enum
for that target is defined in the short target-specific ``XXXRelocations.h``
file.  The ``RelocationType`` is used by the ``relocate`` method defined in
``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.

For example, ``X86Relocations.h`` specifies the following relocation types for
the X86 addresses.  In all four cases, the relocated value is added to the
value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
there is an additional initial adjustment.

.. code-block:: c++

  enum RelocationType {
    reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
    reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
    reloc_absolute_word = 2, // absolute relocation; no additional adjustment
    reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
  };

Target JIT Info
---------------

``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
code-generation activities, such as emitting machine code and stubs.  At
minimum, a target-specific version of ``XXXJITInfo`` implements the following:

* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
  function that is used for compilation.

* ``emitFunctionStub`` --- Returns a native function with a specified address
  for a callback function.

* ``relocate`` --- Changes the addresses of referenced globals, based on
  relocation types.

* Callback function that are wrappers to a function stub that is used when the
  real target is not initially known.

``getLazyResolverFunction`` is generally trivial to implement.  It makes the
incoming parameter as the global ``JITCompilerFunction`` and returns the
callback function that will be used a function wrapper.  For the Alpha target
(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
simply:

.. code-block:: c++

  TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
                                              JITCompilerFn F) {
    JITCompilerFunction = F;
    return AlphaCompilationCallback;
  }

For the X86 target, the ``getLazyResolverFunction`` implementation is a little
more complicated, because it returns a different callback function for
processors with SSE instructions and XMM registers.

The callback function initially saves and later restores the callee register
values, incoming arguments, and frame and return address.  The callback
function needs low-level access to the registers or stack, so it is typically
implemented with assembler.