aboutsummaryrefslogtreecommitdiffstats
path: root/docs/tutorial/LangImpl6.rst
blob: a5a60bffe04a5afaf1870daa74345857adfb8d93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
============================================================
Kaleidoscope: Extending the Language: User-defined Operators
============================================================

.. contents::
   :local:

Chapter 6 Introduction
======================

Welcome to Chapter 6 of the "`Implementing a language with
LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
have a fully functional language that is fairly minimal, but also
useful. There is still one big problem with it, however. Our language
doesn't have many useful operators (like division, logical negation, or
even any comparisons besides less-than).

This chapter of the tutorial takes a wild digression into adding
user-defined operators to the simple and beautiful Kaleidoscope
language. This digression now gives us a simple and ugly language in
some ways, but also a powerful one at the same time. One of the great
things about creating your own language is that you get to decide what
is good or bad. In this tutorial we'll assume that it is okay to use
this as a way to show some interesting parsing techniques.

At the end of this tutorial, we'll run through an example Kaleidoscope
application that `renders the Mandelbrot set <#example>`_. This gives an
example of what you can build with Kaleidoscope and its feature set.

User-defined Operators: the Idea
================================

The "operator overloading" that we will add to Kaleidoscope is more
general than languages like C++. In C++, you are only allowed to
redefine existing operators: you can't programatically change the
grammar, introduce new operators, change precedence levels, etc. In this
chapter, we will add this capability to Kaleidoscope, which will let the
user round out the set of operators that are supported.

The point of going into user-defined operators in a tutorial like this
is to show the power and flexibility of using a hand-written parser.
Thus far, the parser we have been implementing uses recursive descent
for most parts of the grammar and operator precedence parsing for the
expressions. See `Chapter 2 <LangImpl2.html>`_ for details. Without
using operator precedence parsing, it would be very difficult to allow
the programmer to introduce new operators into the grammar: the grammar
is dynamically extensible as the JIT runs.

The two specific features we'll add are programmable unary operators
(right now, Kaleidoscope has no unary operators at all) as well as
binary operators. An example of this is:

::

    # Logical unary not.
    def unary!(v)
      if v then
        0
      else
        1;

    # Define > with the same precedence as <.
    def binary> 10 (LHS RHS)
      RHS < LHS;

    # Binary "logical or", (note that it does not "short circuit")
    def binary| 5 (LHS RHS)
      if LHS then
        1
      else if RHS then
        1
      else
        0;

    # Define = with slightly lower precedence than relationals.
    def binary= 9 (LHS RHS)
      !(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime
library in the language itself. In Kaleidoscope, we can implement
significant parts of the language in the library!

We will break down implementation of these features into two parts:
implementing support for user-defined binary operators and adding unary
operators.

User-defined Binary Operators
=============================

Adding support for user-defined binary operators is pretty simple with
our current framework. We'll first add support for the unary/binary
keywords:

.. code-block:: c++

    enum Token {
      ...
      // operators
      tok_binary = -11, tok_unary = -12
    };
    ...
    static int gettok() {
    ...
        if (IdentifierStr == "for") return tok_for;
        if (IdentifierStr == "in") return tok_in;
        if (IdentifierStr == "binary") return tok_binary;
        if (IdentifierStr == "unary") return tok_unary;
        return tok_identifier;

This just adds lexer support for the unary and binary keywords, like we
did in `previous chapters <LangImpl5.html#iflexer>`_. One nice thing
about our current AST, is that we represent binary operators with full
generalisation by using their ASCII code as the opcode. For our extended
operators, we'll use this same representation, so we don't need any new
AST or parser support.

On the other hand, we have to be able to represent the definitions of
these new operators, in the "def binary\| 5" part of the function
definition. In our grammar so far, the "name" for the function
definition is parsed as the "prototype" production and into the
``PrototypeAST`` AST node. To represent our new user-defined operators
as prototypes, we have to extend the ``PrototypeAST`` AST node like
this:

.. code-block:: c++

    /// PrototypeAST - This class represents the "prototype" for a function,
    /// which captures its argument names as well as if it is an operator.
    class PrototypeAST {
      std::string Name;
      std::vector<std::string> Args;
      bool isOperator;
      unsigned Precedence;  // Precedence if a binary op.
    public:
      PrototypeAST(const std::string &name, const std::vector<std::string> &args,
                   bool isoperator = false, unsigned prec = 0)
      : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}

      bool isUnaryOp() const { return isOperator && Args.size() == 1; }
      bool isBinaryOp() const { return isOperator && Args.size() == 2; }

      char getOperatorName() const {
        assert(isUnaryOp() || isBinaryOp());
        return Name[Name.size()-1];
      }

      unsigned getBinaryPrecedence() const { return Precedence; }

      Function *Codegen();
    };

Basically, in addition to knowing a name for the prototype, we now keep
track of whether it was an operator, and if it was, what precedence
level the operator is at. The precedence is only used for binary
operators (as you'll see below, it just doesn't apply for unary
operators). Now that we have a way to represent the prototype for a
user-defined operator, we need to parse it:

.. code-block:: c++

    /// prototype
    ///   ::= id '(' id* ')'
    ///   ::= binary LETTER number? (id, id)
    static PrototypeAST *ParsePrototype() {
      std::string FnName;

      unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
      unsigned BinaryPrecedence = 30;

      switch (CurTok) {
      default:
        return ErrorP("Expected function name in prototype");
      case tok_identifier:
        FnName = IdentifierStr;
        Kind = 0;
        getNextToken();
        break;
      case tok_binary:
        getNextToken();
        if (!isascii(CurTok))
          return ErrorP("Expected binary operator");
        FnName = "binary";
        FnName += (char)CurTok;
        Kind = 2;
        getNextToken();

        // Read the precedence if present.
        if (CurTok == tok_number) {
          if (NumVal < 1 || NumVal > 100)
            return ErrorP("Invalid precedecnce: must be 1..100");
          BinaryPrecedence = (unsigned)NumVal;
          getNextToken();
        }
        break;
      }

      if (CurTok != '(')
        return ErrorP("Expected '(' in prototype");

      std::vector<std::string> ArgNames;
      while (getNextToken() == tok_identifier)
        ArgNames.push_back(IdentifierStr);
      if (CurTok != ')')
        return ErrorP("Expected ')' in prototype");

      // success.
      getNextToken();  // eat ')'.

      // Verify right number of names for operator.
      if (Kind && ArgNames.size() != Kind)
        return ErrorP("Invalid number of operands for operator");

      return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    }

This is all fairly straightforward parsing code, and we have already
seen a lot of similar code in the past. One interesting part about the
code above is the couple lines that set up ``FnName`` for binary
operators. This builds names like "binary@" for a newly defined "@"
operator. This then takes advantage of the fact that symbol names in the
LLVM symbol table are allowed to have any character in them, including
embedded nul characters.

The next interesting thing to add, is codegen support for these binary
operators. Given our current structure, this is a simple addition of a
default case for our existing binary operator node:

.. code-block:: c++

    Value *BinaryExprAST::Codegen() {
      Value *L = LHS->Codegen();
      Value *R = RHS->Codegen();
      if (L == 0 || R == 0) return 0;

      switch (Op) {
      case '+': return Builder.CreateFAdd(L, R, "addtmp");
      case '-': return Builder.CreateFSub(L, R, "subtmp");
      case '*': return Builder.CreateFMul(L, R, "multmp");
      case '<':
        L = Builder.CreateFCmpULT(L, R, "cmptmp");
        // Convert bool 0/1 to double 0.0 or 1.0
        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
                                    "booltmp");
      default: break;
      }

      // If it wasn't a builtin binary operator, it must be a user defined one. Emit
      // a call to it.
      Function *F = TheModule->getFunction(std::string("binary")+Op);
      assert(F && "binary operator not found!");

      Value *Ops[2] = { L, R };
      return Builder.CreateCall(F, Ops, "binop");
    }

As you can see above, the new code is actually really simple. It just
does a lookup for the appropriate operator in the symbol table and
generates a function call to it. Since user-defined operators are just
built as normal functions (because the "prototype" boils down to a
function with the right name) everything falls into place.

The final piece of code we are missing, is a bit of top-level magic:

.. code-block:: c++

    Function *FunctionAST::Codegen() {
      NamedValues.clear();

      Function *TheFunction = Proto->Codegen();
      if (TheFunction == 0)
        return 0;

      // If this is an operator, install it.
      if (Proto->isBinaryOp())
        BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();

      // Create a new basic block to start insertion into.
      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
      Builder.SetInsertPoint(BB);

      if (Value *RetVal = Body->Codegen()) {
        ...

Basically, before codegening a function, if it is a user-defined
operator, we register it in the precedence table. This allows the binary
operator parsing logic we already have in place to handle it. Since we
are working on a fully-general operator precedence parser, this is all
we need to do to "extend the grammar".

Now we have useful user-defined binary operators. This builds a lot on
the previous framework we built for other operators. Adding unary
operators is a bit more challenging, because we don't have any framework
for it yet - lets see what it takes.

User-defined Unary Operators
============================

Since we don't currently support unary operators in the Kaleidoscope
language, we'll need to add everything to support them. Above, we added
simple support for the 'unary' keyword to the lexer. In addition to
that, we need an AST node:

.. code-block:: c++

    /// UnaryExprAST - Expression class for a unary operator.
    class UnaryExprAST : public ExprAST {
      char Opcode;
      ExprAST *Operand;
    public:
      UnaryExprAST(char opcode, ExprAST *operand)
        : Opcode(opcode), Operand(operand) {}
      virtual Value *Codegen();
    };

This AST node is very simple and obvious by now. It directly mirrors the
binary operator AST node, except that it only has one child. With this,
we need to add the parsing logic. Parsing a unary operator is pretty
simple: we'll add a new function to do it:

.. code-block:: c++

    /// unary
    ///   ::= primary
    ///   ::= '!' unary
    static ExprAST *ParseUnary() {
      // If the current token is not an operator, it must be a primary expr.
      if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
        return ParsePrimary();

      // If this is a unary operator, read it.
      int Opc = CurTok;
      getNextToken();
      if (ExprAST *Operand = ParseUnary())
        return new UnaryExprAST(Opc, Operand);
      return 0;
    }

The grammar we add is pretty straightforward here. If we see a unary
operator when parsing a primary operator, we eat the operator as a
prefix and parse the remaining piece as another unary operator. This
allows us to handle multiple unary operators (e.g. "!!x"). Note that
unary operators can't have ambiguous parses like binary operators can,
so there is no need for precedence information.

The problem with this function, is that we need to call ParseUnary from
somewhere. To do this, we change previous callers of ParsePrimary to
call ParseUnary instead:

.. code-block:: c++

    /// binoprhs
    ///   ::= ('+' unary)*
    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
      ...
        // Parse the unary expression after the binary operator.
        ExprAST *RHS = ParseUnary();
        if (!RHS) return 0;
      ...
    }
    /// expression
    ///   ::= unary binoprhs
    ///
    static ExprAST *ParseExpression() {
      ExprAST *LHS = ParseUnary();
      if (!LHS) return 0;

      return ParseBinOpRHS(0, LHS);
    }

With these two simple changes, we are now able to parse unary operators
and build the AST for them. Next up, we need to add parser support for
prototypes, to parse the unary operator prototype. We extend the binary
operator code above with:

.. code-block:: c++

    /// prototype
    ///   ::= id '(' id* ')'
    ///   ::= binary LETTER number? (id, id)
    ///   ::= unary LETTER (id)
    static PrototypeAST *ParsePrototype() {
      std::string FnName;

      unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
      unsigned BinaryPrecedence = 30;

      switch (CurTok) {
      default:
        return ErrorP("Expected function name in prototype");
      case tok_identifier:
        FnName = IdentifierStr;
        Kind = 0;
        getNextToken();
        break;
      case tok_unary:
        getNextToken();
        if (!isascii(CurTok))
          return ErrorP("Expected unary operator");
        FnName = "unary";
        FnName += (char)CurTok;
        Kind = 1;
        getNextToken();
        break;
      case tok_binary:
        ...

As with binary operators, we name unary operators with a name that
includes the operator character. This assists us at code generation
time. Speaking of, the final piece we need to add is codegen support for
unary operators. It looks like this:

.. code-block:: c++

    Value *UnaryExprAST::Codegen() {
      Value *OperandV = Operand->Codegen();
      if (OperandV == 0) return 0;

      Function *F = TheModule->getFunction(std::string("unary")+Opcode);
      if (F == 0)
        return ErrorV("Unknown unary operator");

      return Builder.CreateCall(F, OperandV, "unop");
    }

This code is similar to, but simpler than, the code for binary
operators. It is simpler primarily because it doesn't need to handle any
predefined operators.

Kicking the Tires
=================

It is somewhat hard to believe, but with a few simple extensions we've
covered in the last chapters, we have grown a real-ish language. With
this, we can do a lot of interesting things, including I/O, math, and a
bunch of other things. For example, we can now add a nice sequencing
operator (printd is defined to print out the specified value and a
newline):

::

    ready> extern printd(x);
    Read extern:
    declare double @printd(double)

    ready> def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.
    ..
    ready> printd(123) : printd(456) : printd(789);
    123.000000
    456.000000
    789.000000
    Evaluated to 0.000000

We can also define a bunch of other "primitive" operations, such as:

::

    # Logical unary not.
    def unary!(v)
      if v then
        0
      else
        1;

    # Unary negate.
    def unary-(v)
      0-v;

    # Define > with the same precedence as <.
    def binary> 10 (LHS RHS)
      RHS < LHS;

    # Binary logical or, which does not short circuit.
    def binary| 5 (LHS RHS)
      if LHS then
        1
      else if RHS then
        1
      else
        0;

    # Binary logical and, which does not short circuit.
    def binary& 6 (LHS RHS)
      if !LHS then
        0
      else
        !!RHS;

    # Define = with slightly lower precedence than relationals.
    def binary = 9 (LHS RHS)
      !(LHS < RHS | LHS > RHS);

    # Define ':' for sequencing: as a low-precedence operator that ignores operands
    # and just returns the RHS.
    def binary : 1 (x y) y;

Given the previous if/then/else support, we can also define interesting
functions for I/O. For example, the following prints out a character
whose "density" reflects the value passed in: the lower the value, the
denser the character:

::

    ready>

    extern putchard(char)
    def printdensity(d)
      if d > 8 then
        putchard(32)  # ' '
      else if d > 4 then
        putchard(46)  # '.'
      else if d > 2 then
        putchard(43)  # '+'
      else
        putchard(42); # '*'
    ...
    ready> printdensity(1): printdensity(2): printdensity(3):
           printdensity(4): printdensity(5): printdensity(9):
           putchard(10);
    **++.
    Evaluated to 0.000000

Based on these simple primitive operations, we can start to define more
interesting things. For example, here's a little function that solves
for the number of iterations it takes a function in the complex plane to
converge:

::

    # Determine whether the specific location diverges.
    # Solve for z = z^2 + c in the complex plane.
    def mandleconverger(real imag iters creal cimag)
      if iters > 255 | (real*real + imag*imag > 4) then
        iters
      else
        mandleconverger(real*real - imag*imag + creal,
                        2*real*imag + cimag,
                        iters+1, creal, cimag);

    # Return the number of iterations required for the iteration to escape
    def mandleconverge(real imag)
      mandleconverger(real, imag, 0, real, imag);

This "``z = z2 + c``" function is a beautiful little creature that is
the basis for computation of the `Mandelbrot
Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
``mandelconverge`` function returns the number of iterations that it
takes for a complex orbit to escape, saturating to 255. This is not a
very useful function by itself, but if you plot its value over a
two-dimensional plane, you can see the Mandelbrot set. Given that we are
limited to using putchard here, our amazing graphical output is limited,
but we can whip together something using the density plotter above:

::

    # Compute and plot the mandlebrot set with the specified 2 dimensional range
    # info.
    def mandelhelp(xmin xmax xstep   ymin ymax ystep)
      for y = ymin, y < ymax, ystep in (
        (for x = xmin, x < xmax, xstep in
           printdensity(mandleconverge(x,y)))
        : putchard(10)
      )

    # mandel - This is a convenient helper function for plotting the mandelbrot set
    # from the specified position with the specified Magnification.
    def mandel(realstart imagstart realmag imagmag)
      mandelhelp(realstart, realstart+realmag*78, realmag,
                 imagstart, imagstart+imagmag*40, imagmag);

Given this, we can try plotting out the mandlebrot set! Lets try it out:

::

    ready> mandel(-2.3, -1.3, 0.05, 0.07);
    *******************************+++++++++++*************************************
    *************************+++++++++++++++++++++++*******************************
    **********************+++++++++++++++++++++++++++++****************************
    *******************+++++++++++++++++++++.. ...++++++++*************************
    *****************++++++++++++++++++++++.... ...+++++++++***********************
    ***************+++++++++++++++++++++++.....   ...+++++++++*********************
    **************+++++++++++++++++++++++....     ....+++++++++********************
    *************++++++++++++++++++++++......      .....++++++++*******************
    ************+++++++++++++++++++++.......       .......+++++++******************
    ***********+++++++++++++++++++....                ... .+++++++*****************
    **********+++++++++++++++++.......                     .+++++++****************
    *********++++++++++++++...........                    ...+++++++***************
    ********++++++++++++............                      ...++++++++**************
    ********++++++++++... ..........                        .++++++++**************
    *******+++++++++.....                                   .+++++++++*************
    *******++++++++......                                  ..+++++++++*************
    *******++++++.......                                   ..+++++++++*************
    *******+++++......                                     ..+++++++++*************
    *******.... ....                                      ...+++++++++*************
    *******.... .                                         ...+++++++++*************
    *******+++++......                                    ...+++++++++*************
    *******++++++.......                                   ..+++++++++*************
    *******++++++++......                                   .+++++++++*************
    *******+++++++++.....                                  ..+++++++++*************
    ********++++++++++... ..........                        .++++++++**************
    ********++++++++++++............                      ...++++++++**************
    *********++++++++++++++..........                     ...+++++++***************
    **********++++++++++++++++........                     .+++++++****************
    **********++++++++++++++++++++....                ... ..+++++++****************
    ***********++++++++++++++++++++++.......       .......++++++++*****************
    ************+++++++++++++++++++++++......      ......++++++++******************
    **************+++++++++++++++++++++++....      ....++++++++********************
    ***************+++++++++++++++++++++++.....   ...+++++++++*********************
    *****************++++++++++++++++++++++....  ...++++++++***********************
    *******************+++++++++++++++++++++......++++++++*************************
    *********************++++++++++++++++++++++.++++++++***************************
    *************************+++++++++++++++++++++++*******************************
    ******************************+++++++++++++************************************
    *******************************************************************************
    *******************************************************************************
    *******************************************************************************
    Evaluated to 0.000000
    ready> mandel(-2, -1, 0.02, 0.04);
    **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
    ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
    *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
    *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
    ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
    **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
    ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
    ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        .
    **********++++++++++++++++++++++++++++++++++++++++++++++.............
    ********+++++++++++++++++++++++++++++++++++++++++++..................
    *******+++++++++++++++++++++++++++++++++++++++.......................
    ******+++++++++++++++++++++++++++++++++++...........................
    *****++++++++++++++++++++++++++++++++............................
    *****++++++++++++++++++++++++++++...............................
    ****++++++++++++++++++++++++++......   .........................
    ***++++++++++++++++++++++++.........     ......    ...........
    ***++++++++++++++++++++++............
    **+++++++++++++++++++++..............
    **+++++++++++++++++++................
    *++++++++++++++++++.................
    *++++++++++++++++............ ...
    *++++++++++++++..............
    *+++....++++................
    *..........  ...........
    *
    *..........  ...........
    *+++....++++................
    *++++++++++++++..............
    *++++++++++++++++............ ...
    *++++++++++++++++++.................
    **+++++++++++++++++++................
    **+++++++++++++++++++++..............
    ***++++++++++++++++++++++............
    ***++++++++++++++++++++++++.........     ......    ...........
    ****++++++++++++++++++++++++++......   .........................
    *****++++++++++++++++++++++++++++...............................
    *****++++++++++++++++++++++++++++++++............................
    ******+++++++++++++++++++++++++++++++++++...........................
    *******+++++++++++++++++++++++++++++++++++++++.......................
    ********+++++++++++++++++++++++++++++++++++++++++++..................
    Evaluated to 0.000000
    ready> mandel(-0.9, -1.4, 0.02, 0.03);
    *******************************************************************************
    *******************************************************************************
    *******************************************************************************
    **********+++++++++++++++++++++************************************************
    *+++++++++++++++++++++++++++++++++++++++***************************************
    +++++++++++++++++++++++++++++++++++++++++++++**********************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
    +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
    +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
    +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
    ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
    +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
    ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
    ++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
    +++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
    ++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
    ++++++++++++++++++++...........                .........++++++++++++++++++++++*
    ++++++++++++++++++............                  ...........++++++++++++++++++++
    ++++++++++++++++...............                 .............++++++++++++++++++
    ++++++++++++++.................                 ...............++++++++++++++++
    ++++++++++++..................                  .................++++++++++++++
    +++++++++..................                      .................+++++++++++++
    ++++++........        .                               .........  ..++++++++++++
    ++............                                         ......    ....++++++++++
    ..............                                                    ...++++++++++
    ..............                                                    ....+++++++++
    ..............                                                    .....++++++++
    .............                                                    ......++++++++
    ...........                                                     .......++++++++
    .........                                                       ........+++++++
    .........                                                       ........+++++++
    .........                                                           ....+++++++
    ........                                                             ...+++++++
    .......                                                              ...+++++++
                                                                        ....+++++++
                                                                       .....+++++++
                                                                        ....+++++++
                                                                        ....+++++++
                                                                        ....+++++++
    Evaluated to 0.000000
    ready> ^D

At this point, you may be starting to realize that Kaleidoscope is a
real and powerful language. It may not be self-similar :), but it can be
used to plot things that are!

With this, we conclude the "adding user-defined operators" chapter of
the tutorial. We have successfully augmented our language, adding the
ability to extend the language in the library, and we have shown how
this can be used to build a simple but interesting end-user application
in Kaleidoscope. At this point, Kaleidoscope can build a variety of
applications that are functional and can call functions with
side-effects, but it can't actually define and mutate a variable itself.

Strikingly, variable mutation is an important feature of some languages,
and it is not at all obvious how to `add support for mutable
variables <LangImpl7.html>`_ without having to add an "SSA construction"
phase to your front-end. In the next chapter, we will describe how you
can add variable mutation without building SSA in your front-end.

Full Code Listing
=================

Here is the complete code listing for our running example, enhanced with
the if/then/else and for expressions.. To build this example, use:

.. code-block:: bash

    # Compile
    clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
    # Run
    ./toy

On some platforms, you will need to specify -rdynamic or
-Wl,--export-dynamic when linking. This ensures that symbols defined in
the main executable are exported to the dynamic linker and so are
available for symbol resolution at run time. This is not needed if you
compile your support code into a shared library, although doing that
will cause problems on Windows.

Here is the code:

.. code-block:: c++

    #include "llvm/DerivedTypes.h"
    #include "llvm/ExecutionEngine/ExecutionEngine.h"
    #include "llvm/ExecutionEngine/JIT.h"
    #include "llvm/IRBuilder.h"
    #include "llvm/LLVMContext.h"
    #include "llvm/Module.h"
    #include "llvm/PassManager.h"
    #include "llvm/Analysis/Verifier.h"
    #include "llvm/Analysis/Passes.h"
    #include "llvm/DataLayout.h"
    #include "llvm/Transforms/Scalar.h"
    #include "llvm/Support/TargetSelect.h"
    #include <cstdio>
    #include <string>
    #include <map>
    #include <vector>
    using namespace llvm;

    //===----------------------------------------------------------------------===//
    // Lexer
    //===----------------------------------------------------------------------===//

    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
    // of these for known things.
    enum Token {
      tok_eof = -1,

      // commands
      tok_def = -2, tok_extern = -3,

      // primary
      tok_identifier = -4, tok_number = -5,

      // control
      tok_if = -6, tok_then = -7, tok_else = -8,
      tok_for = -9, tok_in = -10,

      // operators
      tok_binary = -11, tok_unary = -12
    };

    static std::string IdentifierStr;  // Filled in if tok_identifier
    static double NumVal;              // Filled in if tok_number

    /// gettok - Return the next token from standard input.
    static int gettok() {
      static int LastChar = ' ';

      // Skip any whitespace.
      while (isspace(LastChar))
        LastChar = getchar();

      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
        IdentifierStr = LastChar;
        while (isalnum((LastChar = getchar())))
          IdentifierStr += LastChar;

        if (IdentifierStr == "def") return tok_def;
        if (IdentifierStr == "extern") return tok_extern;
        if (IdentifierStr == "if") return tok_if;
        if (IdentifierStr == "then") return tok_then;
        if (IdentifierStr == "else") return tok_else;
        if (IdentifierStr == "for") return tok_for;
        if (IdentifierStr == "in") return tok_in;
        if (IdentifierStr == "binary") return tok_binary;
        if (IdentifierStr == "unary") return tok_unary;
        return tok_identifier;
      }

      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
        std::string NumStr;
        do {
          NumStr += LastChar;
          LastChar = getchar();
        } while (isdigit(LastChar) || LastChar == '.');

        NumVal = strtod(NumStr.c_str(), 0);
        return tok_number;
      }

      if (LastChar == '#') {
        // Comment until end of line.
        do LastChar = getchar();
        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

        if (LastChar != EOF)
          return gettok();
      }

      // Check for end of file.  Don't eat the EOF.
      if (LastChar == EOF)
        return tok_eof;

      // Otherwise, just return the character as its ascii value.
      int ThisChar = LastChar;
      LastChar = getchar();
      return ThisChar;
    }

    //===----------------------------------------------------------------------===//
    // Abstract Syntax Tree (aka Parse Tree)
    //===----------------------------------------------------------------------===//

    /// ExprAST - Base class for all expression nodes.
    class ExprAST {
    public:
      virtual ~ExprAST() {}
      virtual Value *Codegen() = 0;
    };

    /// NumberExprAST - Expression class for numeric literals like "1.0".
    class NumberExprAST : public ExprAST {
      double Val;
    public:
      NumberExprAST(double val) : Val(val) {}
      virtual Value *Codegen();
    };

    /// VariableExprAST - Expression class for referencing a variable, like "a".
    class VariableExprAST : public ExprAST {
      std::string Name;
    public:
      VariableExprAST(const std::string &name) : Name(name) {}
      virtual Value *Codegen();
    };

    /// UnaryExprAST - Expression class for a unary operator.
    class UnaryExprAST : public ExprAST {
      char Opcode;
      ExprAST *Operand;
    public:
      UnaryExprAST(char opcode, ExprAST *operand)
        : Opcode(opcode), Operand(operand) {}
      virtual Value *Codegen();
    };

    /// BinaryExprAST - Expression class for a binary operator.
    class BinaryExprAST : public ExprAST {
      char Op;
      ExprAST *LHS, *RHS;
    public:
      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
        : Op(op), LHS(lhs), RHS(rhs) {}
      virtual Value *Codegen();
    };

    /// CallExprAST - Expression class for function calls.
    class CallExprAST : public ExprAST {
      std::string Callee;
      std::vector<ExprAST*> Args;
    public:
      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
        : Callee(callee), Args(args) {}
      virtual Value *Codegen();
    };

    /// IfExprAST - Expression class for if/then/else.
    class IfExprAST : public ExprAST {
      ExprAST *Cond, *Then, *Else;
    public:
      IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
      : Cond(cond), Then(then), Else(_else) {}
      virtual Value *Codegen();
    };

    /// ForExprAST - Expression class for for/in.
    class ForExprAST : public ExprAST {
      std::string VarName;
      ExprAST *Start, *End, *Step, *Body;
    public:
      ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
                 ExprAST *step, ExprAST *body)
        : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
      virtual Value *Codegen();
    };

    /// PrototypeAST - This class represents the "prototype" for a function,
    /// which captures its name, and its argument names (thus implicitly the number
    /// of arguments the function takes), as well as if it is an operator.
    class PrototypeAST {
      std::string Name;
      std::vector<std::string> Args;
      bool isOperator;
      unsigned Precedence;  // Precedence if a binary op.
    public:
      PrototypeAST(const std::string &name, const std::vector<std::string> &args,
                   bool isoperator = false, unsigned prec = 0)
      : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}

      bool isUnaryOp() const { return isOperator && Args.size() == 1; }
      bool isBinaryOp() const { return isOperator && Args.size() == 2; }

      char getOperatorName() const {
        assert(isUnaryOp() || isBinaryOp());
        return Name[Name.size()-1];
      }

      unsigned getBinaryPrecedence() const { return Precedence; }

      Function *Codegen();
    };

    /// FunctionAST - This class represents a function definition itself.
    class FunctionAST {
      PrototypeAST *Proto;
      ExprAST *Body;
    public:
      FunctionAST(PrototypeAST *proto, ExprAST *body)
        : Proto(proto), Body(body) {}

      Function *Codegen();
    };

    //===----------------------------------------------------------------------===//
    // Parser
    //===----------------------------------------------------------------------===//

    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    /// token the parser is looking at.  getNextToken reads another token from the
    /// lexer and updates CurTok with its results.
    static int CurTok;
    static int getNextToken() {
      return CurTok = gettok();
    }

    /// BinopPrecedence - This holds the precedence for each binary operator that is
    /// defined.
    static std::map<char, int> BinopPrecedence;

    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    static int GetTokPrecedence() {
      if (!isascii(CurTok))
        return -1;

      // Make sure it's a declared binop.
      int TokPrec = BinopPrecedence[CurTok];
      if (TokPrec <= 0) return -1;
      return TokPrec;
    }

    /// Error* - These are little helper functions for error handling.
    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }

    static ExprAST *ParseExpression();

    /// identifierexpr
    ///   ::= identifier
    ///   ::= identifier '(' expression* ')'
    static ExprAST *ParseIdentifierExpr() {
      std::string IdName = IdentifierStr;

      getNextToken();  // eat identifier.

      if (CurTok != '(') // Simple variable ref.
        return new VariableExprAST(IdName);

      // Call.
      getNextToken();  // eat (
      std::vector<ExprAST*> Args;
      if (CurTok != ')') {
        while (1) {
          ExprAST *Arg = ParseExpression();
          if (!Arg) return 0;
          Args.push_back(Arg);

          if (CurTok == ')') break;

          if (CurTok != ',')
            return Error("Expected ')' or ',' in argument list");
          getNextToken();
        }
      }

      // Eat the ')'.
      getNextToken();

      return new CallExprAST(IdName, Args);
    }

    /// numberexpr ::= number
    static ExprAST *ParseNumberExpr() {
      ExprAST *Result = new NumberExprAST(NumVal);
      getNextToken(); // consume the number
      return Result;
    }

    /// parenexpr ::= '(' expression ')'
    static ExprAST *ParseParenExpr() {
      getNextToken();  // eat (.
      ExprAST *V = ParseExpression();
      if (!V) return 0;

      if (CurTok != ')')
        return Error("expected ')'");
      getNextToken();  // eat ).
      return V;
    }

    /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    static ExprAST *ParseIfExpr() {
      getNextToken();  // eat the if.

      // condition.
      ExprAST *Cond = ParseExpression();
      if (!Cond) return 0;

      if (CurTok != tok_then)
        return Error("expected then");
      getNextToken();  // eat the then

      ExprAST *Then = ParseExpression();
      if (Then == 0) return 0;

      if (CurTok != tok_else)
        return Error("expected else");

      getNextToken();

      ExprAST *Else = ParseExpression();
      if (!Else) return 0;

      return new IfExprAST(Cond, Then, Else);
    }

    /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    static ExprAST *ParseForExpr() {
      getNextToken();  // eat the for.

      if (CurTok != tok_identifier)
        return Error("expected identifier after for");

      std::string IdName = IdentifierStr;
      getNextToken();  // eat identifier.

      if (CurTok != '=')
        return Error("expected '=' after for");
      getNextToken();  // eat '='.


      ExprAST *Start = ParseExpression();
      if (Start == 0) return 0;
      if (CurTok != ',')
        return Error("expected ',' after for start value");
      getNextToken();

      ExprAST *End = ParseExpression();
      if (End == 0) return 0;

      // The step value is optional.
      ExprAST *Step = 0;
      if (CurTok == ',') {
        getNextToken();
        Step = ParseExpression();
        if (Step == 0) return 0;
      }

      if (CurTok != tok_in)
        return Error("expected 'in' after for");
      getNextToken();  // eat 'in'.

      ExprAST *Body = ParseExpression();
      if (Body == 0) return 0;

      return new ForExprAST(IdName, Start, End, Step, Body);
    }

    /// primary
    ///   ::= identifierexpr
    ///   ::= numberexpr
    ///   ::= parenexpr
    ///   ::= ifexpr
    ///   ::= forexpr
    static ExprAST *ParsePrimary() {
      switch (CurTok) {
      default: return Error("unknown token when expecting an expression");
      case tok_identifier: return ParseIdentifierExpr();
      case tok_number:     return ParseNumberExpr();
      case '(':            return ParseParenExpr();
      case tok_if:         return ParseIfExpr();
      case tok_for:        return ParseForExpr();
      }
    }

    /// unary
    ///   ::= primary
    ///   ::= '!' unary
    static ExprAST *ParseUnary() {
      // If the current token is not an operator, it must be a primary expr.
      if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
        return ParsePrimary();

      // If this is a unary operator, read it.
      int Opc = CurTok;
      getNextToken();
      if (ExprAST *Operand = ParseUnary())
        return new UnaryExprAST(Opc, Operand);
      return 0;
    }

    /// binoprhs
    ///   ::= ('+' unary)*
    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
      // If this is a binop, find its precedence.
      while (1) {
        int TokPrec = GetTokPrecedence();

        // If this is a binop that binds at least as tightly as the current binop,
        // consume it, otherwise we are done.
        if (TokPrec < ExprPrec)
          return LHS;

        // Okay, we know this is a binop.
        int BinOp = CurTok;
        getNextToken();  // eat binop

        // Parse the unary expression after the binary operator.
        ExprAST *RHS = ParseUnary();
        if (!RHS) return 0;

        // If BinOp binds less tightly with RHS than the operator after RHS, let
        // the pending operator take RHS as its LHS.
        int NextPrec = GetTokPrecedence();
        if (TokPrec < NextPrec) {
          RHS = ParseBinOpRHS(TokPrec+1, RHS);
          if (RHS == 0) return 0;
        }

        // Merge LHS/RHS.
        LHS = new BinaryExprAST(BinOp, LHS, RHS);
      }
    }

    /// expression
    ///   ::= unary binoprhs
    ///
    static ExprAST *ParseExpression() {
      ExprAST *LHS = ParseUnary();
      if (!LHS) return 0;

      return ParseBinOpRHS(0, LHS);
    }

    /// prototype
    ///   ::= id '(' id* ')'
    ///   ::= binary LETTER number? (id, id)
    ///   ::= unary LETTER (id)
    static PrototypeAST *ParsePrototype() {
      std::string FnName;

      unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
      unsigned BinaryPrecedence = 30;

      switch (CurTok) {
      default:
        return ErrorP("Expected function name in prototype");
      case tok_identifier:
        FnName = IdentifierStr;
        Kind = 0;
        getNextToken();
        break;
      case tok_unary:
        getNextToken();
        if (!isascii(CurTok))
          return ErrorP("Expected unary operator");
        FnName = "unary";
        FnName += (char)CurTok;
        Kind = 1;
        getNextToken();
        break;
      case tok_binary:
        getNextToken();
        if (!isascii(CurTok))
          return ErrorP("Expected binary operator");
        FnName = "binary";
        FnName += (char)CurTok;
        Kind = 2;
        getNextToken();

        // Read the precedence if present.
        if (CurTok == tok_number) {
          if (NumVal < 1 || NumVal > 100)
            return ErrorP("Invalid precedecnce: must be 1..100");
          BinaryPrecedence = (unsigned)NumVal;
          getNextToken();
        }
        break;
      }

      if (CurTok != '(')
        return ErrorP("Expected '(' in prototype");

      std::vector<std::string> ArgNames;
      while (getNextToken() == tok_identifier)
        ArgNames.push_back(IdentifierStr);
      if (CurTok != ')')
        return ErrorP("Expected ')' in prototype");

      // success.
      getNextToken();  // eat ')'.

      // Verify right number of names for operator.
      if (Kind && ArgNames.size() != Kind)
        return ErrorP("Invalid number of operands for operator");

      return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    }

    /// definition ::= 'def' prototype expression
    static FunctionAST *ParseDefinition() {
      getNextToken();  // eat def.
      PrototypeAST *Proto = ParsePrototype();
      if (Proto == 0) return 0;

      if (ExprAST *E = ParseExpression())
        return new FunctionAST(Proto, E);
      return 0;
    }

    /// toplevelexpr ::= expression
    static FunctionAST *ParseTopLevelExpr() {
      if (ExprAST *E = ParseExpression()) {
        // Make an anonymous proto.
        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
        return new FunctionAST(Proto, E);
      }
      return 0;
    }

    /// external ::= 'extern' prototype
    static PrototypeAST *ParseExtern() {
      getNextToken();  // eat extern.
      return ParsePrototype();
    }

    //===----------------------------------------------------------------------===//
    // Code Generation
    //===----------------------------------------------------------------------===//

    static Module *TheModule;
    static IRBuilder<> Builder(getGlobalContext());
    static std::map<std::string, Value*> NamedValues;
    static FunctionPassManager *TheFPM;

    Value *ErrorV(const char *Str) { Error(Str); return 0; }

    Value *NumberExprAST::Codegen() {
      return ConstantFP::get(getGlobalContext(), APFloat(Val));
    }

    Value *VariableExprAST::Codegen() {
      // Look this variable up in the function.
      Value *V = NamedValues[Name];
      return V ? V : ErrorV("Unknown variable name");
    }

    Value *UnaryExprAST::Codegen() {
      Value *OperandV = Operand->Codegen();
      if (OperandV == 0) return 0;

      Function *F = TheModule->getFunction(std::string("unary")+Opcode);
      if (F == 0)
        return ErrorV("Unknown unary operator");

      return Builder.CreateCall(F, OperandV, "unop");
    }

    Value *BinaryExprAST::Codegen() {
      Value *L = LHS->Codegen();
      Value *R = RHS->Codegen();
      if (L == 0 || R == 0) return 0;

      switch (Op) {
      case '+': return Builder.CreateFAdd(L, R, "addtmp");
      case '-': return Builder.CreateFSub(L, R, "subtmp");
      case '*': return Builder.CreateFMul(L, R, "multmp");
      case '<':
        L = Builder.CreateFCmpULT(L, R, "cmptmp");
        // Convert bool 0/1 to double 0.0 or 1.0
        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
                                    "booltmp");
      default: break;
      }

      // If it wasn't a builtin binary operator, it must be a user defined one. Emit
      // a call to it.
      Function *F = TheModule->getFunction(std::string("binary")+Op);
      assert(F && "binary operator not found!");

      Value *Ops[2] = { L, R };
      return Builder.CreateCall(F, Ops, "binop");
    }

    Value *CallExprAST::Codegen() {
      // Look up the name in the global module table.
      Function *CalleeF = TheModule->getFunction(Callee);
      if (CalleeF == 0)
        return ErrorV("Unknown function referenced");

      // If argument mismatch error.
      if (CalleeF->arg_size() != Args.size())
        return ErrorV("Incorrect # arguments passed");

      std::vector<Value*> ArgsV;
      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
        ArgsV.push_back(Args[i]->Codegen());
        if (ArgsV.back() == 0) return 0;
      }

      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    }

    Value *IfExprAST::Codegen() {
      Value *CondV = Cond->Codegen();
      if (CondV == 0) return 0;

      // Convert condition to a bool by comparing equal to 0.0.
      CondV = Builder.CreateFCmpONE(CondV,
                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
                                    "ifcond");

      Function *TheFunction = Builder.GetInsertBlock()->getParent();

      // Create blocks for the then and else cases.  Insert the 'then' block at the
      // end of the function.
      BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
      BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
      BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");

      Builder.CreateCondBr(CondV, ThenBB, ElseBB);

      // Emit then value.
      Builder.SetInsertPoint(ThenBB);

      Value *ThenV = Then->Codegen();
      if (ThenV == 0) return 0;

      Builder.CreateBr(MergeBB);
      // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
      ThenBB = Builder.GetInsertBlock();

      // Emit else block.
      TheFunction->getBasicBlockList().push_back(ElseBB);
      Builder.SetInsertPoint(ElseBB);

      Value *ElseV = Else->Codegen();
      if (ElseV == 0) return 0;

      Builder.CreateBr(MergeBB);
      // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
      ElseBB = Builder.GetInsertBlock();

      // Emit merge block.
      TheFunction->getBasicBlockList().push_back(MergeBB);
      Builder.SetInsertPoint(MergeBB);
      PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
                                      "iftmp");

      PN->addIncoming(ThenV, ThenBB);
      PN->addIncoming(ElseV, ElseBB);
      return PN;
    }

    Value *ForExprAST::Codegen() {
      // Output this as:
      //   ...
      //   start = startexpr
      //   goto loop
      // loop:
      //   variable = phi [start, loopheader], [nextvariable, loopend]
      //   ...
      //   bodyexpr
      //   ...
      // loopend:
      //   step = stepexpr
      //   nextvariable = variable + step
      //   endcond = endexpr
      //   br endcond, loop, endloop
      // outloop:

      // Emit the start code first, without 'variable' in scope.
      Value *StartVal = Start->Codegen();
      if (StartVal == 0) return 0;

      // Make the new basic block for the loop header, inserting after current
      // block.
      Function *TheFunction = Builder.GetInsertBlock()->getParent();
      BasicBlock *PreheaderBB = Builder.GetInsertBlock();
      BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);

      // Insert an explicit fall through from the current block to the LoopBB.
      Builder.CreateBr(LoopBB);

      // Start insertion in LoopBB.
      Builder.SetInsertPoint(LoopBB);

      // Start the PHI node with an entry for Start.
      PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
      Variable->addIncoming(StartVal, PreheaderBB);

      // Within the loop, the variable is defined equal to the PHI node.  If it
      // shadows an existing variable, we have to restore it, so save it now.
      Value *OldVal = NamedValues[VarName];
      NamedValues[VarName] = Variable;

      // Emit the body of the loop.  This, like any other expr, can change the
      // current BB.  Note that we ignore the value computed by the body, but don't
      // allow an error.
      if (Body->Codegen() == 0)
        return 0;

      // Emit the step value.
      Value *StepVal;
      if (Step) {
        StepVal = Step->Codegen();
        if (StepVal == 0) return 0;
      } else {
        // If not specified, use 1.0.
        StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
      }

      Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

      // Compute the end condition.
      Value *EndCond = End->Codegen();
      if (EndCond == 0) return EndCond;

      // Convert condition to a bool by comparing equal to 0.0.
      EndCond = Builder.CreateFCmpONE(EndCond,
                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
                                      "loopcond");

      // Create the "after loop" block and insert it.
      BasicBlock *LoopEndBB = Builder.GetInsertBlock();
      BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);

      // Insert the conditional branch into the end of LoopEndBB.
      Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

      // Any new code will be inserted in AfterBB.
      Builder.SetInsertPoint(AfterBB);

      // Add a new entry to the PHI node for the backedge.
      Variable->addIncoming(NextVar, LoopEndBB);

      // Restore the unshadowed variable.
      if (OldVal)
        NamedValues[VarName] = OldVal;
      else
        NamedValues.erase(VarName);


      // for expr always returns 0.0.
      return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
    }

    Function *PrototypeAST::Codegen() {
      // Make the function type:  double(double,double) etc.
      std::vector<Type*> Doubles(Args.size(),
                                 Type::getDoubleTy(getGlobalContext()));
      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
                                           Doubles, false);

      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);

      // If F conflicted, there was already something named 'Name'.  If it has a
      // body, don't allow redefinition or reextern.
      if (F->getName() != Name) {
        // Delete the one we just made and get the existing one.
        F->eraseFromParent();
        F = TheModule->getFunction(Name);

        // If F already has a body, reject this.
        if (!F->empty()) {
          ErrorF("redefinition of function");
          return 0;
        }

        // If F took a different number of args, reject.
        if (F->arg_size() != Args.size()) {
          ErrorF("redefinition of function with different # args");
          return 0;
        }
      }

      // Set names for all arguments.
      unsigned Idx = 0;
      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
           ++AI, ++Idx) {
        AI->setName(Args[Idx]);

        // Add arguments to variable symbol table.
        NamedValues[Args[Idx]] = AI;
      }

      return F;
    }

    Function *FunctionAST::Codegen() {
      NamedValues.clear();

      Function *TheFunction = Proto->Codegen();
      if (TheFunction == 0)
        return 0;

      // If this is an operator, install it.
      if (Proto->isBinaryOp())
        BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();

      // Create a new basic block to start insertion into.
      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
      Builder.SetInsertPoint(BB);

      if (Value *RetVal = Body->Codegen()) {
        // Finish off the function.
        Builder.CreateRet(RetVal);

        // Validate the generated code, checking for consistency.
        verifyFunction(*TheFunction);

        // Optimize the function.
        TheFPM->run(*TheFunction);

        return TheFunction;
      }

      // Error reading body, remove function.
      TheFunction->eraseFromParent();

      if (Proto->isBinaryOp())
        BinopPrecedence.erase(Proto->getOperatorName());
      return 0;
    }

    //===----------------------------------------------------------------------===//
    // Top-Level parsing and JIT Driver
    //===----------------------------------------------------------------------===//

    static ExecutionEngine *TheExecutionEngine;

    static void HandleDefinition() {
      if (FunctionAST *F = ParseDefinition()) {
        if (Function *LF = F->Codegen()) {
          fprintf(stderr, "Read function definition:");
          LF->dump();
        }
      } else {
        // Skip token for error recovery.
        getNextToken();
      }
    }

    static void HandleExtern() {
      if (PrototypeAST *P = ParseExtern()) {
        if (Function *F = P->Codegen()) {
          fprintf(stderr, "Read extern: ");
          F->dump();
        }
      } else {
        // Skip token for error recovery.
        getNextToken();
      }
    }

    static void HandleTopLevelExpression() {
      // Evaluate a top-level expression into an anonymous function.
      if (FunctionAST *F = ParseTopLevelExpr()) {
        if (Function *LF = F->Codegen()) {
          // JIT the function, returning a function pointer.
          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);

          // Cast it to the right type (takes no arguments, returns a double) so we
          // can call it as a native function.
          double (*FP)() = (double (*)())(intptr_t)FPtr;
          fprintf(stderr, "Evaluated to %f\n", FP());
        }
      } else {
        // Skip token for error recovery.
        getNextToken();
      }
    }

    /// top ::= definition | external | expression | ';'
    static void MainLoop() {
      while (1) {
        fprintf(stderr, "ready> ");
        switch (CurTok) {
        case tok_eof:    return;
        case ';':        getNextToken(); break;  // ignore top-level semicolons.
        case tok_def:    HandleDefinition(); break;
        case tok_extern: HandleExtern(); break;
        default:         HandleTopLevelExpression(); break;
        }
      }
    }

    //===----------------------------------------------------------------------===//
    // "Library" functions that can be "extern'd" from user code.
    //===----------------------------------------------------------------------===//

    /// putchard - putchar that takes a double and returns 0.
    extern "C"
    double putchard(double X) {
      putchar((char)X);
      return 0;
    }

    /// printd - printf that takes a double prints it as "%f\n", returning 0.
    extern "C"
    double printd(double X) {
      printf("%f\n", X);
      return 0;
    }

    //===----------------------------------------------------------------------===//
    // Main driver code.
    //===----------------------------------------------------------------------===//

    int main() {
      InitializeNativeTarget();
      LLVMContext &Context = getGlobalContext();

      // Install standard binary operators.
      // 1 is lowest precedence.
      BinopPrecedence['<'] = 10;
      BinopPrecedence['+'] = 20;
      BinopPrecedence['-'] = 20;
      BinopPrecedence['*'] = 40;  // highest.

      // Prime the first token.
      fprintf(stderr, "ready> ");
      getNextToken();

      // Make the module, which holds all the code.
      TheModule = new Module("my cool jit", Context);

      // Create the JIT.  This takes ownership of the module.
      std::string ErrStr;
      TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
      if (!TheExecutionEngine) {
        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
        exit(1);
      }

      FunctionPassManager OurFPM(TheModule);

      // Set up the optimizer pipeline.  Start with registering info about how the
      // target lays out data structures.
      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
      // Provide basic AliasAnalysis support for GVN.
      OurFPM.add(createBasicAliasAnalysisPass());
      // Do simple "peephole" optimizations and bit-twiddling optzns.
      OurFPM.add(createInstructionCombiningPass());
      // Reassociate expressions.
      OurFPM.add(createReassociatePass());
      // Eliminate Common SubExpressions.
      OurFPM.add(createGVNPass());
      // Simplify the control flow graph (deleting unreachable blocks, etc).
      OurFPM.add(createCFGSimplificationPass());

      OurFPM.doInitialization();

      // Set the global so the code gen can use this.
      TheFPM = &OurFPM;

      // Run the main "interpreter loop" now.
      MainLoop();

      TheFPM = 0;

      // Print out all of the generated code.
      TheModule->dump();

      return 0;
    }

`Next: Extending the language: mutable variables / SSA
construction <LangImpl7.html>`_