aboutsummaryrefslogtreecommitdiffstats
path: root/examples/Kaleidoscope/Orc/fully_lazy/toy.cpp
blob: b5822921b400115ee8552c6b47b2829af1ee7aa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <iomanip>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2, tok_extern = -3,

  // primary
  tok_identifier = -4, tok_number = -5,
  
  // control
  tok_if = -6, tok_then = -7, tok_else = -8,
  tok_for = -9, tok_in = -10,
  
  // operators
  tok_binary = -11, tok_unary = -12,
  
  // var definition
  tok_var = -13
};

static std::string IdentifierStr;  // Filled in if tok_identifier
static double NumVal;              // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();

  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def") return tok_def;
    if (IdentifierStr == "extern") return tok_extern;
    if (IdentifierStr == "if") return tok_if;
    if (IdentifierStr == "then") return tok_then;
    if (IdentifierStr == "else") return tok_else;
    if (IdentifierStr == "for") return tok_for;
    if (IdentifierStr == "in") return tok_in;
    if (IdentifierStr == "binary") return tok_binary;
    if (IdentifierStr == "unary") return tok_unary;
    if (IdentifierStr == "var") return tok_var;
    return tok_identifier;
  }

  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), 0);
    return tok_number;
  }

  if (LastChar == '#') {
    // Comment until end of line.
    do LastChar = getchar();
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    
    if (LastChar != EOF)
      return gettok();
  }
  
  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;

  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//

class IRGenContext;

/// ExprAST - Base class for all expression nodes.
struct ExprAST {
  virtual ~ExprAST() {}
  virtual Value *IRGen(IRGenContext &C) const = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
struct NumberExprAST : public ExprAST {
  NumberExprAST(double Val) : Val(Val) {}
  Value *IRGen(IRGenContext &C) const override;

  double Val;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
struct VariableExprAST : public ExprAST {
  VariableExprAST(std::string Name) : Name(std::move(Name)) {}
  Value *IRGen(IRGenContext &C) const override;

  std::string Name;
};

/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
  UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) 
    : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}

  Value *IRGen(IRGenContext &C) const override;

  char Opcode;
  std::unique_ptr<ExprAST> Operand;
};

/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
  BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
                std::unique_ptr<ExprAST> RHS) 
    : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

  Value *IRGen(IRGenContext &C) const override;

  char Op;
  std::unique_ptr<ExprAST> LHS, RHS;
};

/// CallExprAST - Expression class for function calls.
struct CallExprAST : public ExprAST {
  CallExprAST(std::string CalleeName,
              std::vector<std::unique_ptr<ExprAST>> Args)
    : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}

  Value *IRGen(IRGenContext &C) const override;

  std::string CalleeName;
  std::vector<std::unique_ptr<ExprAST>> Args;
};

/// IfExprAST - Expression class for if/then/else.
struct IfExprAST : public ExprAST {
  IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
            std::unique_ptr<ExprAST> Else)
    : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
  Value *IRGen(IRGenContext &C) const override;

  std::unique_ptr<ExprAST> Cond, Then, Else;
};

/// ForExprAST - Expression class for for/in.
struct ForExprAST : public ExprAST {
  ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
             std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
             std::unique_ptr<ExprAST> Body)
    : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
      Step(std::move(Step)), Body(std::move(Body)) {}

  Value *IRGen(IRGenContext &C) const override;

  std::string VarName;
  std::unique_ptr<ExprAST> Start, End, Step, Body;
};

/// VarExprAST - Expression class for var/in
struct VarExprAST : public ExprAST {
  typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
  typedef std::vector<Binding> BindingList;

  VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
    : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}

  Value *IRGen(IRGenContext &C) const override;

  BindingList VarBindings;
  std::unique_ptr<ExprAST> Body;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
struct PrototypeAST {
  PrototypeAST(std::string Name, std::vector<std::string> Args,
               bool IsOperator = false, unsigned Precedence = 0)
    : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
      Precedence(Precedence) {}

  Function *IRGen(IRGenContext &C) const;
  void CreateArgumentAllocas(Function *F, IRGenContext &C);

  bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
  bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
  
  char getOperatorName() const {
    assert(isUnaryOp() || isBinaryOp());
    return Name[Name.size()-1];
  }

  std::string Name;
  std::vector<std::string> Args;
  bool IsOperator;
  unsigned Precedence;  // Precedence if a binary op.
};

/// FunctionAST - This class represents a function definition itself.
struct FunctionAST {
  FunctionAST(std::unique_ptr<PrototypeAST> Proto,
              std::unique_ptr<ExprAST> Body)
    : Proto(std::move(Proto)), Body(std::move(Body)) {}

  Function *IRGen(IRGenContext &C) const;

  std::unique_ptr<PrototypeAST> Proto;
  std::unique_ptr<ExprAST> Body;
};

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
  return CurTok = gettok();
}

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;
  
  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0) return -1;
  return TokPrec;
}

template <typename T>
std::unique_ptr<T> ErrorU(const std::string &Str) {
  std::cerr << "Error: " << Str << "\n";
  return nullptr;
}

template <typename T>
T* ErrorP(const std::string &Str) {
  std::cerr << "Error: " << Str << "\n";
  return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;
  
  getNextToken();  // eat identifier.
  
  if (CurTok != '(') // Simple variable ref.
    return llvm::make_unique<VariableExprAST>(IdName);
  
  // Call.
  getNextToken();  // eat (
  std::vector<std::unique_ptr<ExprAST>> Args;
  if (CurTok != ')') {
    while (1) {
      auto Arg = ParseExpression();
      if (!Arg) return nullptr;
      Args.push_back(std::move(Arg));

      if (CurTok == ')') break;

      if (CurTok != ',')
        return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();
  
  return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// numberexpr ::= number
static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
  auto Result = llvm::make_unique<NumberExprAST>(NumVal);
  getNextToken(); // consume the number
  return Result;
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
  getNextToken();  // eat (.
  auto V = ParseExpression();
  if (!V)
    return nullptr;
  
  if (CurTok != ')')
    return ErrorU<ExprAST>("expected ')'");
  getNextToken();  // eat ).
  return V;
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
  getNextToken();  // eat the if.
  
  // condition.
  auto Cond = ParseExpression();
  if (!Cond)
    return nullptr;
  
  if (CurTok != tok_then)
    return ErrorU<ExprAST>("expected then");
  getNextToken();  // eat the then
  
  auto Then = ParseExpression();
  if (!Then)
    return nullptr;
  
  if (CurTok != tok_else)
    return ErrorU<ExprAST>("expected else");
  
  getNextToken();
  
  auto Else = ParseExpression();
  if (!Else)
    return nullptr;
  
  return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
                                      std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ForExprAST> ParseForExpr() {
  getNextToken();  // eat the for.

  if (CurTok != tok_identifier)
    return ErrorU<ForExprAST>("expected identifier after for");
  
  std::string IdName = IdentifierStr;
  getNextToken();  // eat identifier.
  
  if (CurTok != '=')
    return ErrorU<ForExprAST>("expected '=' after for");
  getNextToken();  // eat '='.
  
  
  auto Start = ParseExpression();
  if (!Start)
    return nullptr;
  if (CurTok != ',')
    return ErrorU<ForExprAST>("expected ',' after for start value");
  getNextToken();
  
  auto End = ParseExpression();
  if (!End)
    return nullptr;
  
  // The step value is optional.
  std::unique_ptr<ExprAST> Step;
  if (CurTok == ',') {
    getNextToken();
    Step = ParseExpression();
    if (!Step)
      return nullptr;
  }
  
  if (CurTok != tok_in)
    return ErrorU<ForExprAST>("expected 'in' after for");
  getNextToken();  // eat 'in'.
  
  auto Body = ParseExpression();
  if (Body)
    return nullptr;

  return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
                                       std::move(Step), std::move(Body));
}

/// varexpr ::= 'var' identifier ('=' expression)? 
//                    (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
  getNextToken();  // eat the var.

  VarExprAST::BindingList VarBindings;

  // At least one variable name is required.
  if (CurTok != tok_identifier)
    return ErrorU<VarExprAST>("expected identifier after var");
  
  while (1) {
    std::string Name = IdentifierStr;
    getNextToken();  // eat identifier.

    // Read the optional initializer.
    std::unique_ptr<ExprAST> Init;
    if (CurTok == '=') {
      getNextToken(); // eat the '='.
      
      Init = ParseExpression();
      if (!Init)
        return nullptr;
    }
    
    VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
    
    // End of var list, exit loop.
    if (CurTok != ',') break;
    getNextToken(); // eat the ','.
    
    if (CurTok != tok_identifier)
      return ErrorU<VarExprAST>("expected identifier list after var");
  }
  
  // At this point, we have to have 'in'.
  if (CurTok != tok_in)
    return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
  getNextToken();  // eat 'in'.
  
  auto Body = ParseExpression();
  if (!Body)
    return nullptr;
  
  return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
///   ::= ifexpr
///   ::= forexpr
///   ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
  switch (CurTok) {
  default: return ErrorU<ExprAST>("unknown token when expecting an expression");
  case tok_identifier: return ParseIdentifierExpr();
  case tok_number:     return ParseNumberExpr();
  case '(':            return ParseParenExpr();
  case tok_if:         return ParseIfExpr();
  case tok_for:        return ParseForExpr();
  case tok_var:        return ParseVarExpr();
  }
}

/// unary
///   ::= primary
///   ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
  // If the current token is not an operator, it must be a primary expr.
  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    return ParsePrimary();
  
  // If this is a unary operator, read it.
  int Opc = CurTok;
  getNextToken();
  if (auto Operand = ParseUnary())
    return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
  return nullptr;
}

/// binoprhs
///   ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
                                              std::unique_ptr<ExprAST> LHS) {
  // If this is a binop, find its precedence.
  while (1) {
    int TokPrec = GetTokPrecedence();
    
    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;
    
    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken();  // eat binop
    
    // Parse the unary expression after the binary operator.
    auto RHS = ParseUnary();
    if (!RHS)
      return nullptr;
    
    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
      if (!RHS)
        return nullptr;
    }
    
    // Merge LHS/RHS.
    LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
  }
}

/// expression
///   ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
  auto LHS = ParseUnary();
  if (!LHS)
    return nullptr;
  
  return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
///   ::= id '(' id* ')'
///   ::= binary LETTER number? (id, id)
///   ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
  std::string FnName;
  
  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
  unsigned BinaryPrecedence = 30;
  
  switch (CurTok) {
  default:
    return ErrorU<PrototypeAST>("Expected function name in prototype");
  case tok_identifier:
    FnName = IdentifierStr;
    Kind = 0;
    getNextToken();
    break;
  case tok_unary:
    getNextToken();
    if (!isascii(CurTok))
      return ErrorU<PrototypeAST>("Expected unary operator");
    FnName = "unary";
    FnName += (char)CurTok;
    Kind = 1;
    getNextToken();
    break;
  case tok_binary:
    getNextToken();
    if (!isascii(CurTok))
      return ErrorU<PrototypeAST>("Expected binary operator");
    FnName = "binary";
    FnName += (char)CurTok;
    Kind = 2;
    getNextToken();
    
    // Read the precedence if present.
    if (CurTok == tok_number) {
      if (NumVal < 1 || NumVal > 100)
        return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
      BinaryPrecedence = (unsigned)NumVal;
      getNextToken();
    }
    break;
  }
  
  if (CurTok != '(')
    return ErrorU<PrototypeAST>("Expected '(' in prototype");
  
  std::vector<std::string> ArgNames;
  while (getNextToken() == tok_identifier)
    ArgNames.push_back(IdentifierStr);
  if (CurTok != ')')
    return ErrorU<PrototypeAST>("Expected ')' in prototype");
  
  // success.
  getNextToken();  // eat ')'.
  
  // Verify right number of names for operator.
  if (Kind && ArgNames.size() != Kind)
    return ErrorU<PrototypeAST>("Invalid number of operands for operator");
  
  return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
                                         BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
  getNextToken();  // eat def.
  auto Proto = ParsePrototype();
  if (!Proto)
    return nullptr;

  if (auto Body = ParseExpression())
    return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
  return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
  if (auto E = ParseExpression()) {
    // Make an anonymous proto.
    auto Proto =
      llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
    return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
  }
  return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
  getNextToken();  // eat extern.
  return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

// FIXME: Obviously we can do better than this
std::string GenerateUniqueName(const std::string &Root) {
  static int i = 0;
  std::ostringstream NameStream;
  NameStream << Root << ++i;
  return NameStream.str();
}

std::string MakeLegalFunctionName(std::string Name)
{
  std::string NewName;
  assert(!Name.empty() && "Base name must not be empty");

  // Start with what we have
  NewName = Name;

  // Look for a numberic first character
  if (NewName.find_first_of("0123456789") == 0) {
    NewName.insert(0, 1, 'n');
  }

  // Replace illegal characters with their ASCII equivalent
  std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
  size_t pos;
  while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    std::ostringstream NumStream;
    NumStream << (int)NewName.at(pos);
    NewName = NewName.replace(pos, 1, NumStream.str());
  }

  return NewName;
}

class SessionContext {
public:
  SessionContext(LLVMContext &C)
    : Context(C), TM(EngineBuilder().selectTarget()) {}
  LLVMContext& getLLVMContext() const { return Context; }
  TargetMachine& getTarget() { return *TM; }
  void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
  PrototypeAST* getPrototypeAST(const std::string &Name);
private:
  typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
  
  LLVMContext &Context;
  std::unique_ptr<TargetMachine> TM;
      
  PrototypeMap Prototypes;
};

void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
  Prototypes[P->Name] = std::move(P);
}

PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
  PrototypeMap::iterator I = Prototypes.find(Name);
  if (I != Prototypes.end())
    return I->second.get();
  return nullptr;
}

class IRGenContext {
public:

  IRGenContext(SessionContext &S)
    : Session(S),
      M(new Module(GenerateUniqueName("jit_module_"),
                   Session.getLLVMContext())),
      Builder(Session.getLLVMContext()) {
    M->setDataLayout(*Session.getTarget().getDataLayout());
  }

  SessionContext& getSession() { return Session; }
  Module& getM() const { return *M; }
  std::unique_ptr<Module> takeM() { return std::move(M); }
  IRBuilder<>& getBuilder() { return Builder; }
  LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
  Function* getPrototype(const std::string &Name);

  std::map<std::string, AllocaInst*> NamedValues;
private:
  SessionContext &Session;
  std::unique_ptr<Module> M;
  IRBuilder<> Builder;
};

Function* IRGenContext::getPrototype(const std::string &Name) {
  if (Function *ExistingProto = M->getFunction(Name))
    return ExistingProto;
  if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
    return ProtoAST->IRGen(*this);
  return nullptr;
}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function.  This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
                                          const std::string &VarName) {
  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
                 TheFunction->getEntryBlock().begin());
  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
                           VarName.c_str());
}

Value *NumberExprAST::IRGen(IRGenContext &C) const {
  return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
}

Value *VariableExprAST::IRGen(IRGenContext &C) const {
  // Look this variable up in the function.
  Value *V = C.NamedValues[Name];

  if (V == 0)
    return ErrorP<Value>("Unknown variable name '" + Name + "'");

  // Load the value.
  return C.getBuilder().CreateLoad(V, Name.c_str());
}

Value *UnaryExprAST::IRGen(IRGenContext &C) const {
  if (Value *OperandV = Operand->IRGen(C)) {
    std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
    if (Function *F = C.getPrototype(FnName))
      return C.getBuilder().CreateCall(F, OperandV, "unop");
    return ErrorP<Value>("Unknown unary operator");
  }

  // Could not codegen operand - return null.
  return nullptr;
}

Value *BinaryExprAST::IRGen(IRGenContext &C) const {
  // Special case '=' because we don't want to emit the LHS as an expression.
  if (Op == '=') {
    // Assignment requires the LHS to be an identifier.
    auto LHSVar = static_cast<VariableExprAST&>(*LHS);
    // Codegen the RHS.
    Value *Val = RHS->IRGen(C);
    if (!Val) return nullptr;

    // Look up the name.
    if (auto Variable = C.NamedValues[LHSVar.Name]) {
      C.getBuilder().CreateStore(Val, Variable);
      return Val;
    }
    return ErrorP<Value>("Unknown variable name");
  }
  
  Value *L = LHS->IRGen(C);
  Value *R = RHS->IRGen(C);
  if (!L || !R) return nullptr;
  
  switch (Op) {
  case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
  case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
  case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
  case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
  case '<':
    L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
    // Convert bool 0/1 to double 0.0 or 1.0
    return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
                                "booltmp");
  default: break;
  }
  
  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
  // a call to it.
  std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
  if (Function *F = C.getPrototype(FnName)) {
    Value *Ops[] = { L, R };
    return C.getBuilder().CreateCall(F, Ops, "binop");
  }
   
  return ErrorP<Value>("Unknown binary operator");
}

Value *CallExprAST::IRGen(IRGenContext &C) const {
  // Look up the name in the global module table.
  if (auto CalleeF = C.getPrototype(CalleeName)) {
    // If argument mismatch error.
    if (CalleeF->arg_size() != Args.size())
      return ErrorP<Value>("Incorrect # arguments passed");

    std::vector<Value*> ArgsV;
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      ArgsV.push_back(Args[i]->IRGen(C));
      if (!ArgsV.back()) return nullptr;
    }
    
    return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
  }

  return ErrorP<Value>("Unknown function referenced");
}

Value *IfExprAST::IRGen(IRGenContext &C) const {
  Value *CondV = Cond->IRGen(C);
  if (!CondV) return nullptr;
  
  // Convert condition to a bool by comparing equal to 0.0.
  ConstantFP *FPZero = 
    ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
  CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
  
  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
  
  // Create blocks for the then and else cases.  Insert the 'then' block at the
  // end of the function.
  BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
  BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
  BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
  
  C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
  
  // Emit then value.
  C.getBuilder().SetInsertPoint(ThenBB);
  
  Value *ThenV = Then->IRGen(C);
  if (!ThenV) return nullptr;
  
  C.getBuilder().CreateBr(MergeBB);
  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
  ThenBB = C.getBuilder().GetInsertBlock();
  
  // Emit else block.
  TheFunction->getBasicBlockList().push_back(ElseBB);
  C.getBuilder().SetInsertPoint(ElseBB);
  
  Value *ElseV = Else->IRGen(C);
  if (!ElseV) return nullptr;
  
  C.getBuilder().CreateBr(MergeBB);
  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
  ElseBB = C.getBuilder().GetInsertBlock();
  
  // Emit merge block.
  TheFunction->getBasicBlockList().push_back(MergeBB);
  C.getBuilder().SetInsertPoint(MergeBB);
  PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
                                  "iftmp");
  
  PN->addIncoming(ThenV, ThenBB);
  PN->addIncoming(ElseV, ElseBB);
  return PN;
}

Value *ForExprAST::IRGen(IRGenContext &C) const {
  // Output this as:
  //   var = alloca double
  //   ...
  //   start = startexpr
  //   store start -> var
  //   goto loop
  // loop: 
  //   ...
  //   bodyexpr
  //   ...
  // loopend:
  //   step = stepexpr
  //   endcond = endexpr
  //
  //   curvar = load var
  //   nextvar = curvar + step
  //   store nextvar -> var
  //   br endcond, loop, endloop
  // outloop:
  
  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();

  // Create an alloca for the variable in the entry block.
  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
  
  // Emit the start code first, without 'variable' in scope.
  Value *StartVal = Start->IRGen(C);
  if (!StartVal) return nullptr;
  
  // Store the value into the alloca.
  C.getBuilder().CreateStore(StartVal, Alloca);
  
  // Make the new basic block for the loop header, inserting after current
  // block.
  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
  
  // Insert an explicit fall through from the current block to the LoopBB.
  C.getBuilder().CreateBr(LoopBB);

  // Start insertion in LoopBB.
  C.getBuilder().SetInsertPoint(LoopBB);
  
  // Within the loop, the variable is defined equal to the PHI node.  If it
  // shadows an existing variable, we have to restore it, so save it now.
  AllocaInst *OldVal = C.NamedValues[VarName];
  C.NamedValues[VarName] = Alloca;
  
  // Emit the body of the loop.  This, like any other expr, can change the
  // current BB.  Note that we ignore the value computed by the body, but don't
  // allow an error.
  if (!Body->IRGen(C))
    return nullptr;
  
  // Emit the step value.
  Value *StepVal;
  if (Step) {
    StepVal = Step->IRGen(C);
    if (!StepVal) return nullptr;
  } else {
    // If not specified, use 1.0.
    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
  }
  
  // Compute the end condition.
  Value *EndCond = End->IRGen(C);
  if (EndCond == 0) return EndCond;
  
  // Reload, increment, and restore the alloca.  This handles the case where
  // the body of the loop mutates the variable.
  Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
  Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
  C.getBuilder().CreateStore(NextVar, Alloca);
  
  // Convert condition to a bool by comparing equal to 0.0.
  EndCond = C.getBuilder().CreateFCmpONE(EndCond, 
                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
                                  "loopcond");
  
  // Create the "after loop" block and insert it.
  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
  
  // Insert the conditional branch into the end of LoopEndBB.
  C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
  
  // Any new code will be inserted in AfterBB.
  C.getBuilder().SetInsertPoint(AfterBB);
  
  // Restore the unshadowed variable.
  if (OldVal)
    C.NamedValues[VarName] = OldVal;
  else
    C.NamedValues.erase(VarName);

  
  // for expr always returns 0.0.
  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}

Value *VarExprAST::IRGen(IRGenContext &C) const {
  std::vector<AllocaInst *> OldBindings;
  
  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();

  // Register all variables and emit their initializer.
  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
    auto &VarName = VarBindings[i].first;
    auto &Init = VarBindings[i].second;
    
    // Emit the initializer before adding the variable to scope, this prevents
    // the initializer from referencing the variable itself, and permits stuff
    // like this:
    //  var a = 1 in
    //    var a = a in ...   # refers to outer 'a'.
    Value *InitVal;
    if (Init) {
      InitVal = Init->IRGen(C);
      if (!InitVal) return nullptr;
    } else // If not specified, use 0.0.
      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
    
    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    C.getBuilder().CreateStore(InitVal, Alloca);

    // Remember the old variable binding so that we can restore the binding when
    // we unrecurse.
    OldBindings.push_back(C.NamedValues[VarName]);
    
    // Remember this binding.
    C.NamedValues[VarName] = Alloca;
  }
  
  // Codegen the body, now that all vars are in scope.
  Value *BodyVal = Body->IRGen(C);
  if (!BodyVal) return nullptr;
  
  // Pop all our variables from scope.
  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
    C.NamedValues[VarBindings[i].first] = OldBindings[i];

  // Return the body computation.
  return BodyVal;
}

Function *PrototypeAST::IRGen(IRGenContext &C) const {
  std::string FnName = MakeLegalFunctionName(Name);

  // Make the function type:  double(double,double) etc.
  std::vector<Type*> Doubles(Args.size(), 
                             Type::getDoubleTy(getGlobalContext()));
  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
                                       Doubles, false);
  Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
                                 &C.getM());

  // If F conflicted, there was already something named 'FnName'.  If it has a
  // body, don't allow redefinition or reextern.
  if (F->getName() != FnName) {
    // Delete the one we just made and get the existing one.
    F->eraseFromParent();
    F = C.getM().getFunction(Name);
    
    // If F already has a body, reject this.
    if (!F->empty()) {
      ErrorP<Function>("redefinition of function");
      return nullptr;
    }
    
    // If F took a different number of args, reject.
    if (F->arg_size() != Args.size()) {
      ErrorP<Function>("redefinition of function with different # args");
      return nullptr;
    }
  }
  
  // Set names for all arguments.
  unsigned Idx = 0;
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
       ++AI, ++Idx)
    AI->setName(Args[Idx]);
    
  return F;
}

/// CreateArgumentAllocas - Create an alloca for each argument and register the
/// argument in the symbol table so that references to it will succeed.
void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
  Function::arg_iterator AI = F->arg_begin();
  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
    // Create an alloca for this variable.
    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);

    // Store the initial value into the alloca.
    C.getBuilder().CreateStore(AI, Alloca);

    // Add arguments to variable symbol table.
    C.NamedValues[Args[Idx]] = Alloca;
  }
}

Function *FunctionAST::IRGen(IRGenContext &C) const {
  C.NamedValues.clear();
  
  Function *TheFunction = Proto->IRGen(C);
  if (!TheFunction)
    return nullptr;
  
  // If this is an operator, install it.
  if (Proto->isBinaryOp())
    BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
  
  // Create a new basic block to start insertion into.
  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
  C.getBuilder().SetInsertPoint(BB);
  
  // Add all arguments to the symbol table and create their allocas.
  Proto->CreateArgumentAllocas(TheFunction, C);

  if (Value *RetVal = Body->IRGen(C)) {
    // Finish off the function.
    C.getBuilder().CreateRet(RetVal);

    // Validate the generated code, checking for consistency.
    verifyFunction(*TheFunction);

    return TheFunction;
  }
  
  // Error reading body, remove function.
  TheFunction->eraseFromParent();

  if (Proto->isBinaryOp())
    BinopPrecedence.erase(Proto->getOperatorName());
  return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
                                           const FunctionAST &F) {
  IRGenContext C(S);
  auto LF = F.IRGen(C);
  if (!LF)
    return nullptr;
#ifndef MINIMAL_STDERR_OUTPUT
  fprintf(stderr, "Read function definition:");
  LF->dump();
#endif
  return C.takeM();
}

template <typename T>
static std::vector<T> singletonSet(T t) {
  std::vector<T> Vec;
  Vec.push_back(std::move(t));
  return Vec;
}

static void EarthShatteringKaboom() {
  fprintf(stderr, "Earth shattering kaboom.");
  exit(1);
}

class KaleidoscopeJIT {
public:
  typedef ObjectLinkingLayer<> ObjLayerT;
  typedef IRCompileLayer<ObjLayerT> CompileLayerT;
  typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
  typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;

  KaleidoscopeJIT(SessionContext &Session)
    : Session(Session),
      Mang(Session.getTarget().getDataLayout()),
      CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
      LazyEmitLayer(CompileLayer),
      CompileCallbacks(LazyEmitLayer, CCMgrMemMgr, Session.getLLVMContext(),
                       reinterpret_cast<uintptr_t>(EarthShatteringKaboom),
                       64) {}

  std::string mangle(const std::string &Name) {
    std::string MangledName;
    {
      raw_string_ostream MangledNameStream(MangledName);
      Mang.getNameWithPrefix(MangledNameStream, Name);
    }
    return MangledName;
  }

  void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
    std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
    FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
  }

  ModuleHandleT addModule(std::unique_ptr<Module> M) {
    // We need a memory manager to allocate memory and resolve symbols for this
    // new module. Create one that resolves symbols by looking back into the
    // JIT.
    auto Resolver = createLambdaResolver(
                      [&](const std::string &Name) {
                        // First try to find 'Name' within the JIT.
                        if (auto Symbol = findSymbol(Name))
                          return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
                                                         Symbol.getFlags());

                        // If we don't already have a definition of 'Name' then search
                        // the ASTs.
                        return searchFunctionASTs(Name);
                      },
                      [](const std::string &S) { return nullptr; } );

    return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
                                      make_unique<SectionMemoryManager>(),
                                      std::move(Resolver));
  }

  void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }

  JITSymbol findSymbol(const std::string &Name) {
    return LazyEmitLayer.findSymbol(Name, true);
  }

  JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
    return LazyEmitLayer.findSymbolIn(H, Name, true);
  }

  JITSymbol findUnmangledSymbol(const std::string &Name) {
    return findSymbol(mangle(Name));
  }

  JITSymbol findUnmangledSymbolIn(ModuleHandleT H, const std::string &Name) {
    return findSymbolIn(H, mangle(Name));
  }

private:

  // This method searches the FunctionDefs map for a definition of 'Name'. If it
  // finds one it generates a stub for it and returns the address of the stub.
  RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
    auto DefI = FunctionDefs.find(Name);
    if (DefI == FunctionDefs.end())
      return 0;

    // Return the address of the stub.
    // Take the FunctionAST out of the map.
    auto FnAST = std::move(DefI->second);
    FunctionDefs.erase(DefI);

    // IRGen the AST, add it to the JIT, and return the address for it.
    auto H = irGenStub(std::move(FnAST));
    auto Sym = findSymbolIn(H, Name);
    return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
  }

  // This method will take the AST for a function definition and IR-gen a stub
  // for that function that will, on first call, IR-gen the actual body of the
  // function.
  ModuleHandleT irGenStub(std::unique_ptr<FunctionAST> FnAST) {
    // Step 1) IRGen a prototype for the stub. This will have the same type as
    //         the function.
    IRGenContext C(Session);
    Function *F = FnAST->Proto->IRGen(C);

    // Step 2) Get a compile callback that can be used to compile the body of
    //         the function. The resulting CallbackInfo type will let us set the
    //         compile and update actions for the callback, and get a pointer to
    //         the jit trampoline that we need to call to trigger those actions.
    auto CallbackInfo =
      CompileCallbacks.getCompileCallback(F->getContext());

    // Step 3) Create a stub that will indirectly call the body of this
    //         function once it is compiled. Initially, set the function
    //         pointer for the indirection to point at the trampoline.
    std::string BodyPtrName = (F->getName() + "$address").str();
    GlobalVariable *FunctionBodyPointer =
      createImplPointer(*F->getType(), *F->getParent(), BodyPtrName,
                        createIRTypedAddress(*F->getFunctionType(),
                                             CallbackInfo.getAddress()));
    makeStub(*F, *FunctionBodyPointer);

    // Step 4) Add the module containing the stub to the JIT.
    auto H = addModule(C.takeM());

    // Step 5) Set the compile and update actions.
    //
    //   The compile action will IRGen the function and add it to the JIT, then
    // request its address, which will trigger codegen. Since we don't need the
    // AST after this, we pass ownership of the AST into the compile action:
    // compile actions (and update actions) are deleted after they're run, so
    // this will free the AST for us.
    //
    //   The update action will update FunctionBodyPointer to point at the newly
    // compiled function.
    std::shared_ptr<FunctionAST> Fn = std::move(FnAST);
    CallbackInfo.setCompileAction([this, Fn]() {
      auto H = addModule(IRGen(Session, *Fn));
      return findUnmangledSymbolIn(H, Fn->Proto->Name).getAddress();
    });
    CallbackInfo.setUpdateAction(
        getLocalFPUpdater(LazyEmitLayer, H, mangle(BodyPtrName)));

    return H;
  }

  SessionContext &Session;
  Mangler Mang;
  SectionMemoryManager CCMgrMemMgr;
  ObjLayerT ObjectLayer;
  CompileLayerT CompileLayer;
  LazyEmitLayerT LazyEmitLayer;

  std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;

  JITCompileCallbackManager<LazyEmitLayerT, OrcX86_64> CompileCallbacks;
};

static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
  if (auto F = ParseDefinition()) {
    S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
    J.addFunctionAST(std::move(F));
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleExtern(SessionContext &S) {
  if (auto P = ParseExtern())
    S.addPrototypeAST(std::move(P));
  else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
  // Evaluate a top-level expression into an anonymous function.
  if (auto F = ParseTopLevelExpr()) {
    IRGenContext C(S);
    if (auto ExprFunc = F->IRGen(C)) {
#ifndef MINIMAL_STDERR_OUTPUT
      std::cerr << "Expression function:\n";
      ExprFunc->dump();
#endif
      // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
      // this module as soon as we've executed Function ExprFunc.
      auto H = J.addModule(C.takeM());

      // Get the address of the JIT'd function in memory.
      auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
      
      // Cast it to the right type (takes no arguments, returns a double) so we
      // can call it as a native function.
      double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
#ifdef MINIMAL_STDERR_OUTPUT
      FP();
#else
      std::cerr << "Evaluated to " << FP() << "\n";
#endif

      // Remove the function.
      J.removeModule(H);
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  SessionContext S(getGlobalContext());
  KaleidoscopeJIT J(S);

  while (1) {
    switch (CurTok) {
    case tok_eof:    return;
    case ';':        getNextToken(); continue;  // ignore top-level semicolons.
    case tok_def:    HandleDefinition(S, J); break;
    case tok_extern: HandleExtern(S); break;
    default:         HandleTopLevelExpression(S, J); break;
    }
#ifndef MINIMAL_STDERR_OUTPUT
    std::cerr << "ready> ";
#endif
  }
}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" 
double putchard(double X) {
  putchar((char)X);
  return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" 
double printd(double X) {
  printf("%f", X);
  return 0;
}

extern "C" 
double printlf() {
  printf("\n");
  return 0;
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
  InitializeNativeTarget();
  InitializeNativeTargetAsmPrinter();
  InitializeNativeTargetAsmParser();

  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['='] = 2;
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['/'] = 40;
  BinopPrecedence['*'] = 40;  // highest.

  // Prime the first token.
#ifndef MINIMAL_STDERR_OUTPUT
  std::cerr << "ready> ";
#endif
  getNextToken();

  std::cerr << std::fixed;

  // Run the main "interpreter loop" now.
  MainLoop();

  return 0;
}