1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
//===-- Support/PostOrderIterator.h - Generic PostOrder iterator -*- C++ -*--=//
//
// This file builds on the Support/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_POSTORDER_ITERATOR_H
#define LLVM_SUPPORT_POSTORDER_ITERATOR_H
#include "Support/GraphTraits.h"
#include <iterator>
#include <stack>
#include <set>
template<class GraphT, class GT = GraphTraits<GraphT> >
class po_iterator : public std::forward_iterator<typename GT::NodeType,
ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
stack<pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) {
NodeType *BB = *VisitStack.top().second++;
if (!Visited.count(BB)) { // If the block is not visited...
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() { /* End is when stack is empty */ }
public:
typedef po_iterator<GraphT, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT G) { return _Self(); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
VisitStack.pop();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
// Provide global definitions of inverse post order iterators...
template <class T>
struct ipo_iterator : public po_iterator<Inverse<T> > {
ipo_iterator(const po_iterator<Inverse<T> > &V) :po_iterator<Inverse<T> >(V){}
};
template <class T>
ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(T G){
return ipo_iterator<T>::end(G);
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than neccesary.
//
// This class should be used like this:
// {
// cfg::ReversePostOrderTraversal RPOT(MethodPtr); // Expensive to create
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
typedef reverse_iterator<vector<BasicBlock*>::iterator> rpo_iterator;
// TODO: FIXME: ReversePostOrderTraversal is not generic!
class ReversePostOrderTraversal {
vector<BasicBlock*> Blocks; // Block list in normal PO order
inline void Initialize(BasicBlock *BB) {
copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
}
public:
inline ReversePostOrderTraversal(Method *M) {
Initialize(M->front());
}
inline ReversePostOrderTraversal(BasicBlock *BB) {
Initialize(BB);
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
#endif
|