aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/APInt.h
blob: 88aa9956d93216fdb894d7ca1b71a77e8d3343c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values and operations on them.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_APINT_H
#define LLVM_APINT_H

#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>

namespace llvm {
  class Serializer;
  class Deserializer;
  class FoldingSetNodeID;
  class raw_ostream;
  class StringRef;

  template<typename T>
  class SmallVectorImpl;

  // An unsigned host type used as a single part of a multi-part
  // bignum.
  typedef uint64_t integerPart;

  const unsigned int host_char_bit = 8;
  const unsigned int integerPartWidth = host_char_bit *
    static_cast<unsigned int>(sizeof(integerPart));

//===----------------------------------------------------------------------===//
//                              APInt Class
//===----------------------------------------------------------------------===//

/// APInt - This class represents arbitrary precision constant integral values.
/// It is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
///   * All bit, byte, and word positions are zero-based.
///   * Once the bit width is set, it doesn't change except by the Truncate,
///     SignExtend, or ZeroExtend operations.
///   * All binary operators must be on APInt instances of the same bit width.
///     Attempting to use these operators on instances with different bit
///     widths will yield an assertion.
///   * The value is stored canonically as an unsigned value. For operations
///     where it makes a difference, there are both signed and unsigned variants
///     of the operation. For example, sdiv and udiv. However, because the bit
///     widths must be the same, operations such as Mul and Add produce the same
///     results regardless of whether the values are interpreted as signed or
///     not.
///   * In general, the class tries to follow the style of computation that LLVM
///     uses in its IR. This simplifies its use for LLVM.
///
/// @brief Class for arbitrary precision integers.
class APInt {
  unsigned BitWidth;      ///< The number of bits in this APInt.

  /// This union is used to store the integer value. When the
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
  union {
    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
  };

  /// This enum is used to hold the constants we needed for APInt.
  enum {
    /// Bits in a word
    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
                          CHAR_BIT,
    /// Byte size of a word
    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
  };

  /// This constructor is used only internally for speed of construction of
  /// temporaries. It is unsafe for general use so it is not public.
  /// @brief Fast internal constructor
  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }

  /// @returns true if the number of bits <= 64, false otherwise.
  /// @brief Determine if this APInt just has one word to store value.
  bool isSingleWord() const {
    return BitWidth <= APINT_BITS_PER_WORD;
  }

  /// @returns the word position for the specified bit position.
  /// @brief Determine which word a bit is in.
  static unsigned whichWord(unsigned bitPosition) {
    return bitPosition / APINT_BITS_PER_WORD;
  }

  /// @returns the bit position in a word for the specified bit position
  /// in the APInt.
  /// @brief Determine which bit in a word a bit is in.
  static unsigned whichBit(unsigned bitPosition) {
    return bitPosition % APINT_BITS_PER_WORD;
  }

  /// This method generates and returns a uint64_t (word) mask for a single
  /// bit at a specific bit position. This is used to mask the bit in the
  /// corresponding word.
  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
  /// @brief Get a single bit mask.
  static uint64_t maskBit(unsigned bitPosition) {
    return 1ULL << whichBit(bitPosition);
  }

  /// This method is used internally to clear the to "N" bits in the high order
  /// word that are not used by the APInt. This is needed after the most
  /// significant word is assigned a value to ensure that those bits are
  /// zero'd out.
  /// @brief Clear unused high order bits
  APInt& clearUnusedBits() {
    // Compute how many bits are used in the final word
    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    if (wordBits == 0)
      // If all bits are used, we want to leave the value alone. This also
      // avoids the undefined behavior of >> when the shift is the same size as
      // the word size (64).
      return *this;

    // Mask out the high bits.
    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    if (isSingleWord())
      VAL &= mask;
    else
      pVal[getNumWords() - 1] &= mask;
    return *this;
  }

  /// @returns the corresponding word for the specified bit position.
  /// @brief Get the word corresponding to a bit position
  uint64_t getWord(unsigned bitPosition) const {
    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
  }

  /// This is used by the constructors that take string arguments.
  /// @brief Convert a char array into an APInt
  void fromString(unsigned numBits, const StringRef &str, uint8_t radix);

  /// This is used by the toString method to divide by the radix. It simply
  /// provides a more convenient form of divide for internal use since KnuthDiv
  /// has specific constraints on its inputs. If those constraints are not met
  /// then it provides a simpler form of divide.
  /// @brief An internal division function for dividing APInts.
  static void divide(const APInt LHS, unsigned lhsWords,
                     const APInt &RHS, unsigned rhsWords,
                     APInt *Quotient, APInt *Remainder);

  /// out-of-line slow case for inline constructor
  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);

  /// out-of-line slow case for inline copy constructor
  void initSlowCase(const APInt& that);

  /// out-of-line slow case for shl
  APInt shlSlowCase(unsigned shiftAmt) const;

  /// out-of-line slow case for operator&
  APInt AndSlowCase(const APInt& RHS) const;

  /// out-of-line slow case for operator|
  APInt OrSlowCase(const APInt& RHS) const;

  /// out-of-line slow case for operator^
  APInt XorSlowCase(const APInt& RHS) const;

  /// out-of-line slow case for operator=
  APInt& AssignSlowCase(const APInt& RHS);

  /// out-of-line slow case for operator==
  bool EqualSlowCase(const APInt& RHS) const;

  /// out-of-line slow case for operator==
  bool EqualSlowCase(uint64_t Val) const;

  /// out-of-line slow case for countLeadingZeros
  unsigned countLeadingZerosSlowCase() const;

  /// out-of-line slow case for countTrailingOnes
  unsigned countTrailingOnesSlowCase() const;

  /// out-of-line slow case for countPopulation
  unsigned countPopulationSlowCase() const;

public:
  /// @name Constructors
  /// @{
  /// If isSigned is true then val is treated as if it were a signed value
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
  /// the range of val are zero filled).
  /// @param numBits the bit width of the constructed APInt
  /// @param val the initial value of the APInt
  /// @param isSigned how to treat signedness of val
  /// @brief Create a new APInt of numBits width, initialized as val.
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    : BitWidth(numBits), VAL(0) {
    assert(BitWidth && "bitwidth too small");
    if (isSingleWord())
      VAL = val;
    else
      initSlowCase(numBits, val, isSigned);
    clearUnusedBits();
  }

  /// Note that numWords can be smaller or larger than the corresponding bit
  /// width but any extraneous bits will be dropped.
  /// @param numBits the bit width of the constructed APInt
  /// @param numWords the number of words in bigVal
  /// @param bigVal a sequence of words to form the initial value of the APInt
  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);

  /// This constructor interprets the string \arg str in the given radix. The
  /// interpretation stops when the first character that is not suitable for the
  /// radix is encountered, or the end of the string. Acceptable radix values
  /// are 2, 8, 10 and 16. It is an error for the value implied by the string to
  /// require more bits than numBits.
  ///
  /// @param numBits the bit width of the constructed APInt
  /// @param str the string to be interpreted
  /// @param radix the radix to use for the conversion 
  /// @brief Construct an APInt from a string representation.
  APInt(unsigned numBits, const StringRef &str, uint8_t radix);

  /// Simply makes *this a copy of that.
  /// @brief Copy Constructor.
  APInt(const APInt& that)
    : BitWidth(that.BitWidth), VAL(0) {
    assert(BitWidth && "bitwidth too small");
    if (isSingleWord())
      VAL = that.VAL;
    else
      initSlowCase(that);
  }

  /// @brief Destructor.
  ~APInt() {
    if (!isSingleWord())
      delete [] pVal;
  }

  /// Default constructor that creates an uninitialized APInt.  This is useful
  ///  for object deserialization (pair this with the static method Read).
  explicit APInt() : BitWidth(1) {}

  /// Profile - Used to insert APInt objects, or objects that contain APInt
  ///  objects, into FoldingSets.
  void Profile(FoldingSetNodeID& id) const;

  /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
  void Emit(Serializer& S) const;

  /// @brief Used by the Bitcode deserializer to deserialize APInts.
  void Read(Deserializer& D);

  /// @}
  /// @name Value Tests
  /// @{
  /// This tests the high bit of this APInt to determine if it is set.
  /// @returns true if this APInt is negative, false otherwise
  /// @brief Determine sign of this APInt.
  bool isNegative() const {
    return (*this)[BitWidth - 1];
  }

  /// This tests the high bit of the APInt to determine if it is unset.
  /// @brief Determine if this APInt Value is non-negative (>= 0)
  bool isNonNegative() const {
    return !isNegative();
  }

  /// This tests if the value of this APInt is positive (> 0). Note
  /// that 0 is not a positive value.
  /// @returns true if this APInt is positive.
  /// @brief Determine if this APInt Value is positive.
  bool isStrictlyPositive() const {
    return isNonNegative() && (*this) != 0;
  }

  /// This checks to see if the value has all bits of the APInt are set or not.
  /// @brief Determine if all bits are set
  bool isAllOnesValue() const {
    return countPopulation() == BitWidth;
  }

  /// This checks to see if the value of this APInt is the maximum unsigned
  /// value for the APInt's bit width.
  /// @brief Determine if this is the largest unsigned value.
  bool isMaxValue() const {
    return countPopulation() == BitWidth;
  }

  /// This checks to see if the value of this APInt is the maximum signed
  /// value for the APInt's bit width.
  /// @brief Determine if this is the largest signed value.
  bool isMaxSignedValue() const {
    return BitWidth == 1 ? VAL == 0 :
                          !isNegative() && countPopulation() == BitWidth - 1;
  }

  /// This checks to see if the value of this APInt is the minimum unsigned
  /// value for the APInt's bit width.
  /// @brief Determine if this is the smallest unsigned value.
  bool isMinValue() const {
    return countPopulation() == 0;
  }

  /// This checks to see if the value of this APInt is the minimum signed
  /// value for the APInt's bit width.
  /// @brief Determine if this is the smallest signed value.
  bool isMinSignedValue() const {
    return BitWidth == 1 ? VAL == 1 :
                           isNegative() && countPopulation() == 1;
  }

  /// @brief Check if this APInt has an N-bits unsigned integer value.
  bool isIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    if (N >= getBitWidth())
      return true;

    if (isSingleWord())
      return VAL == (VAL & (~0ULL >> (64 - N)));
    APInt Tmp(N, getNumWords(), pVal);
    Tmp.zext(getBitWidth());
    return Tmp == (*this);
  }

  /// @brief Check if this APInt has an N-bits signed integer value.
  bool isSignedIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    return getMinSignedBits() <= N;
  }

  /// @returns true if the argument APInt value is a power of two > 0.
  bool isPowerOf2() const;

  /// isSignBit - Return true if this is the value returned by getSignBit.
  bool isSignBit() const { return isMinSignedValue(); }

  /// This converts the APInt to a boolean value as a test against zero.
  /// @brief Boolean conversion function.
  bool getBoolValue() const {
    return *this != 0;
  }

  /// getLimitedValue - If this value is smaller than the specified limit,
  /// return it, otherwise return the limit value.  This causes the value
  /// to saturate to the limit.
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
      Limit :  getZExtValue();
  }

  /// @}
  /// @name Value Generators
  /// @{
  /// @brief Gets maximum unsigned value of APInt for specific bit width.
  static APInt getMaxValue(unsigned numBits) {
    return APInt(numBits, 0).set();
  }

  /// @brief Gets maximum signed value of APInt for a specific bit width.
  static APInt getSignedMaxValue(unsigned numBits) {
    return APInt(numBits, 0).set().clear(numBits - 1);
  }

  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
  static APInt getMinValue(unsigned numBits) {
    return APInt(numBits, 0);
  }

  /// @brief Gets minimum signed value of APInt for a specific bit width.
  static APInt getSignedMinValue(unsigned numBits) {
    return APInt(numBits, 0).set(numBits - 1);
  }

  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
  /// it helps code readability when we want to get a SignBit.
  /// @brief Get the SignBit for a specific bit width.
  static APInt getSignBit(unsigned BitWidth) {
    return getSignedMinValue(BitWidth);
  }

  /// @returns the all-ones value for an APInt of the specified bit-width.
  /// @brief Get the all-ones value.
  static APInt getAllOnesValue(unsigned numBits) {
    return APInt(numBits, 0).set();
  }

  /// @returns the '0' value for an APInt of the specified bit-width.
  /// @brief Get the '0' value.
  static APInt getNullValue(unsigned numBits) {
    return APInt(numBits, 0);
  }

  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the low bits and right shift to the least significant bit.
  /// @returns the high "numBits" bits of this APInt.
  APInt getHiBits(unsigned numBits) const;

  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the high bits.
  /// @returns the low "numBits" bits of this APInt.
  APInt getLoBits(unsigned numBits) const;

  /// Constructs an APInt value that has a contiguous range of bits set. The
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
  /// @param numBits the intended bit width of the result
  /// @param loBit the index of the lowest bit set.
  /// @param hiBit the index of the highest bit set.
  /// @returns An APInt value with the requested bits set.
  /// @brief Get a value with a block of bits set.
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    assert(hiBit <= numBits && "hiBit out of range");
    assert(loBit < numBits && "loBit out of range");
    if (hiBit < loBit)
      return getLowBitsSet(numBits, hiBit) |
             getHighBitsSet(numBits, numBits-loBit);
    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
  }

  /// Constructs an APInt value that has the top hiBitsSet bits set.
  /// @param numBits the bitwidth of the result
  /// @param hiBitsSet the number of high-order bits set in the result.
  /// @brief Get a value with high bits set
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    assert(hiBitsSet <= numBits && "Too many bits to set!");
    // Handle a degenerate case, to avoid shifting by word size
    if (hiBitsSet == 0)
      return APInt(numBits, 0);
    unsigned shiftAmt = numBits - hiBitsSet;
    // For small values, return quickly
    if (numBits <= APINT_BITS_PER_WORD)
      return APInt(numBits, ~0ULL << shiftAmt);
    return (~APInt(numBits, 0)).shl(shiftAmt);
  }

  /// Constructs an APInt value that has the bottom loBitsSet bits set.
  /// @param numBits the bitwidth of the result
  /// @param loBitsSet the number of low-order bits set in the result.
  /// @brief Get a value with low bits set
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    assert(loBitsSet <= numBits && "Too many bits to set!");
    // Handle a degenerate case, to avoid shifting by word size
    if (loBitsSet == 0)
      return APInt(numBits, 0);
    if (loBitsSet == APINT_BITS_PER_WORD)
      return APInt(numBits, -1ULL);
    // For small values, return quickly.
    if (numBits < APINT_BITS_PER_WORD)
      return APInt(numBits, (1ULL << loBitsSet) - 1);
    return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
  }

  /// The hash value is computed as the sum of the words and the bit width.
  /// @returns A hash value computed from the sum of the APInt words.
  /// @brief Get a hash value based on this APInt
  uint64_t getHashValue() const;

  /// This function returns a pointer to the internal storage of the APInt.
  /// This is useful for writing out the APInt in binary form without any
  /// conversions.
  const uint64_t* getRawData() const {
    if (isSingleWord())
      return &VAL;
    return &pVal[0];
  }

  /// @}
  /// @name Unary Operators
  /// @{
  /// @returns a new APInt value representing *this incremented by one
  /// @brief Postfix increment operator.
  const APInt operator++(int) {
    APInt API(*this);
    ++(*this);
    return API;
  }

  /// @returns *this incremented by one
  /// @brief Prefix increment operator.
  APInt& operator++();

  /// @returns a new APInt representing *this decremented by one.
  /// @brief Postfix decrement operator.
  const APInt operator--(int) {
    APInt API(*this);
    --(*this);
    return API;
  }

  /// @returns *this decremented by one.
  /// @brief Prefix decrement operator.
  APInt& operator--();

  /// Performs a bitwise complement operation on this APInt.
  /// @returns an APInt that is the bitwise complement of *this
  /// @brief Unary bitwise complement operator.
  APInt operator~() const {
    APInt Result(*this);
    Result.flip();
    return Result;
  }

  /// Negates *this using two's complement logic.
  /// @returns An APInt value representing the negation of *this.
  /// @brief Unary negation operator
  APInt operator-() const {
    return APInt(BitWidth, 0) - (*this);
  }

  /// Performs logical negation operation on this APInt.
  /// @returns true if *this is zero, false otherwise.
  /// @brief Logical negation operator.
  bool operator!() const;

  /// @}
  /// @name Assignment Operators
  /// @{
  /// @returns *this after assignment of RHS.
  /// @brief Copy assignment operator.
  APInt& operator=(const APInt& RHS) {
    // If the bitwidths are the same, we can avoid mucking with memory
    if (isSingleWord() && RHS.isSingleWord()) {
      VAL = RHS.VAL;
      BitWidth = RHS.BitWidth;
      return clearUnusedBits();
    }

    return AssignSlowCase(RHS);
  }

  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
  /// the bit width, the excess bits are truncated. If the bit width is larger
  /// than 64, the value is zero filled in the unspecified high order bits.
  /// @returns *this after assignment of RHS value.
  /// @brief Assignment operator.
  APInt& operator=(uint64_t RHS);

  /// Performs a bitwise AND operation on this APInt and RHS. The result is
  /// assigned to *this.
  /// @returns *this after ANDing with RHS.
  /// @brief Bitwise AND assignment operator.
  APInt& operator&=(const APInt& RHS);

  /// Performs a bitwise OR operation on this APInt and RHS. The result is
  /// assigned *this;
  /// @returns *this after ORing with RHS.
  /// @brief Bitwise OR assignment operator.
  APInt& operator|=(const APInt& RHS);

  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
  /// assigned to *this.
  /// @returns *this after XORing with RHS.
  /// @brief Bitwise XOR assignment operator.
  APInt& operator^=(const APInt& RHS);

  /// Multiplies this APInt by RHS and assigns the result to *this.
  /// @returns *this
  /// @brief Multiplication assignment operator.
  APInt& operator*=(const APInt& RHS);

  /// Adds RHS to *this and assigns the result to *this.
  /// @returns *this
  /// @brief Addition assignment operator.
  APInt& operator+=(const APInt& RHS);

  /// Subtracts RHS from *this and assigns the result to *this.
  /// @returns *this
  /// @brief Subtraction assignment operator.
  APInt& operator-=(const APInt& RHS);

  /// Shifts *this left by shiftAmt and assigns the result to *this.
  /// @returns *this after shifting left by shiftAmt
  /// @brief Left-shift assignment function.
  APInt& operator<<=(unsigned shiftAmt) {
    *this = shl(shiftAmt);
    return *this;
  }

  /// @}
  /// @name Binary Operators
  /// @{
  /// Performs a bitwise AND operation on *this and RHS.
  /// @returns An APInt value representing the bitwise AND of *this and RHS.
  /// @brief Bitwise AND operator.
  APInt operator&(const APInt& RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(getBitWidth(), VAL & RHS.VAL);
    return AndSlowCase(RHS);
  }
  APInt And(const APInt& RHS) const {
    return this->operator&(RHS);
  }

  /// Performs a bitwise OR operation on *this and RHS.
  /// @returns An APInt value representing the bitwise OR of *this and RHS.
  /// @brief Bitwise OR operator.
  APInt operator|(const APInt& RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(getBitWidth(), VAL | RHS.VAL);
    return OrSlowCase(RHS);
  }
  APInt Or(const APInt& RHS) const {
    return this->operator|(RHS);
  }

  /// Performs a bitwise XOR operation on *this and RHS.
  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
  /// @brief Bitwise XOR operator.
  APInt operator^(const APInt& RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(BitWidth, VAL ^ RHS.VAL);
    return XorSlowCase(RHS);
  }
  APInt Xor(const APInt& RHS) const {
    return this->operator^(RHS);
  }

  /// Multiplies this APInt by RHS and returns the result.
  /// @brief Multiplication operator.
  APInt operator*(const APInt& RHS) const;

  /// Adds RHS to this APInt and returns the result.
  /// @brief Addition operator.
  APInt operator+(const APInt& RHS) const;
  APInt operator+(uint64_t RHS) const {
    return (*this) + APInt(BitWidth, RHS);
  }

  /// Subtracts RHS from this APInt and returns the result.
  /// @brief Subtraction operator.
  APInt operator-(const APInt& RHS) const;
  APInt operator-(uint64_t RHS) const {
    return (*this) - APInt(BitWidth, RHS);
  }

  APInt operator<<(unsigned Bits) const {
    return shl(Bits);
  }

  APInt operator<<(const APInt &Bits) const {
    return shl(Bits);
  }

  /// Arithmetic right-shift this APInt by shiftAmt.
  /// @brief Arithmetic right-shift function.
  APInt ashr(unsigned shiftAmt) const;

  /// Logical right-shift this APInt by shiftAmt.
  /// @brief Logical right-shift function.
  APInt lshr(unsigned shiftAmt) const;

  /// Left-shift this APInt by shiftAmt.
  /// @brief Left-shift function.
  APInt shl(unsigned shiftAmt) const {
    assert(shiftAmt <= BitWidth && "Invalid shift amount");
    if (isSingleWord()) {
      if (shiftAmt == BitWidth)
        return APInt(BitWidth, 0); // avoid undefined shift results
      return APInt(BitWidth, VAL << shiftAmt);
    }
    return shlSlowCase(shiftAmt);
  }

  /// @brief Rotate left by rotateAmt.
  APInt rotl(unsigned rotateAmt) const;

  /// @brief Rotate right by rotateAmt.
  APInt rotr(unsigned rotateAmt) const;

  /// Arithmetic right-shift this APInt by shiftAmt.
  /// @brief Arithmetic right-shift function.
  APInt ashr(const APInt &shiftAmt) const;

  /// Logical right-shift this APInt by shiftAmt.
  /// @brief Logical right-shift function.
  APInt lshr(const APInt &shiftAmt) const;

  /// Left-shift this APInt by shiftAmt.
  /// @brief Left-shift function.
  APInt shl(const APInt &shiftAmt) const;

  /// @brief Rotate left by rotateAmt.
  APInt rotl(const APInt &rotateAmt) const;

  /// @brief Rotate right by rotateAmt.
  APInt rotr(const APInt &rotateAmt) const;

  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
  /// RHS are treated as unsigned quantities for purposes of this division.
  /// @returns a new APInt value containing the division result
  /// @brief Unsigned division operation.
  APInt udiv(const APInt& RHS) const;

  /// Signed divide this APInt by APInt RHS.
  /// @brief Signed division function for APInt.
  APInt sdiv(const APInt& RHS) const {
    if (isNegative())
      if (RHS.isNegative())
        return (-(*this)).udiv(-RHS);
      else
        return -((-(*this)).udiv(RHS));
    else if (RHS.isNegative())
      return -(this->udiv(-RHS));
    return this->udiv(RHS);
  }

  /// Perform an unsigned remainder operation on this APInt with RHS being the
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
  /// of this operation. Note that this is a true remainder operation and not
  /// a modulo operation because the sign follows the sign of the dividend
  /// which is *this.
  /// @returns a new APInt value containing the remainder result
  /// @brief Unsigned remainder operation.
  APInt urem(const APInt& RHS) const;

  /// Signed remainder operation on APInt.
  /// @brief Function for signed remainder operation.
  APInt srem(const APInt& RHS) const {
    if (isNegative())
      if (RHS.isNegative())
        return -((-(*this)).urem(-RHS));
      else
        return -((-(*this)).urem(RHS));
    else if (RHS.isNegative())
      return this->urem(-RHS);
    return this->urem(RHS);
  }

  /// Sometimes it is convenient to divide two APInt values and obtain both the
  /// quotient and remainder. This function does both operations in the same
  /// computation making it a little more efficient. The pair of input arguments
  /// may overlap with the pair of output arguments. It is safe to call
  /// udivrem(X, Y, X, Y), for example.
  /// @brief Dual division/remainder interface.
  static void udivrem(const APInt &LHS, const APInt &RHS,
                      APInt &Quotient, APInt &Remainder);

  static void sdivrem(const APInt &LHS, const APInt &RHS,
                      APInt &Quotient, APInt &Remainder)
  {
    if (LHS.isNegative()) {
      if (RHS.isNegative())
        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
      else
        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
      Quotient = -Quotient;
      Remainder = -Remainder;
    } else if (RHS.isNegative()) {
      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
      Quotient = -Quotient;
    } else {
      APInt::udivrem(LHS, RHS, Quotient, Remainder);
    }
  }

  /// @returns the bit value at bitPosition
  /// @brief Array-indexing support.
  bool operator[](unsigned bitPosition) const;

  /// @}
  /// @name Comparison Operators
  /// @{
  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  /// @brief Equality operator.
  bool operator==(const APInt& RHS) const {
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    if (isSingleWord())
      return VAL == RHS.VAL;
    return EqualSlowCase(RHS);
  }

  /// Compares this APInt with a uint64_t for the validity of the equality
  /// relationship.
  /// @returns true if *this == Val
  /// @brief Equality operator.
  bool operator==(uint64_t Val) const {
    if (isSingleWord())
      return VAL == Val;
    return EqualSlowCase(Val);
  }

  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  /// @returns true if *this == Val
  /// @brief Equality comparison.
  bool eq(const APInt &RHS) const {
    return (*this) == RHS;
  }

  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  /// @returns true if *this != Val
  /// @brief Inequality operator.
  bool operator!=(const APInt& RHS) const {
    return !((*this) == RHS);
  }

  /// Compares this APInt with a uint64_t for the validity of the inequality
  /// relationship.
  /// @returns true if *this != Val
  /// @brief Inequality operator.
  bool operator!=(uint64_t Val) const {
    return !((*this) == Val);
  }

  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  /// @returns true if *this != Val
  /// @brief Inequality comparison
  bool ne(const APInt &RHS) const {
    return !((*this) == RHS);
  }

  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the less-than relationship.
  /// @returns true if *this < RHS when both are considered unsigned.
  /// @brief Unsigned less than comparison
  bool ult(const APInt& RHS) const;

  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-than relationship.
  /// @returns true if *this < RHS when both are considered signed.
  /// @brief Signed less than comparison
  bool slt(const APInt& RHS) const;

  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the less-or-equal relationship.
  /// @returns true if *this <= RHS when both are considered unsigned.
  /// @brief Unsigned less or equal comparison
  bool ule(const APInt& RHS) const {
    return ult(RHS) || eq(RHS);
  }

  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-or-equal relationship.
  /// @returns true if *this <= RHS when both are considered signed.
  /// @brief Signed less or equal comparison
  bool sle(const APInt& RHS) const {
    return slt(RHS) || eq(RHS);
  }

  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the greater-than relationship.
  /// @returns true if *this > RHS when both are considered unsigned.
  /// @brief Unsigned greather than comparison
  bool ugt(const APInt& RHS) const {
    return !ult(RHS) && !eq(RHS);
  }

  /// Regards both *this and RHS as signed quantities and compares them for
  /// the validity of the greater-than relationship.
  /// @returns true if *this > RHS when both are considered signed.
  /// @brief Signed greather than comparison
  bool sgt(const APInt& RHS) const {
    return !slt(RHS) && !eq(RHS);
  }

  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the greater-or-equal relationship.
  /// @returns true if *this >= RHS when both are considered unsigned.
  /// @brief Unsigned greater or equal comparison
  bool uge(const APInt& RHS) const {
    return !ult(RHS);
  }

  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the greater-or-equal relationship.
  /// @returns true if *this >= RHS when both are considered signed.
  /// @brief Signed greather or equal comparison
  bool sge(const APInt& RHS) const {
    return !slt(RHS);
  }

  /// This operation tests if there are any pairs of corresponding bits
  /// between this APInt and RHS that are both set.
  bool intersects(const APInt &RHS) const {
    return (*this & RHS) != 0;
  }

  /// @}
  /// @name Resizing Operators
  /// @{
  /// Truncate the APInt to a specified width. It is an error to specify a width
  /// that is greater than or equal to the current width.
  /// @brief Truncate to new width.
  APInt &trunc(unsigned width);

  /// This operation sign extends the APInt to a new width. If the high order
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
  /// It is an error to specify a width that is less than or equal to the
  /// current width.
  /// @brief Sign extend to a new width.
  APInt &sext(unsigned width);

  /// This operation zero extends the APInt to a new width. The high order bits
  /// are filled with 0 bits.  It is an error to specify a width that is less
  /// than or equal to the current width.
  /// @brief Zero extend to a new width.
  APInt &zext(unsigned width);

  /// Make this APInt have the bit width given by \p width. The value is sign
  /// extended, truncated, or left alone to make it that width.
  /// @brief Sign extend or truncate to width
  APInt &sextOrTrunc(unsigned width);

  /// Make this APInt have the bit width given by \p width. The value is zero
  /// extended, truncated, or left alone to make it that width.
  /// @brief Zero extend or truncate to width
  APInt &zextOrTrunc(unsigned width);

  /// @}
  /// @name Bit Manipulation Operators
  /// @{
  /// @brief Set every bit to 1.
  APInt& set() {
    if (isSingleWord()) {
      VAL = -1ULL;
      return clearUnusedBits();
    }

    // Set all the bits in all the words.
    for (unsigned i = 0; i < getNumWords(); ++i)
      pVal[i] = -1ULL;
    // Clear the unused ones
    return clearUnusedBits();
  }

  /// Set the given bit to 1 whose position is given as "bitPosition".
  /// @brief Set a given bit to 1.
  APInt& set(unsigned bitPosition);

  /// @brief Set every bit to 0.
  APInt& clear() {
    if (isSingleWord())
      VAL = 0;
    else
      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
    return *this;
  }

  /// Set the given bit to 0 whose position is given as "bitPosition".
  /// @brief Set a given bit to 0.
  APInt& clear(unsigned bitPosition);

  /// @brief Toggle every bit to its opposite value.
  APInt& flip() {
    if (isSingleWord()) {
      VAL ^= -1ULL;
      return clearUnusedBits();
    }
    for (unsigned i = 0; i < getNumWords(); ++i)
      pVal[i] ^= -1ULL;
    return clearUnusedBits();
  }

  /// Toggle a given bit to its opposite value whose position is given
  /// as "bitPosition".
  /// @brief Toggles a given bit to its opposite value.
  APInt& flip(unsigned bitPosition);

  /// @}
  /// @name Value Characterization Functions
  /// @{

  /// @returns the total number of bits.
  unsigned getBitWidth() const {
    return BitWidth;
  }

  /// Here one word's bitwidth equals to that of uint64_t.
  /// @returns the number of words to hold the integer value of this APInt.
  /// @brief Get the number of words.
  unsigned getNumWords() const {
    return getNumWords(BitWidth);
  }

  /// Here one word's bitwidth equals to that of uint64_t.
  /// @returns the number of words to hold the integer value with a
  /// given bit width.
  /// @brief Get the number of words.
  static unsigned getNumWords(unsigned BitWidth) {
    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
  }

  /// This function returns the number of active bits which is defined as the
  /// bit width minus the number of leading zeros. This is used in several
  /// computations to see how "wide" the value is.
  /// @brief Compute the number of active bits in the value
  unsigned getActiveBits() const {
    return BitWidth - countLeadingZeros();
  }

  /// This function returns the number of active words in the value of this
  /// APInt. This is used in conjunction with getActiveData to extract the raw
  /// value of the APInt.
  unsigned getActiveWords() const {
    return whichWord(getActiveBits()-1) + 1;
  }

  /// Computes the minimum bit width for this APInt while considering it to be
  /// a signed (and probably negative) value. If the value is not negative,
  /// this function returns the same value as getActiveBits()+1. Otherwise, it
  /// returns the smallest bit width that will retain the negative value. For
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
  /// for -1, this function will always return 1.
  /// @brief Get the minimum bit size for this signed APInt
  unsigned getMinSignedBits() const {
    if (isNegative())
      return BitWidth - countLeadingOnes() + 1;
    return getActiveBits()+1;
  }

  /// This method attempts to return the value of this APInt as a zero extended
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
  /// uint64_t. Otherwise an assertion will result.
  /// @brief Get zero extended value
  uint64_t getZExtValue() const {
    if (isSingleWord())
      return VAL;
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
    return pVal[0];
  }

  /// This method attempts to return the value of this APInt as a sign extended
  /// int64_t. The bit width must be <= 64 or the value must fit within an
  /// int64_t. Otherwise an assertion will result.
  /// @brief Get sign extended value
  int64_t getSExtValue() const {
    if (isSingleWord())
      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
                     (APINT_BITS_PER_WORD - BitWidth);
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    return int64_t(pVal[0]);
  }

  /// This method determines how many bits are required to hold the APInt
  /// equivalent of the string given by \arg str.
  /// @brief Get bits required for string value.
  static unsigned getBitsNeeded(const StringRef& str, uint8_t radix);

  /// countLeadingZeros - This function is an APInt version of the
  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
  /// of zeros from the most significant bit to the first one bit.
  /// @returns BitWidth if the value is zero.
  /// @returns the number of zeros from the most significant bit to the first
  /// one bits.
  unsigned countLeadingZeros() const {
    if (isSingleWord()) {
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
      return CountLeadingZeros_64(VAL) - unusedBits;
    }
    return countLeadingZerosSlowCase();
  }

  /// countLeadingOnes - This function is an APInt version of the
  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
  /// of ones from the most significant bit to the first zero bit.
  /// @returns 0 if the high order bit is not set
  /// @returns the number of 1 bits from the most significant to the least
  /// @brief Count the number of leading one bits.
  unsigned countLeadingOnes() const;

  /// countTrailingZeros - This function is an APInt version of the
  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
  /// the number of zeros from the least significant bit to the first set bit.
  /// @returns BitWidth if the value is zero.
  /// @returns the number of zeros from the least significant bit to the first
  /// one bit.
  /// @brief Count the number of trailing zero bits.
  unsigned countTrailingZeros() const;

  /// countTrailingOnes - This function is an APInt version of the
  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
  /// the number of ones from the least significant bit to the first zero bit.
  /// @returns BitWidth if the value is all ones.
  /// @returns the number of ones from the least significant bit to the first
  /// zero bit.
  /// @brief Count the number of trailing one bits.
  unsigned countTrailingOnes() const {
    if (isSingleWord())
      return CountTrailingOnes_64(VAL);
    return countTrailingOnesSlowCase();
  }

  /// countPopulation - This function is an APInt version of the
  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
  /// of 1 bits in the APInt value.
  /// @returns 0 if the value is zero.
  /// @returns the number of set bits.
  /// @brief Count the number of bits set.
  unsigned countPopulation() const {
    if (isSingleWord())
      return CountPopulation_64(VAL);
    return countPopulationSlowCase();
  }

  /// @}
  /// @name Conversion Functions
  /// @{
  void print(raw_ostream &OS, bool isSigned) const;

  /// toString - Converts an APInt to a string and append it to Str.  Str is
  /// commonly a SmallString.
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed) const;

  /// Considers the APInt to be unsigned and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 or 16.
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, false);
  }

  /// Considers the APInt to be signed and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 or 16.
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, true);
  }

  /// toString - This returns the APInt as a std::string.  Note that this is an
  /// inefficient method.  It is better to pass in a SmallVector/SmallString
  /// to the methods above to avoid thrashing the heap for the string.
  std::string toString(unsigned Radix, bool Signed) const;


  /// @returns a byte-swapped representation of this APInt Value.
  APInt byteSwap() const;

  /// @brief Converts this APInt to a double value.
  double roundToDouble(bool isSigned) const;

  /// @brief Converts this unsigned APInt to a double value.
  double roundToDouble() const {
    return roundToDouble(false);
  }

  /// @brief Converts this signed APInt to a double value.
  double signedRoundToDouble() const {
    return roundToDouble(true);
  }

  /// The conversion does not do a translation from integer to double, it just
  /// re-interprets the bits as a double. Note that it is valid to do this on
  /// any bit width. Exactly 64 bits will be translated.
  /// @brief Converts APInt bits to a double
  double bitsToDouble() const {
    union {
      uint64_t I;
      double D;
    } T;
    T.I = (isSingleWord() ? VAL : pVal[0]);
    return T.D;
  }

  /// The conversion does not do a translation from integer to float, it just
  /// re-interprets the bits as a float. Note that it is valid to do this on
  /// any bit width. Exactly 32 bits will be translated.
  /// @brief Converts APInt bits to a double
  float bitsToFloat() const {
    union {
      unsigned I;
      float F;
    } T;
    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
    return T.F;
  }

  /// The conversion does not do a translation from double to integer, it just
  /// re-interprets the bits of the double. Note that it is valid to do this on
  /// any bit width but bits from V may get truncated.
  /// @brief Converts a double to APInt bits.
  APInt& doubleToBits(double V) {
    union {
      uint64_t I;
      double D;
    } T;
    T.D = V;
    if (isSingleWord())
      VAL = T.I;
    else
      pVal[0] = T.I;
    return clearUnusedBits();
  }

  /// The conversion does not do a translation from float to integer, it just
  /// re-interprets the bits of the float. Note that it is valid to do this on
  /// any bit width but bits from V may get truncated.
  /// @brief Converts a float to APInt bits.
  APInt& floatToBits(float V) {
    union {
      unsigned I;
      float F;
    } T;
    T.F = V;
    if (isSingleWord())
      VAL = T.I;
    else
      pVal[0] = T.I;
    return clearUnusedBits();
  }

  /// @}
  /// @name Mathematics Operations
  /// @{

  /// @returns the floor log base 2 of this APInt.
  unsigned logBase2() const {
    return BitWidth - 1 - countLeadingZeros();
  }

  /// @returns the ceil log base 2 of this APInt.
  unsigned ceilLogBase2() const {
    return BitWidth - (*this - 1).countLeadingZeros();
  }

  /// @returns the log base 2 of this APInt if its an exact power of two, -1
  /// otherwise
  int32_t exactLogBase2() const {
    if (!isPowerOf2())
      return -1;
    return logBase2();
  }

  /// @brief Compute the square root
  APInt sqrt() const;

  /// If *this is < 0 then return -(*this), otherwise *this;
  /// @brief Get the absolute value;
  APInt abs() const {
    if (isNegative())
      return -(*this);
    return *this;
  }

  /// @returns the multiplicative inverse for a given modulo.
  APInt multiplicativeInverse(const APInt& modulo) const;

  /// @}
  /// @name Support for division by constant
  /// @{

  /// Calculate the magic number for signed division by a constant.
  struct ms;
  ms magic() const;

  /// Calculate the magic number for unsigned division by a constant.
  struct mu;
  mu magicu() const;

  /// @}
  /// @name Building-block Operations for APInt and APFloat
  /// @{

  // These building block operations operate on a representation of
  // arbitrary precision, two's-complement, bignum integer values.
  // They should be sufficient to implement APInt and APFloat bignum
  // requirements.  Inputs are generally a pointer to the base of an
  // array of integer parts, representing an unsigned bignum, and a
  // count of how many parts there are.

  /// Sets the least significant part of a bignum to the input value,
  /// and zeroes out higher parts.  */
  static void tcSet(integerPart *, integerPart, unsigned int);

  /// Assign one bignum to another.
  static void tcAssign(integerPart *, const integerPart *, unsigned int);

  /// Returns true if a bignum is zero, false otherwise.
  static bool tcIsZero(const integerPart *, unsigned int);

  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
  static int tcExtractBit(const integerPart *, unsigned int bit);

  /// Copy the bit vector of width srcBITS from SRC, starting at bit
  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
  /// becomes the least significant bit of DST.  All high bits above
  /// srcBITS in DST are zero-filled.
  static void tcExtract(integerPart *, unsigned int dstCount,
                        const integerPart *,
                        unsigned int srcBits, unsigned int srcLSB);

  /// Set the given bit of a bignum.  Zero-based.
  static void tcSetBit(integerPart *, unsigned int bit);

  /// Returns the bit number of the least or most significant set bit
  /// of a number.  If the input number has no bits set -1U is
  /// returned.
  static unsigned int tcLSB(const integerPart *, unsigned int);
  static unsigned int tcMSB(const integerPart *parts, unsigned int n);

  /// Negate a bignum in-place.
  static void tcNegate(integerPart *, unsigned int);

  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
  /// carry flag.
  static integerPart tcAdd(integerPart *, const integerPart *,
                           integerPart carry, unsigned);

  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
  /// carry flag.
  static integerPart tcSubtract(integerPart *, const integerPart *,
                                integerPart carry, unsigned);

  ///  DST += SRC * MULTIPLIER + PART   if add is true
  ///  DST  = SRC * MULTIPLIER + PART   if add is false
  ///
  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
  ///  they must start at the same point, i.e. DST == SRC.
  ///
  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
  ///  returned.  Otherwise DST is filled with the least significant
  ///  DSTPARTS parts of the result, and if all of the omitted higher
  ///  parts were zero return zero, otherwise overflow occurred and
  ///  return one.
  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
                            integerPart multiplier, integerPart carry,
                            unsigned int srcParts, unsigned int dstParts,
                            bool add);

  /// DST = LHS * RHS, where DST has the same width as the operands
  /// and is filled with the least significant parts of the result.
  /// Returns one if overflow occurred, otherwise zero.  DST must be
  /// disjoint from both operands.
  static int tcMultiply(integerPart *, const integerPart *,
                        const integerPart *, unsigned);

  /// DST = LHS * RHS, where DST has width the sum of the widths of
  /// the operands.  No overflow occurs.  DST must be disjoint from
  /// both operands. Returns the number of parts required to hold the
  /// result.
  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
                                     const integerPart *, unsigned, unsigned);

  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
  /// Otherwise set LHS to LHS / RHS with the fractional part
  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
  ///
  ///  OLD_LHS = RHS * LHS + REMAINDER
  ///
  ///  SCRATCH is a bignum of the same size as the operands and result
  ///  for use by the routine; its contents need not be initialized
  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
  ///  distinct.
  static int tcDivide(integerPart *lhs, const integerPart *rhs,
                      integerPart *remainder, integerPart *scratch,
                      unsigned int parts);

  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
  /// There are no restrictions on COUNT.
  static void tcShiftLeft(integerPart *, unsigned int parts,
                          unsigned int count);

  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
  /// There are no restrictions on COUNT.
  static void tcShiftRight(integerPart *, unsigned int parts,
                           unsigned int count);

  /// The obvious AND, OR and XOR and complement operations.
  static void tcAnd(integerPart *, const integerPart *, unsigned int);
  static void tcOr(integerPart *, const integerPart *, unsigned int);
  static void tcXor(integerPart *, const integerPart *, unsigned int);
  static void tcComplement(integerPart *, unsigned int);

  /// Comparison (unsigned) of two bignums.
  static int tcCompare(const integerPart *, const integerPart *,
                       unsigned int);

  /// Increment a bignum in-place.  Return the carry flag.
  static integerPart tcIncrement(integerPart *, unsigned int);

  /// Set the least significant BITS and clear the rest.
  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
                                        unsigned int bits);

  /// @brief debug method
  void dump() const;

  /// @}
};

/// Magic data for optimising signed division by a constant.
struct APInt::ms {
  APInt m;  ///< magic number
  unsigned s;  ///< shift amount
};

/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
  APInt m;     ///< magic number
  bool a;      ///< add indicator
  unsigned s;  ///< shift amount
};

inline bool operator==(uint64_t V1, const APInt& V2) {
  return V2 == V1;
}

inline bool operator!=(uint64_t V1, const APInt& V2) {
  return V2 != V1;
}

inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
  I.print(OS, true);
  return OS;
}

namespace APIntOps {

/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) {
  return A.slt(B) ? A : B;
}

/// @brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) {
  return A.sgt(B) ? A : B;
}

/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) {
  return A.ult(B) ? A : B;
}

/// @brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) {
  return A.ugt(B) ? A : B;
}

/// @brief Check if the specified APInt has a N-bits unsigned integer value.
inline bool isIntN(unsigned N, const APInt& APIVal) {
  return APIVal.isIntN(N);
}

/// @brief Check if the specified APInt has a N-bits signed integer value.
inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
  return APIVal.isSignedIntN(N);
}

/// @returns true if the argument APInt value is a sequence of ones
/// starting at the least significant bit with the remainder zero.
inline bool isMask(unsigned numBits, const APInt& APIVal) {
  return numBits <= APIVal.getBitWidth() &&
    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
}

/// @returns true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
}

/// @returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt& APIVal) {
  return APIVal.byteSwap();
}

/// @returns the floor log base 2 of the specified APInt value.
inline unsigned logBase2(const APInt& APIVal) {
  return APIVal.logBase2();
}

/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Euclid's algorithm.
/// @returns the greatest common divisor of Val1 and Val2
/// @brief Compute GCD of two APInt values.
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);

/// Treats the APInt as an unsigned value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundAPIntToDouble(const APInt& APIVal) {
  return APIVal.roundToDouble();
}

/// Treats the APInt as a signed value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
  return APIVal.signedRoundToDouble();
}

/// @brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt& APIVal) {
  return float(RoundAPIntToDouble(APIVal));
}

/// Treast the APInt as a signed value for conversion purposes.
/// @brief Converts the given APInt to a float value.
inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
  return float(APIVal.signedRoundToDouble());
}

/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
/// @brief Converts the given double value into a APInt.
APInt RoundDoubleToAPInt(double Double, unsigned width);

/// RoundFloatToAPInt - Converts a float value into an APInt value.
/// @brief Converts a float value into a APInt.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
  return RoundDoubleToAPInt(double(Float), width);
}

/// Arithmetic right-shift the APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
  return LHS.ashr(shiftAmt);
}

/// Logical right-shift the APInt by shiftAmt.
/// @brief Logical right-shift function.
inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
  return LHS.lshr(shiftAmt);
}

/// Left-shift the APInt by shiftAmt.
/// @brief Left-shift function.
inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
  return LHS.shl(shiftAmt);
}

/// Signed divide APInt LHS by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
  return LHS.sdiv(RHS);
}

/// Unsigned divide APInt LHS by APInt RHS.
/// @brief Unsigned division function for APInt.
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
  return LHS.udiv(RHS);
}

/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& LHS, const APInt& RHS) {
  return LHS.srem(RHS);
}

/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
inline APInt urem(const APInt& LHS, const APInt& RHS) {
  return LHS.urem(RHS);
}

/// Performs multiplication on APInt values.
/// @brief Function for multiplication operation.
inline APInt mul(const APInt& LHS, const APInt& RHS) {
  return LHS * RHS;
}

/// Performs addition on APInt values.
/// @brief Function for addition operation.
inline APInt add(const APInt& LHS, const APInt& RHS) {
  return LHS + RHS;
}

/// Performs subtraction on APInt values.
/// @brief Function for subtraction operation.
inline APInt sub(const APInt& LHS, const APInt& RHS) {
  return LHS - RHS;
}

/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
/// @brief Bitwise AND function for APInt.
inline APInt And(const APInt& LHS, const APInt& RHS) {
  return LHS & RHS;
}

/// Performs bitwise OR operation on APInt LHS and APInt RHS.
/// @brief Bitwise OR function for APInt.
inline APInt Or(const APInt& LHS, const APInt& RHS) {
  return LHS | RHS;
}

/// Performs bitwise XOR operation on APInt.
/// @brief Bitwise XOR function for APInt.
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
  return LHS ^ RHS;
}

/// Performs a bitwise complement operation on APInt.
/// @brief Bitwise complement function.
inline APInt Not(const APInt& APIVal) {
  return ~APIVal;
}

} // End of APIntOps namespace

} // End of llvm namespace

#endif