aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/APInt.h
blob: 702bd7156fd675a709ece42dd74fafe7cb0da620 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
//===-- llvm/Support/APInt.h - For Arbitrary Precision Integer -*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_APINT_H
#define LLVM_APINT_H

#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <string>

namespace llvm {

/// Forward declaration.
class APInt;
namespace APIntOps {
  APInt udiv(const APInt& LHS, const APInt& RHS);
  APInt urem(const APInt& LHS, const APInt& RHS);
}

//===----------------------------------------------------------------------===//
//                              APInt Class
//===----------------------------------------------------------------------===//

/// APInt - This class represents arbitrary precision constant integral values.
/// It is a functional replacement for common case unsigned integer type like 
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators 
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
///   * All bit, byte, and word positions are zero-based.
///   * Once the bit width is set, it doesn't change except by the Truncate, 
///     SignExtend, or ZeroExtend operations.
///   * All binary operators must be on APInt instances of the same bit width.
///     Attempting to use these operators on instances with different bit 
///     widths will yield an assertion.
///   * The value is stored canonically as an unsigned value. For operations
///     where it makes a difference, there are both signed and unsigned variants
///     of the operation. For example, sdiv and udiv. However, because the bit
///     widths must be the same, operations such as Mul and Add produce the same
///     results regardless of whether the values are interpreted as signed or
///     not.
///   * In general, the class tries to follow the style of computation that LLVM
///     uses in its IR. This simplifies its use for LLVM.
///
/// @brief Class for arbitrary precision integers.
class APInt {

  uint32_t BitWidth;      ///< The number of bits in this APInt.

  /// This union is used to store the integer value. When the
  /// integer bit-width <= 64, it uses VAL; 
  /// otherwise it uses the pVal.
  union {
    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
  };

  /// This enum is just used to hold a constant we needed for APInt.
  enum {
    APINT_BITS_PER_WORD = sizeof(uint64_t) * 8,
    APINT_WORD_SIZE = sizeof(uint64_t)
  };

  // Fast internal constructor
  APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { }

  /// Here one word's bitwidth equals to that of uint64_t.
  /// @returns the number of words to hold the integer value of this APInt.
  /// @brief Get the number of words.
  inline uint32_t getNumWords() const {
    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
  }

  /// @returns true if the number of bits <= 64, false otherwise.
  /// @brief Determine if this APInt just has one word to store value.
  inline bool isSingleWord() const { 
    return BitWidth <= APINT_BITS_PER_WORD; 
  }

  /// @returns the word position for the specified bit position.
  static inline uint32_t whichWord(uint32_t bitPosition) { 
    return bitPosition / APINT_BITS_PER_WORD; 
  }

  /// @returns the bit position in a word for the specified bit position 
  /// in APInt.
  static inline uint32_t whichBit(uint32_t bitPosition) { 
    return bitPosition % APINT_BITS_PER_WORD; 
  }

  /// @returns a uint64_t type integer with just bit position at
  /// "whichBit(bitPosition)" setting, others zero.
  static inline uint64_t maskBit(uint32_t bitPosition) { 
    return (static_cast<uint64_t>(1)) << whichBit(bitPosition); 
  }

  /// This method is used internally to clear the to "N" bits that are not used
  /// by the APInt. This is needed after the most significant word is assigned 
  /// a value to ensure that those bits are zero'd out.
  /// @brief Clear high order bits
  inline APInt& clearUnusedBits() {
    // Compute how many bits are used in the final word
    uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
    if (wordBits == 0)
      // If all bits are used, we want to leave the value alone. This also
      // avoids the undefined behavior of >> when the shfit is the same size as
      // the word size (64).
      return *this;

    // Mask out the hight bits.
    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    if (isSingleWord())
      VAL &= mask;
    else
      pVal[getNumWords() - 1] &= mask;
    return *this;
  }

  /// @returns the corresponding word for the specified bit position.
  /// @brief Get the word corresponding to a bit position
  inline uint64_t getWord(uint32_t bitPosition) const { 
    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; 
  }

  /// This is used by the constructors that take string arguments.
  /// @brief Converts a char array into an APInt
  void fromString(uint32_t numBits, const char *StrStart, uint32_t slen, 
                  uint8_t radix);

  /// This is used by the toString method to divide by the radix. It simply
  /// provides a more convenient form of divide for internal use since KnuthDiv
  /// has specific constraints on its inputs. If those constraints are not met
  /// then it provides a simpler form of divide.
  /// @brief An internal division function for dividing APInts.
  static void divide(const APInt LHS, uint32_t lhsWords, 
                     const APInt &RHS, uint32_t rhsWords,
                     APInt *Quotient, APInt *Remainder);

#ifndef NDEBUG
  /// @brief debug method
  void dump() const;
#endif

public:
  /// @brief Create a new APInt of numBits width, initialized as val.
  APInt(uint32_t numBits, uint64_t val);

  /// Note that numWords can be smaller or larger than the corresponding bit
  /// width but any extraneous bits will be dropped.
  /// @brief Create a new APInt of numBits width, initialized as bigVal[].
  APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]);

  /// @brief Create a new APInt by translating the string represented 
  /// integer value.
  APInt(uint32_t numBits, const std::string& Val, uint8_t radix);

  /// @brief Create a new APInt by translating the char array represented
  /// integer value.
  APInt(uint32_t numBits, const char StrStart[], uint32_t slen, uint8_t radix);

  /// @brief Copy Constructor.
  APInt(const APInt& API);

  /// @brief Destructor.
  ~APInt();

  /// @brief Copy assignment operator. 
  APInt& operator=(const APInt& RHS);

  /// Assigns an integer value to the APInt.
  /// @brief Assignment operator. 
  APInt& operator=(uint64_t RHS);

  /// Increments the APInt by one.
  /// @brief Postfix increment operator.
  inline const APInt operator++(int) {
    APInt API(*this);
    ++(*this);
    return API;
  }

  /// Increments the APInt by one.
  /// @brief Prefix increment operator.
  APInt& operator++();

  /// Decrements the APInt by one.
  /// @brief Postfix decrement operator. 
  inline const APInt operator--(int) {
    APInt API(*this);
    --(*this);
    return API;
  }

  /// Decrements the APInt by one.
  /// @brief Prefix decrement operator. 
  APInt& operator--();

  /// Performs bitwise AND operation on this APInt and the given APInt& RHS, 
  /// assigns the result to this APInt.
  /// @brief Bitwise AND assignment operator. 
  APInt& operator&=(const APInt& RHS);

  /// Performs bitwise OR operation on this APInt and the given APInt& RHS, 
  /// assigns the result to this APInt.
  /// @brief Bitwise OR assignment operator. 
  APInt& operator|=(const APInt& RHS);

  /// Performs bitwise XOR operation on this APInt and the given APInt& RHS, 
  /// assigns the result to this APInt.
  /// @brief Bitwise XOR assignment operator. 
  APInt& operator^=(const APInt& RHS);

  /// Performs a bitwise complement operation on this APInt.
  /// @brief Bitwise complement operator. 
  APInt operator~() const;

  /// Multiplies this APInt by the  given APInt& RHS and 
  /// assigns the result to this APInt.
  /// @brief Multiplication assignment operator. 
  APInt& operator*=(const APInt& RHS);

  /// Adds this APInt by the given APInt& RHS and 
  /// assigns the result to this APInt.
  /// @brief Addition assignment operator. 
  APInt& operator+=(const APInt& RHS);

  /// Subtracts this APInt by the given APInt &RHS and 
  /// assigns the result to this APInt.
  /// @brief Subtraction assignment operator. 
  APInt& operator-=(const APInt& RHS);

  /// Performs bitwise AND operation on this APInt and 
  /// the given APInt& RHS.
  /// @brief Bitwise AND operator. 
  APInt operator&(const APInt& RHS) const;

  /// Performs bitwise OR operation on this APInt and the given APInt& RHS.
  /// @brief Bitwise OR operator. 
  APInt operator|(const APInt& RHS) const;

  /// Performs bitwise XOR operation on this APInt and the given APInt& RHS.
  /// @brief Bitwise XOR operator. 
  APInt operator^(const APInt& RHS) const;

  /// Performs logical negation operation on this APInt.
  /// @brief Logical negation operator. 
  bool operator !() const;

  /// Multiplies this APInt by the given APInt& RHS.
  /// @brief Multiplication operator. 
  APInt operator*(const APInt& RHS) const;

  /// Adds this APInt by the given APInt& RHS.
  /// @brief Addition operator. 
  APInt operator+(const APInt& RHS) const;
  APInt operator+(uint64_t RHS) const {
    return (*this) + APInt(BitWidth, RHS);
  }


  /// Subtracts this APInt by the given APInt& RHS
  /// @brief Subtraction operator. 
  APInt operator-(const APInt& RHS) const;
  APInt operator-(uint64_t RHS) const {
    return (*this) - APInt(BitWidth, RHS);
  }

  /// @brief Unary negation operator
  inline APInt operator-() const {
    return APInt(BitWidth, 0) - (*this);
  }

  /// @brief Array-indexing support.
  bool operator[](uint32_t bitPosition) const;

  /// Compare this APInt with the given APInt& RHS 
  /// for the validity of the equality relationship.
  /// @brief Equality operator. 
  bool operator==(const APInt& RHS) const;

  /// Compare this APInt with the given uint64_t value
  /// for the validity of the equality relationship.
  /// @brief Equality operator.
  bool operator==(uint64_t Val) const;

  /// Compare this APInt with the given APInt& RHS 
  /// for the validity of the inequality relationship.
  /// @brief Inequality operator. 
  inline bool operator!=(const APInt& RHS) const {
    return !((*this) == RHS);
  }

  /// Compare this APInt with the given uint64_t value 
  /// for the validity of the inequality relationship.
  /// @brief Inequality operator. 
  inline bool operator!=(uint64_t Val) const {
    return !((*this) == Val);
  }
  
  /// @brief Equality comparison
  bool eq(const APInt &RHS) const {
    return (*this) == RHS; 
  }

  /// @brief Inequality comparison
  bool ne(const APInt &RHS) const {
    return !((*this) == RHS);
  }

  /// @brief Unsigned less than comparison
  bool ult(const APInt& RHS) const;

  /// @brief Signed less than comparison
  bool slt(const APInt& RHS) const;

  /// @brief Unsigned less or equal comparison
  bool ule(const APInt& RHS) const {
    return ult(RHS) || eq(RHS);
  }

  /// @brief Signed less or equal comparison
  bool sle(const APInt& RHS) const {
    return slt(RHS) || eq(RHS);
  }

  /// @brief Unsigned greather than comparison
  bool ugt(const APInt& RHS) const {
    return !ult(RHS) && !eq(RHS);
  }

  /// @brief Signed greather than comparison
  bool sgt(const APInt& RHS) const {
    return !slt(RHS) && !eq(RHS);
  }

  /// @brief Unsigned greater or equal comparison
  bool uge(const APInt& RHS) const {
    return !ult(RHS);
  }

  /// @brief Signed greather or equal comparison
  bool sge(const APInt& RHS) const {
    return !slt(RHS);
  }

  /// This just tests the high bit of this APInt to determine if it is negative.
  /// @returns true if this APInt is negative, false otherwise
  /// @brief Determine sign of this APInt.
  bool isNegative() const {
    return (*this)[BitWidth - 1];
  }

  /// Arithmetic right-shift this APInt by shiftAmt.
  /// @brief Arithmetic right-shift function.
  APInt ashr(uint32_t shiftAmt) const;

  /// Logical right-shift this APInt by shiftAmt.
  /// @brief Logical right-shift function.
  APInt lshr(uint32_t shiftAmt) const;

  /// Left-shift this APInt by shiftAmt.
  /// @brief Left-shift function.
  APInt shl(uint32_t shiftAmt) const;

  /// Signed divide this APInt by APInt RHS.
  /// @brief Signed division function for APInt.
  inline APInt sdiv(const APInt& RHS) const {
    bool isNegativeLHS = isNegative();
    bool isNegativeRHS = RHS.isNegative();
    APInt Result = APIntOps::udiv(
        isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS);
    return isNegativeLHS != isNegativeRHS ? -Result : Result;
  }

  /// Unsigned divide this APInt by APInt RHS.
  /// @brief Unsigned division function for APInt.
  APInt udiv(const APInt& RHS) const;

  /// Signed remainder operation on APInt.
  /// @brief Function for signed remainder operation.
  inline APInt srem(const APInt& RHS) const {
    bool isNegativeLHS = isNegative();
    bool isNegativeRHS = RHS.isNegative();
    APInt Result = APIntOps::urem(
        isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS);
    return isNegativeLHS ? -Result : Result;
  }

  /// Unsigned remainder operation on APInt.
  /// @brief Function for unsigned remainder operation.
  APInt urem(const APInt& RHS) const;

  /// Truncate the APInt to a specified width. It is an error to specify a width
  /// that is greater than or equal to the current width. 
  /// @brief Truncate to new width.
  APInt &trunc(uint32_t width);

  /// This operation sign extends the APInt to a new width. If the high order
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
  /// It is an error to specify a width that is less than or equal to the 
  /// current width.
  /// @brief Sign extend to a new width.
  APInt &sext(uint32_t width);

  /// This operation zero extends the APInt to a new width. Thie high order bits
  /// are filled with 0 bits.  It is an error to specify a width that is less 
  /// than or equal to the current width.
  /// @brief Zero extend to a new width.
  APInt &zext(uint32_t width);

  /// @brief Set every bit to 1.
  APInt& set();

  /// Set the given bit to 1 whose position is given as "bitPosition".
  /// @brief Set a given bit to 1.
  APInt& set(uint32_t bitPosition);

  /// @brief Set every bit to 0.
  APInt& clear();

  /// Set the given bit to 0 whose position is given as "bitPosition".
  /// @brief Set a given bit to 0.
  APInt& clear(uint32_t bitPosition);

  /// @brief Toggle every bit to its opposite value.
  APInt& flip();

  /// Toggle a given bit to its opposite value whose position is given 
  /// as "bitPosition".
  /// @brief Toggles a given bit to its opposite value.
  APInt& flip(uint32_t bitPosition);

  /// This function returns the number of active bits which is defined as the
  /// bit width minus the number of leading zeros. This is used in several
  /// computations to see how "wide" the value is.
  /// @brief Compute the number of active bits in the value
  inline uint32_t getActiveBits() const {
    return BitWidth - countLeadingZeros();
  }

  /// This function returns the number of active words in the value of this
  /// APInt. This is used in conjunction with getActiveData to extract the raw
  /// value of the APInt.
  inline uint32_t getActiveWords() const {
    return whichWord(getActiveBits()-1) + 1;
  }

  /// This function returns a pointer to the internal storage of the APInt. 
  /// This is useful for writing out the APInt in binary form without any
  /// conversions.
  inline const uint64_t* getRawData() const {
    if (isSingleWord())
      return &VAL;
    return &pVal[0];
  }

  /// Computes the minimum bit width for this APInt while considering it to be
  /// a signed (and probably negative) value. If the value is not negative, 
  /// this function returns the same value as getActiveBits(). Otherwise, it
  /// returns the smallest bit width that will retain the negative value. For
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
  /// for -1, this function will always return 1.
  /// @brief Get the minimum bit size for this signed APInt 
  inline uint32_t getMinSignedBits() const {
    if (isNegative())
      return BitWidth - countLeadingOnes() + 1;
    return getActiveBits();
  }

  /// This method attempts to return the value of this APInt as a zero extended
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
  /// uint64_t. Otherwise an assertion will result.
  /// @brief Get zero extended value
  inline uint64_t getZExtValue() const {
    if (isSingleWord())
      return VAL;
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
    return pVal[0];
  }

  /// This method attempts to return the value of this APInt as a sign extended
  /// int64_t. The bit width must be <= 64 or the value must fit within an
  /// int64_t. Otherwise an assertion will result.
  /// @brief Get sign extended value
  inline int64_t getSExtValue() const {
    if (isSingleWord())
      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> 
                     (APINT_BITS_PER_WORD - BitWidth);
    assert(getActiveBits() <= 64 && "Too many bits for int64_t");
    return int64_t(pVal[0]);
  }

  /// @brief Gets maximum unsigned value of APInt for specific bit width.
  static APInt getMaxValue(uint32_t numBits) {
    return APInt(numBits, 0).set();
  }

  /// @brief Gets maximum signed value of APInt for a specific bit width.
  static APInt getSignedMaxValue(uint32_t numBits) {
    return APInt(numBits, 0).set().clear(numBits - 1);
  }

  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
  static APInt getMinValue(uint32_t numBits) {
    return APInt(numBits, 0);
  }

  /// @brief Gets minimum signed value of APInt for a specific bit width.
  static APInt getSignedMinValue(uint32_t numBits) {
    return APInt(numBits, 0).set(numBits - 1);
  }

  /// @returns the all-ones value for an APInt of the specified bit-width.
  /// @brief Get the all-ones value.
  static APInt getAllOnesValue(uint32_t numBits) {
    return APInt(numBits, 0).set();
  }

  /// @returns the '0' value for an APInt of the specified bit-width.
  /// @brief Get the '0' value.
  static APInt getNullValue(uint32_t numBits) {
    return APInt(numBits, 0);
  }

  /// The hash value is computed as the sum of the words and the bit width.
  /// @returns A hash value computed from the sum of the APInt words.
  /// @brief Get a hash value based on this APInt
  uint64_t getHashValue() const;

  /// This converts the APInt to a boolean valy as a test against zero.
  /// @brief Boolean conversion function. 
  inline bool getBoolValue() const {
    return countLeadingZeros() != BitWidth;
  }

  /// This checks to see if the value has all bits of the APInt are set or not.
  /// @brief Determine if all bits are set
  inline bool isAllOnesValue() const {
    return countPopulation() == BitWidth;
  }

  /// This checks to see if the value of this APInt is the maximum unsigned
  /// value for the APInt's bit width.
  /// @brief Determine if this is the largest unsigned value.
  bool isMaxValue() const {
    return countPopulation() == BitWidth;
  }

  /// This checks to see if the value of this APInt is the maximum signed
  /// value for the APInt's bit width.
  /// @brief Determine if this is the largest signed value.
  bool isMaxSignedValue() const {
    return BitWidth == 1 ? VAL == 0 :
                          !isNegative() && countPopulation() == BitWidth - 1;
  }

  /// This checks to see if the value of this APInt is the minimum signed
  /// value for the APInt's bit width.
  /// @brief Determine if this is the smallest unsigned value.
  bool isMinValue() const {
    return countPopulation() == 0;
  }

  /// This checks to see if the value of this APInt is the minimum signed
  /// value for the APInt's bit width.
  /// @brief Determine if this is the smallest signed value.
  bool isMinSignedValue() const {
    return BitWidth == 1 ? VAL == 1 :
                           isNegative() && countPopulation() == 1;
  }

  /// This is used internally to convert an APInt to a string.
  /// @brief Converts an APInt to a std::string
  std::string toString(uint8_t radix, bool wantSigned) const;

  /// Considers the APInt to be unsigned and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 or 16.
  /// @returns a character interpretation of the APInt
  /// @brief Convert unsigned APInt to string representation.
  inline std::string toString(uint8_t radix = 10) const {
    return toString(radix, false);
  }

  /// Considers the APInt to be unsigned and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 or 16.
  /// @returns a character interpretation of the APInt
  /// @brief Convert unsigned APInt to string representation.
  inline std::string toStringSigned(uint8_t radix = 10) const {
    return toString(radix, true);
  }

  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the low bits and right shift to the least significant bit.
  /// @returns the high "numBits" bits of this APInt.
  APInt getHiBits(uint32_t numBits) const;

  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the high bits.
  /// @returns the low "numBits" bits of this APInt.
  APInt getLoBits(uint32_t numBits) const;

  /// @returns true if the argument APInt value is a power of two > 0.
  bool isPowerOf2() const; 

  /// countLeadingZeros - This function is an APInt version of the
  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
  /// of zeros from the most significant bit to the first one bit.
  /// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero.
  /// @returns the number of zeros from the most significant bit to the first
  /// one bits.
  /// @brief Count the number of leading one bits.
  uint32_t countLeadingZeros() const;

  /// countLeadingOnes - This function counts the number of contiguous 1 bits
  /// in the high order bits. The count stops when the first 0 bit is reached.
  /// @returns 0 if the high order bit is not set
  /// @returns the number of 1 bits from the most significant to the least
  /// @brief Count the number of leading one bits.
  uint32_t countLeadingOnes() const;

  /// countTrailingZeros - This function is an APInt version of the 
  /// countTrailingZoers_{32,64} functions in MathExtras.h. It counts 
  /// the number of zeros from the least significant bit to the first one bit.
  /// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero.
  /// @returns the number of zeros from the least significant bit to the first
  /// one bit.
  /// @brief Count the number of trailing zero bits.
  uint32_t countTrailingZeros() const;

  /// countPopulation - This function is an APInt version of the
  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
  /// of 1 bits in the APInt value. 
  /// @returns 0 if the value is zero.
  /// @returns the number of set bits.
  /// @brief Count the number of bits set.
  uint32_t countPopulation() const; 

  /// @returns the total number of bits.
  inline uint32_t getBitWidth() const { 
    return BitWidth; 
  }

  /// @brief Check if this APInt has a N-bits integer value.
  inline bool isIntN(uint32_t N) const {
    assert(N && "N == 0 ???");
    if (isSingleWord()) {
      return VAL == (VAL & (~0ULL >> (64 - N)));
    } else {
      APInt Tmp(N, getNumWords(), pVal);
      return Tmp == (*this);
    }
  }

  /// @returns a byte-swapped representation of this APInt Value.
  APInt byteSwap() const;

  /// @returns the floor log base 2 of this APInt.
  inline uint32_t logBase2() const {
    return getNumWords() * APINT_BITS_PER_WORD - 1 - countLeadingZeros();
  }

  /// @brief Converts this APInt to a double value.
  double roundToDouble(bool isSigned) const;

  /// @brief Converts this unsigned APInt to a double value.
  double roundToDouble() const {
    return roundToDouble(false);
  }

  /// @brief Converts this signed APInt to a double value.
  double signedRoundToDouble() const {
    return roundToDouble(true);
  }
};

inline bool operator==(uint64_t V1, const APInt& V2) {
  return V2 == V1;
}

inline bool operator!=(uint64_t V1, const APInt& V2) {
  return V2 != V1;
}

namespace APIntOps {

/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) {
  return A.slt(B) ? A : B;
}

/// @brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) {
  return A.sgt(B) ? A : B;
}

/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) {
  return A.ult(B) ? A : B;
}

/// @brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) {
  return A.ugt(B) ? A : B;
}

/// @brief Check if the specified APInt has a N-bits integer value.
inline bool isIntN(uint32_t N, const APInt& APIVal) {
  return APIVal.isIntN(N);
}

/// @returns true if the argument APInt value is a sequence of ones
/// starting at the least significant bit with the remainder zero.
inline const bool isMask(uint32_t numBits, const APInt& APIVal) {
  return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
}

/// @returns true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline const bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
}

/// @returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt& APIVal) {
  return APIVal.byteSwap();
}

/// @returns the floor log base 2 of the specified APInt value.
inline uint32_t logBase2(const APInt& APIVal) {
  return APIVal.logBase2(); 
}

/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
/// @returns the greatest common divisor of Val1 and Val2
/// @brief Compute GCD of two APInt values.
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);

/// Treats the APInt as an unsigned value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundAPIntToDouble(const APInt& APIVal) {
  return APIVal.roundToDouble();
}

/// Treats the APInt as a signed value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
  return APIVal.signedRoundToDouble();
}

/// @brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt& APIVal) {
  return float(RoundAPIntToDouble(APIVal));
}

/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
/// @brief Converts the given double value into a APInt.
APInt RoundDoubleToAPInt(double Double, uint32_t width = 64);

/// RoundFloatToAPInt - Converts a float value into an APInt value.
/// @brief Converts a float value into a APInt.
inline APInt RoundFloatToAPInt(float Float) {
  return RoundDoubleToAPInt(double(Float));
}

/// Arithmetic right-shift the APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
  return LHS.ashr(shiftAmt);
}

/// Logical right-shift the APInt by shiftAmt.
/// @brief Logical right-shift function.
inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
  return LHS.lshr(shiftAmt);
}

/// Left-shift the APInt by shiftAmt.
/// @brief Left-shift function.
inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
  return LHS.shl(shiftAmt);
}

/// Signed divide APInt LHS by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
  return LHS.sdiv(RHS);
}

/// Unsigned divide APInt LHS by APInt RHS.
/// @brief Unsigned division function for APInt.
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
  return LHS.udiv(RHS);
}

/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& LHS, const APInt& RHS) {
  return LHS.srem(RHS);
}

/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
inline APInt urem(const APInt& LHS, const APInt& RHS) {
  return LHS.urem(RHS);
}

/// Performs multiplication on APInt values.
/// @brief Function for multiplication operation.
inline APInt mul(const APInt& LHS, const APInt& RHS) {
  return LHS * RHS;
}

/// Performs addition on APInt values.
/// @brief Function for addition operation.
inline APInt add(const APInt& LHS, const APInt& RHS) {
  return LHS + RHS;
}

/// Performs subtraction on APInt values.
/// @brief Function for subtraction operation.
inline APInt sub(const APInt& LHS, const APInt& RHS) {
  return LHS - RHS;
}

/// Performs bitwise AND operation on APInt LHS and 
/// APInt RHS.
/// @brief Bitwise AND function for APInt.
inline APInt And(const APInt& LHS, const APInt& RHS) {
  return LHS & RHS;
}

/// Performs bitwise OR operation on APInt LHS and APInt RHS.
/// @brief Bitwise OR function for APInt. 
inline APInt Or(const APInt& LHS, const APInt& RHS) {
  return LHS | RHS;
}

/// Performs bitwise XOR operation on APInt.
/// @brief Bitwise XOR function for APInt.
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
  return LHS ^ RHS;
} 

/// Performs a bitwise complement operation on APInt.
/// @brief Bitwise complement function. 
inline APInt Not(const APInt& APIVal) {
  return ~APIVal;
}

} // End of APIntOps namespace

} // End of llvm namespace

#endif