aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/DenseMap.h
blob: 672147dd4d1a0cc064929b71744ba84071d64cdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H

#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
#include "llvm/ADT/DenseMapInfo.h"
#include <algorithm>
#include <iterator>
#include <new>
#include <utility>
#include <cassert>
#include <cstddef>
#include <cstring>

namespace llvm {

template<typename KeyT, typename ValueT,
         typename KeyInfoT = DenseMapInfo<KeyT>,
         typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
class DenseMapIterator;

template<typename KeyT, typename ValueT,
         typename KeyInfoT = DenseMapInfo<KeyT>,
         typename ValueInfoT = DenseMapInfo<ValueT> >
class DenseMap {
  typedef std::pair<KeyT, ValueT> BucketT;
  unsigned NumBuckets;
  BucketT *Buckets;

  unsigned NumEntries;
  unsigned NumTombstones;
public:
  typedef KeyT key_type;
  typedef ValueT mapped_type;
  typedef BucketT value_type;

  DenseMap(const DenseMap &other) {
    NumBuckets = 0;
    CopyFrom(other);
  }

  explicit DenseMap(unsigned NumInitBuckets = 0) {
    init(NumInitBuckets);
  }

  template<typename InputIt>
  DenseMap(const InputIt &I, const InputIt &E) {
    init(NextPowerOf2(std::distance(I, E)));
    insert(I, E);
  }
  
  ~DenseMap() {
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
          !KeyInfoT::isEqual(P->first, TombstoneKey))
        P->second.~ValueT();
      P->first.~KeyT();
    }
#ifndef NDEBUG
    if (NumBuckets)
      memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
#endif
    operator delete(Buckets);
  }

  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
  typedef DenseMapIterator<KeyT, ValueT,
                           KeyInfoT, ValueInfoT, true> const_iterator;
  inline iterator begin() {
    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
    return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
  }
  inline iterator end() {
    return iterator(Buckets+NumBuckets, Buckets+NumBuckets, true);
  }
  inline const_iterator begin() const {
    return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
  }
  inline const_iterator end() const {
    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets, true);
  }

  bool empty() const { return NumEntries == 0; }
  unsigned size() const { return NumEntries; }

  /// Grow the densemap so that it has at least Size buckets. Does not shrink
  void resize(size_t Size) {
    if (Size > NumBuckets)
      grow(Size);
  }

  void clear() {
    if (NumEntries == 0 && NumTombstones == 0) return;
    
    // If the capacity of the array is huge, and the # elements used is small,
    // shrink the array.
    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
      shrink_and_clear();
      return;
    }

    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
          P->second.~ValueT();
          --NumEntries;
        }
        P->first = EmptyKey;
      }
    }
    assert(NumEntries == 0 && "Node count imbalance!");
    NumTombstones = 0;
  }

  /// count - Return true if the specified key is in the map.
  bool count(const KeyT &Val) const {
    BucketT *TheBucket;
    return LookupBucketFor(Val, TheBucket);
  }

  iterator find(const KeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return iterator(TheBucket, Buckets+NumBuckets, true);
    return end();
  }
  const_iterator find(const KeyT &Val) const {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return const_iterator(TheBucket, Buckets+NumBuckets, true);
    return end();
  }

  /// Alternate version of find() which allows a different, and possibly
  /// less expensive, key type.
  /// The DenseMapInfo is responsible for supplying methods
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
  /// type used.
  template<class LookupKeyT>
  iterator find_as(const LookupKeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return iterator(TheBucket, Buckets+NumBuckets, true);
    return end();
  }
  template<class LookupKeyT>
  const_iterator find_as(const LookupKeyT &Val) const {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return const_iterator(TheBucket, Buckets+NumBuckets, true);
    return end();
  }

  /// lookup - Return the entry for the specified key, or a default
  /// constructed value if no such entry exists.
  ValueT lookup(const KeyT &Val) const {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return TheBucket->second;
    return ValueT();
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // If the key is already in the map, it returns false and doesn't update the
  // value.
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    BucketT *TheBucket;
    if (LookupBucketFor(KV.first, TheBucket))
      return std::make_pair(iterator(TheBucket, Buckets+NumBuckets, true),
                            false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
    return std::make_pair(iterator(TheBucket, Buckets+NumBuckets, true), true);
  }

  /// insert - Range insertion of pairs.
  template<typename InputIt>
  void insert(InputIt I, InputIt E) {
    for (; I != E; ++I)
      insert(*I);
  }


  bool erase(const KeyT &Val) {
    BucketT *TheBucket;
    if (!LookupBucketFor(Val, TheBucket))
      return false; // not in map.

    TheBucket->second.~ValueT();
    TheBucket->first = getTombstoneKey();
    --NumEntries;
    ++NumTombstones;
    return true;
  }
  void erase(iterator I) {
    BucketT *TheBucket = &*I;
    TheBucket->second.~ValueT();
    TheBucket->first = getTombstoneKey();
    --NumEntries;
    ++NumTombstones;
  }

  void swap(DenseMap& RHS) {
    std::swap(NumBuckets, RHS.NumBuckets);
    std::swap(Buckets, RHS.Buckets);
    std::swap(NumEntries, RHS.NumEntries);
    std::swap(NumTombstones, RHS.NumTombstones);
  }

  value_type& FindAndConstruct(const KeyT &Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return *TheBucket;

    return *InsertIntoBucket(Key, ValueT(), TheBucket);
  }

  ValueT &operator[](const KeyT &Key) {
    return FindAndConstruct(Key).second;
  }

  DenseMap& operator=(const DenseMap& other) {
    CopyFrom(other);
    return *this;
  }

  /// isPointerIntoBucketsArray - Return true if the specified pointer points
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
  /// value in the DenseMap).
  bool isPointerIntoBucketsArray(const void *Ptr) const {
    return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
  }

  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
  /// array.  In conjunction with the previous method, this can be used to
  /// determine whether an insertion caused the DenseMap to reallocate.
  const void *getPointerIntoBucketsArray() const { return Buckets; }

private:
  void CopyFrom(const DenseMap& other) {
    if (NumBuckets != 0 &&
        (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
      const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
      for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
            !KeyInfoT::isEqual(P->first, TombstoneKey))
          P->second.~ValueT();
        P->first.~KeyT();
      }
    }

    NumEntries = other.NumEntries;
    NumTombstones = other.NumTombstones;

    if (NumBuckets) {
#ifndef NDEBUG
      memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
#endif
      operator delete(Buckets);
    }

    NumBuckets = other.NumBuckets;

    if (NumBuckets == 0) {
      Buckets = 0;
      return;
    }

    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));

    if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
      memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT));
    else
      for (size_t i = 0; i < NumBuckets; ++i) {
        new (&Buckets[i].first) KeyT(other.Buckets[i].first);
        if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
            !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
          new (&Buckets[i].second) ValueT(other.Buckets[i].second);
      }
  }

  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
                            BucketT *TheBucket) {
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    // the buckets are empty (meaning that many are filled with tombstones),
    // grow the table.
    //
    // The later case is tricky.  For example, if we had one empty bucket with
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
    // probe almost the entire table until it found the empty bucket.  If the
    // table completely filled with tombstones, no lookup would ever succeed,
    // causing infinite loops in lookup.
    ++NumEntries;
    if (NumEntries*4 >= NumBuckets*3) {
      this->grow(NumBuckets * 2);
      LookupBucketFor(Key, TheBucket);
    }
    if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
      this->grow(NumBuckets);
      LookupBucketFor(Key, TheBucket);
    }

    // If we are writing over a tombstone, remember this.
    if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
      --NumTombstones;

    TheBucket->first = Key;
    new (&TheBucket->second) ValueT(Value);
    return TheBucket;
  }

  static unsigned getHashValue(const KeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }
  template<typename LookupKeyT>
  static unsigned getHashValue(const LookupKeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }
  static const KeyT getEmptyKey() {
    return KeyInfoT::getEmptyKey();
  }
  static const KeyT getTombstoneKey() {
    return KeyInfoT::getTombstoneKey();
  }

  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
  /// FoundBucket.  If the bucket contains the key and a value, this returns
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
  /// returns false.
  template<typename LookupKeyT>
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) const {
    unsigned BucketNo = getHashValue(Val);
    unsigned ProbeAmt = 1;
    BucketT *BucketsPtr = Buckets;

    if (NumBuckets == 0) {
      FoundBucket = 0;
      return false;
    }

    // FoundTombstone - Keep track of whether we find a tombstone while probing.
    BucketT *FoundTombstone = 0;
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
           "Empty/Tombstone value shouldn't be inserted into map!");

    while (1) {
      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
      // Found Val's bucket?  If so, return it.
      if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
        FoundBucket = ThisBucket;
        return true;
      }

      // If we found an empty bucket, the key doesn't exist in the set.
      // Insert it and return the default value.
      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
        // If we've already seen a tombstone while probing, fill it in instead
        // of the empty bucket we eventually probed to.
        if (FoundTombstone) ThisBucket = FoundTombstone;
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
        return false;
      }

      // If this is a tombstone, remember it.  If Val ends up not in the map, we
      // prefer to return it than something that would require more probing.
      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.

      // Otherwise, it's a hash collision or a tombstone, continue quadratic
      // probing.
      BucketNo += ProbeAmt++;
    }
  }

  void init(unsigned InitBuckets) {
    NumEntries = 0;
    NumTombstones = 0;
    NumBuckets = InitBuckets;

    if (InitBuckets == 0) {
      Buckets = 0;
      return;
    }

    assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
           "# initial buckets must be a power of two!");
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0; i != InitBuckets; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);
  }

  void grow(unsigned AtLeast) {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;

    if (NumBuckets < 64)
      NumBuckets = 64;

    // Double the number of buckets.
    while (NumBuckets < AtLeast)
      NumBuckets <<= 1;
    NumTombstones = 0;
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));

    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);

    // Insert all the old elements.
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
        // Insert the key/value into the new table.
        BucketT *DestBucket;
        bool FoundVal = LookupBucketFor(B->first, DestBucket);
        (void)FoundVal; // silence warning.
        assert(!FoundVal && "Key already in new map?");
        DestBucket->first = B->first;
        new (&DestBucket->second) ValueT(B->second);

        // Free the value.
        B->second.~ValueT();
      }
      B->first.~KeyT();
    }

#ifndef NDEBUG
    if (OldNumBuckets)
      memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
#endif
    // Free the old table.
    operator delete(OldBuckets);
  }

  void shrink_and_clear() {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;

    // Reduce the number of buckets.
    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
                                 : 64;
    NumTombstones = 0;
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));

    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);

    // Free the old buckets.
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
        // Free the value.
        B->second.~ValueT();
      }
      B->first.~KeyT();
    }

#ifndef NDEBUG
    memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
#endif
    // Free the old table.
    operator delete(OldBuckets);

    NumEntries = 0;
  }
  
public:
  /// Return the approximate size (in bytes) of the actual map.
  /// This is just the raw memory used by DenseMap.
  /// If entries are pointers to objects, the size of the referenced objects
  /// are not included.
  size_t getMemorySize() const {
    return NumBuckets * sizeof(BucketT);
  }
};

template<typename KeyT, typename ValueT,
         typename KeyInfoT, typename ValueInfoT, bool IsConst>
class DenseMapIterator {
  typedef std::pair<KeyT, ValueT> Bucket;
  typedef DenseMapIterator<KeyT, ValueT,
                           KeyInfoT, ValueInfoT, true> ConstIterator;
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
public:
  typedef ptrdiff_t difference_type;
  typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
  typedef value_type *pointer;
  typedef value_type &reference;
  typedef std::forward_iterator_tag iterator_category;
private:
  pointer Ptr, End;
public:
  DenseMapIterator() : Ptr(0), End(0) {}

  DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
    : Ptr(Pos), End(E) {
    if (!NoAdvance) AdvancePastEmptyBuckets();
  }

  // If IsConst is true this is a converting constructor from iterator to
  // const_iterator and the default copy constructor is used.
  // Otherwise this is a copy constructor for iterator.
  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
                                          KeyInfoT, ValueInfoT, false>& I)
    : Ptr(I.Ptr), End(I.End) {}

  reference operator*() const {
    return *Ptr;
  }
  pointer operator->() const {
    return Ptr;
  }

  bool operator==(const ConstIterator &RHS) const {
    return Ptr == RHS.operator->();
  }
  bool operator!=(const ConstIterator &RHS) const {
    return Ptr != RHS.operator->();
  }

  inline DenseMapIterator& operator++() {  // Preincrement
    ++Ptr;
    AdvancePastEmptyBuckets();
    return *this;
  }
  DenseMapIterator operator++(int) {  // Postincrement
    DenseMapIterator tmp = *this; ++*this; return tmp;
  }

private:
  void AdvancePastEmptyBuckets() {
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End &&
           (KeyInfoT::isEqual(Ptr->first, Empty) ||
            KeyInfoT::isEqual(Ptr->first, Tombstone)))
      ++Ptr;
  }
};
  
template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
static inline size_t
capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT, ValueInfoT> &X) {
  return X.getMemorySize();
}

} // end namespace llvm

#endif