1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
|
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLESET_H
#define LLVM_ADT_IMMUTABLESET_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <functional>
#include <vector>
namespace llvm {
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLFactory;
template <typename ImutInfo> class ImutIntervalAVLFactory;
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
template <typename ImutInfo> class ImutAVLTreeGenericIterator;
template <typename ImutInfo >
class ImutAVLTree {
public:
typedef typename ImutInfo::key_type_ref key_type_ref;
typedef typename ImutInfo::value_type value_type;
typedef typename ImutInfo::value_type_ref value_type_ref;
typedef ImutAVLFactory<ImutInfo> Factory;
friend class ImutAVLFactory<ImutInfo>;
friend class ImutIntervalAVLFactory<ImutInfo>;
friend class ImutAVLTreeGenericIterator<ImutInfo>;
typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator;
//===----------------------------------------------------===//
// Public Interface.
//===----------------------------------------------------===//
/// Return a pointer to the left subtree. This value
/// is NULL if there is no left subtree.
ImutAVLTree *getLeft() const { return left; }
/// Return a pointer to the right subtree. This value is
/// NULL if there is no right subtree.
ImutAVLTree *getRight() const { return right; }
/// getHeight - Returns the height of the tree. A tree with no subtrees
/// has a height of 1.
unsigned getHeight() const { return height; }
/// getValue - Returns the data value associated with the tree node.
const value_type& getValue() const { return value; }
/// find - Finds the subtree associated with the specified key value.
/// This method returns NULL if no matching subtree is found.
ImutAVLTree* find(key_type_ref K) {
ImutAVLTree *T = this;
while (T) {
key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
if (ImutInfo::isEqual(K,CurrentKey))
return T;
else if (ImutInfo::isLess(K,CurrentKey))
T = T->getLeft();
else
T = T->getRight();
}
return nullptr;
}
/// getMaxElement - Find the subtree associated with the highest ranged
/// key value.
ImutAVLTree* getMaxElement() {
ImutAVLTree *T = this;
ImutAVLTree *Right = T->getRight();
while (Right) { T = Right; Right = T->getRight(); }
return T;
}
/// size - Returns the number of nodes in the tree, which includes
/// both leaves and non-leaf nodes.
unsigned size() const {
unsigned n = 1;
if (const ImutAVLTree* L = getLeft())
n += L->size();
if (const ImutAVLTree* R = getRight())
n += R->size();
return n;
}
/// begin - Returns an iterator that iterates over the nodes of the tree
/// in an inorder traversal. The returned iterator thus refers to the
/// the tree node with the minimum data element.
iterator begin() const { return iterator(this); }
/// end - Returns an iterator for the tree that denotes the end of an
/// inorder traversal.
iterator end() const { return iterator(); }
bool isElementEqual(value_type_ref V) const {
// Compare the keys.
if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(V)))
return false;
// Also compare the data values.
if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
ImutInfo::DataOfValue(V)))
return false;
return true;
}
bool isElementEqual(const ImutAVLTree* RHS) const {
return isElementEqual(RHS->getValue());
}
/// isEqual - Compares two trees for structural equality and returns true
/// if they are equal. This worst case performance of this operation is
// linear in the sizes of the trees.
bool isEqual(const ImutAVLTree& RHS) const {
if (&RHS == this)
return true;
iterator LItr = begin(), LEnd = end();
iterator RItr = RHS.begin(), REnd = RHS.end();
while (LItr != LEnd && RItr != REnd) {
if (&*LItr == &*RItr) {
LItr.skipSubTree();
RItr.skipSubTree();
continue;
}
if (!LItr->isElementEqual(&*RItr))
return false;
++LItr;
++RItr;
}
return LItr == LEnd && RItr == REnd;
}
/// isNotEqual - Compares two trees for structural inequality. Performance
/// is the same is isEqual.
bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
/// contains - Returns true if this tree contains a subtree (node) that
/// has an data element that matches the specified key. Complexity
/// is logarithmic in the size of the tree.
bool contains(key_type_ref K) { return (bool) find(K); }
/// foreach - A member template the accepts invokes operator() on a functor
/// object (specifed by Callback) for every node/subtree in the tree.
/// Nodes are visited using an inorder traversal.
template <typename Callback>
void foreach(Callback& C) {
if (ImutAVLTree* L = getLeft())
L->foreach(C);
C(value);
if (ImutAVLTree* R = getRight())
R->foreach(C);
}
/// validateTree - A utility method that checks that the balancing and
/// ordering invariants of the tree are satisifed. It is a recursive
/// method that returns the height of the tree, which is then consumed
/// by the enclosing validateTree call. External callers should ignore the
/// return value. An invalid tree will cause an assertion to fire in
/// a debug build.
unsigned validateTree() const {
unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
unsigned HR = getRight() ? getRight()->validateTree() : 0;
(void) HL;
(void) HR;
assert(getHeight() == ( HL > HR ? HL : HR ) + 1
&& "Height calculation wrong");
assert((HL > HR ? HL-HR : HR-HL) <= 2
&& "Balancing invariant violated");
assert((!getLeft() ||
ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
ImutInfo::KeyOfValue(getValue()))) &&
"Value in left child is not less that current value");
assert(!(getRight() ||
ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(getRight()->getValue()))) &&
"Current value is not less that value of right child");
return getHeight();
}
//===----------------------------------------------------===//
// Internal values.
//===----------------------------------------------------===//
private:
Factory *factory;
ImutAVLTree *left;
ImutAVLTree *right;
ImutAVLTree *prev;
ImutAVLTree *next;
unsigned height : 28;
unsigned IsMutable : 1;
unsigned IsDigestCached : 1;
unsigned IsCanonicalized : 1;
value_type value;
uint32_t digest;
uint32_t refCount;
//===----------------------------------------------------===//
// Internal methods (node manipulation; used by Factory).
//===----------------------------------------------------===//
private:
/// ImutAVLTree - Internal constructor that is only called by
/// ImutAVLFactory.
ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
unsigned height)
: factory(f), left(l), right(r), prev(nullptr), next(nullptr),
height(height), IsMutable(true), IsDigestCached(false),
IsCanonicalized(0), value(v), digest(0), refCount(0)
{
if (left) left->retain();
if (right) right->retain();
}
/// isMutable - Returns true if the left and right subtree references
/// (as well as height) can be changed. If this method returns false,
/// the tree is truly immutable. Trees returned from an ImutAVLFactory
/// object should always have this method return true. Further, if this
/// method returns false for an instance of ImutAVLTree, all subtrees
/// will also have this method return false. The converse is not true.
bool isMutable() const { return IsMutable; }
/// hasCachedDigest - Returns true if the digest for this tree is cached.
/// This can only be true if the tree is immutable.
bool hasCachedDigest() const { return IsDigestCached; }
//===----------------------------------------------------===//
// Mutating operations. A tree root can be manipulated as
// long as its reference has not "escaped" from internal
// methods of a factory object (see below). When a tree
// pointer is externally viewable by client code, the
// internal "mutable bit" is cleared to mark the tree
// immutable. Note that a tree that still has its mutable
// bit set may have children (subtrees) that are themselves
// immutable.
//===----------------------------------------------------===//
/// markImmutable - Clears the mutable flag for a tree. After this happens,
/// it is an error to call setLeft(), setRight(), and setHeight().
void markImmutable() {
assert(isMutable() && "Mutable flag already removed.");
IsMutable = false;
}
/// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
void markedCachedDigest() {
assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
IsDigestCached = true;
}
/// setHeight - Changes the height of the tree. Used internally by
/// ImutAVLFactory.
void setHeight(unsigned h) {
assert(isMutable() && "Only a mutable tree can have its height changed.");
height = h;
}
static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
value_type_ref V) {
uint32_t digest = 0;
if (L)
digest += L->computeDigest();
// Compute digest of stored data.
FoldingSetNodeID ID;
ImutInfo::Profile(ID,V);
digest += ID.ComputeHash();
if (R)
digest += R->computeDigest();
return digest;
}
uint32_t computeDigest() {
// Check the lowest bit to determine if digest has actually been
// pre-computed.
if (hasCachedDigest())
return digest;
uint32_t X = computeDigest(getLeft(), getRight(), getValue());
digest = X;
markedCachedDigest();
return X;
}
//===----------------------------------------------------===//
// Reference count operations.
//===----------------------------------------------------===//
public:
void retain() { ++refCount; }
void release() {
assert(refCount > 0);
if (--refCount == 0)
destroy();
}
void destroy() {
if (left)
left->release();
if (right)
right->release();
if (IsCanonicalized) {
if (next)
next->prev = prev;
if (prev)
prev->next = next;
else
factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
}
// We need to clear the mutability bit in case we are
// destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
IsMutable = false;
factory->freeNodes.push_back(this);
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//
template <typename ImutInfo >
class ImutAVLFactory {
friend class ImutAVLTree<ImutInfo>;
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef typename TreeTy::value_type_ref value_type_ref;
typedef typename TreeTy::key_type_ref key_type_ref;
typedef DenseMap<unsigned, TreeTy*> CacheTy;
CacheTy Cache;
uintptr_t Allocator;
std::vector<TreeTy*> createdNodes;
std::vector<TreeTy*> freeNodes;
bool ownsAllocator() const {
return Allocator & 0x1 ? false : true;
}
BumpPtrAllocator& getAllocator() const {
return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
}
//===--------------------------------------------------===//
// Public interface.
//===--------------------------------------------------===//
public:
ImutAVLFactory()
: Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImutAVLFactory(BumpPtrAllocator& Alloc)
: Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImutAVLFactory() {
if (ownsAllocator()) delete &getAllocator();
}
TreeTy* add(TreeTy* T, value_type_ref V) {
T = add_internal(V,T);
markImmutable(T);
recoverNodes();
return T;
}
TreeTy* remove(TreeTy* T, key_type_ref V) {
T = remove_internal(V,T);
markImmutable(T);
recoverNodes();
return T;
}
TreeTy* getEmptyTree() const { return nullptr; }
protected:
//===--------------------------------------------------===//
// A bunch of quick helper functions used for reasoning
// about the properties of trees and their children.
// These have succinct names so that the balancing code
// is as terse (and readable) as possible.
//===--------------------------------------------------===//
bool isEmpty(TreeTy* T) const { return !T; }
unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); }
TreeTy* getRight(TreeTy* T) const { return T->getRight(); }
value_type_ref getValue(TreeTy* T) const { return T->value; }
// Make sure the index is not the Tombstone or Entry key of the DenseMap.
static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
unsigned hl = getHeight(L);
unsigned hr = getHeight(R);
return (hl > hr ? hl : hr) + 1;
}
static bool compareTreeWithSection(TreeTy* T,
typename TreeTy::iterator& TI,
typename TreeTy::iterator& TE) {
typename TreeTy::iterator I = T->begin(), E = T->end();
for ( ; I!=E ; ++I, ++TI) {
if (TI == TE || !I->isElementEqual(&*TI))
return false;
}
return true;
}
//===--------------------------------------------------===//
// "createNode" is used to generate new tree roots that link
// to other trees. The functon may also simply move links
// in an existing root if that root is still marked mutable.
// This is necessary because otherwise our balancing code
// would leak memory as it would create nodes that are
// then discarded later before the finished tree is
// returned to the caller.
//===--------------------------------------------------===//
TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
BumpPtrAllocator& A = getAllocator();
TreeTy* T;
if (!freeNodes.empty()) {
T = freeNodes.back();
freeNodes.pop_back();
assert(T != L);
assert(T != R);
} else {
T = (TreeTy*) A.Allocate<TreeTy>();
}
new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
createdNodes.push_back(T);
return T;
}
TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
return createNode(newLeft, getValue(oldTree), newRight);
}
void recoverNodes() {
for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
TreeTy *N = createdNodes[i];
if (N->isMutable() && N->refCount == 0)
N->destroy();
}
createdNodes.clear();
}
/// balanceTree - Used by add_internal and remove_internal to
/// balance a newly created tree.
TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
unsigned hl = getHeight(L);
unsigned hr = getHeight(R);
if (hl > hr + 2) {
assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
TreeTy *LL = getLeft(L);
TreeTy *LR = getRight(L);
if (getHeight(LL) >= getHeight(LR))
return createNode(LL, L, createNode(LR,V,R));
assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
TreeTy *LRL = getLeft(LR);
TreeTy *LRR = getRight(LR);
return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
}
if (hr > hl + 2) {
assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
TreeTy *RL = getLeft(R);
TreeTy *RR = getRight(R);
if (getHeight(RR) >= getHeight(RL))
return createNode(createNode(L,V,RL), R, RR);
assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
TreeTy *RLL = getLeft(RL);
TreeTy *RLR = getRight(RL);
return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
}
return createNode(L,V,R);
}
/// add_internal - Creates a new tree that includes the specified
/// data and the data from the original tree. If the original tree
/// already contained the data item, the original tree is returned.
TreeTy* add_internal(value_type_ref V, TreeTy* T) {
if (isEmpty(T))
return createNode(T, V, T);
assert(!T->isMutable());
key_type_ref K = ImutInfo::KeyOfValue(V);
key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent))
return createNode(getLeft(T), V, getRight(T));
else if (ImutInfo::isLess(K,KCurrent))
return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
else
return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
}
/// remove_internal - Creates a new tree that includes all the data
/// from the original tree except the specified data. If the
/// specified data did not exist in the original tree, the original
/// tree is returned.
TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
if (isEmpty(T))
return T;
assert(!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent)) {
return combineTrees(getLeft(T), getRight(T));
} else if (ImutInfo::isLess(K,KCurrent)) {
return balanceTree(remove_internal(K, getLeft(T)),
getValue(T), getRight(T));
} else {
return balanceTree(getLeft(T), getValue(T),
remove_internal(K, getRight(T)));
}
}
TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
if (isEmpty(L))
return R;
if (isEmpty(R))
return L;
TreeTy* OldNode;
TreeTy* newRight = removeMinBinding(R,OldNode);
return balanceTree(L, getValue(OldNode), newRight);
}
TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
assert(!isEmpty(T));
if (isEmpty(getLeft(T))) {
Noderemoved = T;
return getRight(T);
}
return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
getValue(T), getRight(T));
}
/// markImmutable - Clears the mutable bits of a root and all of its
/// descendants.
void markImmutable(TreeTy* T) {
if (!T || !T->isMutable())
return;
T->markImmutable();
markImmutable(getLeft(T));
markImmutable(getRight(T));
}
public:
TreeTy *getCanonicalTree(TreeTy *TNew) {
if (!TNew)
return nullptr;
if (TNew->IsCanonicalized)
return TNew;
// Search the hashtable for another tree with the same digest, and
// if find a collision compare those trees by their contents.
unsigned digest = TNew->computeDigest();
TreeTy *&entry = Cache[maskCacheIndex(digest)];
do {
if (!entry)
break;
for (TreeTy *T = entry ; T != nullptr; T = T->next) {
// Compare the Contents('T') with Contents('TNew')
typename TreeTy::iterator TI = T->begin(), TE = T->end();
if (!compareTreeWithSection(TNew, TI, TE))
continue;
if (TI != TE)
continue; // T has more contents than TNew.
// Trees did match! Return 'T'.
if (TNew->refCount == 0)
TNew->destroy();
return T;
}
entry->prev = TNew;
TNew->next = entry;
}
while (false);
entry = TNew;
TNew->IsCanonicalized = true;
return TNew;
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Iterators.
//===----------------------------------------------------------------------===//
template <typename ImutInfo>
class ImutAVLTreeGenericIterator
: public std::iterator<std::bidirectional_iterator_tag,
ImutAVLTree<ImutInfo>> {
SmallVector<uintptr_t,20> stack;
public:
enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
Flags=0x3 };
typedef ImutAVLTree<ImutInfo> TreeTy;
ImutAVLTreeGenericIterator() {}
ImutAVLTreeGenericIterator(const TreeTy *Root) {
if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
}
TreeTy &operator*() const {
assert(!stack.empty());
return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
}
TreeTy *operator->() const { return &*this; }
uintptr_t getVisitState() const {
assert(!stack.empty());
return stack.back() & Flags;
}
bool atEnd() const { return stack.empty(); }
bool atBeginning() const {
return stack.size() == 1 && getVisitState() == VisitedNone;
}
void skipToParent() {
assert(!stack.empty());
stack.pop_back();
if (stack.empty())
return;
switch (getVisitState()) {
case VisitedNone:
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
stack.back() |= VisitedRight;
break;
default:
llvm_unreachable("Unreachable.");
}
}
bool operator==(const ImutAVLTreeGenericIterator &x) const {
return stack == x.stack;
}
bool operator!=(const ImutAVLTreeGenericIterator &x) const {
return !(*this == x);
}
ImutAVLTreeGenericIterator &operator++() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L));
else
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R));
else
stack.back() |= VisitedRight;
break;
case VisitedRight:
skipToParent();
break;
default:
llvm_unreachable("Unreachable.");
}
return *this;
}
ImutAVLTreeGenericIterator &operator--() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
stack.pop_back();
break;
case VisitedLeft:
stack.back() &= ~Flags; // Set state to "VisitedNone."
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
break;
case VisitedRight:
stack.back() &= ~Flags;
stack.back() |= VisitedLeft;
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
break;
default:
llvm_unreachable("Unreachable.");
}
return *this;
}
};
template <typename ImutInfo>
class ImutAVLTreeInOrderIterator
: public std::iterator<std::bidirectional_iterator_tag,
ImutAVLTree<ImutInfo>> {
typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
InternalIteratorTy InternalItr;
public:
typedef ImutAVLTree<ImutInfo> TreeTy;
ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
if (Root)
++*this; // Advance to first element.
}
ImutAVLTreeInOrderIterator() : InternalItr() {}
bool operator==(const ImutAVLTreeInOrderIterator &x) const {
return InternalItr == x.InternalItr;
}
bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
return !(*this == x);
}
TreeTy &operator*() const { return *InternalItr; }
TreeTy *operator->() const { return &*InternalItr; }
ImutAVLTreeInOrderIterator &operator++() {
do ++InternalItr;
while (!InternalItr.atEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
ImutAVLTreeInOrderIterator &operator--() {
do --InternalItr;
while (!InternalItr.atBeginning() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
void skipSubTree() {
InternalItr.skipToParent();
while (!InternalItr.atEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
++InternalItr;
}
};
/// Generic iterator that wraps a T::TreeTy::iterator and exposes
/// iterator::getValue() on dereference.
template <typename T>
struct ImutAVLValueIterator
: iterator_adaptor_base<
ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
typename std::iterator_traits<
typename T::TreeTy::iterator>::iterator_category,
const typename T::value_type> {
ImutAVLValueIterator() = default;
explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
: ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
typename ImutAVLValueIterator::reference operator*() const {
return this->I->getValue();
}
};
//===----------------------------------------------------------------------===//
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//
/// Generic profile template. The default behavior is to invoke the
/// profile method of an object. Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
typedef const T value_type;
typedef const T& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
FoldingSetTrait<T>::Profile(X,ID);
}
};
/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {
typedef const T value_type;
typedef const T& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddInteger(X);
}
};
#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)
#undef PROFILE_INTEGER_INFO
/// Profile traits for booleans.
template <>
struct ImutProfileInfo<bool> {
typedef const bool value_type;
typedef const bool& value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddBoolean(X);
}
};
/// Generic profile trait for pointer types. We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
typedef const T* value_type;
typedef value_type value_type_ref;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddPointer(X);
}
};
//===----------------------------------------------------------------------===//
// Trait classes that contain element comparison operators and type
// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These
// inherit from the profile traits (ImutProfileInfo) to include operations
// for element profiling.
//===----------------------------------------------------------------------===//
/// ImutContainerInfo - Generic definition of comparison operations for
/// elements of immutable containers that defaults to using
/// std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
typedef typename ImutProfileInfo<T>::value_type value_type;
typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static key_type_ref KeyOfValue(value_type_ref D) { return D; }
static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return std::equal_to<key_type>()(LHS,RHS);
}
static bool isLess(key_type_ref LHS, key_type_ref RHS) {
return std::less<key_type>()(LHS,RHS);
}
static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};
/// ImutContainerInfo - Specialization for pointer values to treat pointers
/// as references to unique objects. Pointers are thus compared by
/// their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
typedef typename ImutProfileInfo<T*>::value_type value_type;
typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static key_type_ref KeyOfValue(value_type_ref D) { return D; }
static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};
//===----------------------------------------------------------------------===//
// Immutable Set
//===----------------------------------------------------------------------===//
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
private:
TreeTy *Root;
public:
/// Constructs a set from a pointer to a tree root. In general one
/// should use a Factory object to create sets instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableSet(TreeTy* R) : Root(R) {
if (Root) { Root->retain(); }
}
ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
if (Root) { Root->retain(); }
}
ImmutableSet &operator=(const ImmutableSet &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
}
return *this;
}
~ImmutableSet() {
if (Root) { Root->release(); }
}
class Factory {
typename TreeTy::Factory F;
const bool Canonicalize;
public:
Factory(bool canonicalize = true)
: Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
: F(Alloc), Canonicalize(canonicalize) {}
/// getEmptySet - Returns an immutable set that contains no elements.
ImmutableSet getEmptySet() {
return ImmutableSet(F.getEmptyTree());
}
/// add - Creates a new immutable set that contains all of the values
/// of the original set with the addition of the specified value. If
/// the original set already included the value, then the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet add(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.add(Old.Root, V);
return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
}
/// remove - Creates a new immutable set that contains all of the values
/// of the original set with the exception of the specified value. If
/// the original set did not contain the value, the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.remove(Old.Root, V);
return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
}
BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
typename TreeTy::Factory *getTreeFactory() const {
return const_cast<typename TreeTy::Factory *>(&F);
}
private:
Factory(const Factory& RHS) = delete;
void operator=(const Factory& RHS) = delete;
};
friend class Factory;
/// Returns true if the set contains the specified value.
bool contains(value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
bool operator==(const ImmutableSet &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableSet &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
TreeTy *getRoot() {
if (Root) { Root->retain(); }
return Root;
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
/// isEmpty - Return true if the set contains no elements.
bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element.
/// This method runs in constant time.
bool isSingleton() const { return getHeight() == 1; }
template <typename Callback>
void foreach(Callback& C) { if (Root) Root->foreach(C); }
template <typename Callback>
void foreach() { if (Root) { Callback C; Root->foreach(C); } }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
typedef ImutAVLValueIterator<ImmutableSet> iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
ID.AddPointer(S.Root);
}
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); }
};
// NOTE: This may some day replace the current ImmutableSet.
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSetRef {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
typedef typename TreeTy::Factory FactoryTy;
private:
TreeTy *Root;
FactoryTy *Factory;
public:
/// Constructs a set from a pointer to a tree root. In general one
/// should use a Factory object to create sets instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
: Root(R),
Factory(F) {
if (Root) { Root->retain(); }
}
ImmutableSetRef(const ImmutableSetRef &X)
: Root(X.Root),
Factory(X.Factory) {
if (Root) { Root->retain(); }
}
ImmutableSetRef &operator=(const ImmutableSetRef &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
Factory = X.Factory;
}
return *this;
}
~ImmutableSetRef() {
if (Root) { Root->release(); }
}
static ImmutableSetRef getEmptySet(FactoryTy *F) {
return ImmutableSetRef(0, F);
}
ImmutableSetRef add(value_type_ref V) {
return ImmutableSetRef(Factory->add(Root, V), Factory);
}
ImmutableSetRef remove(value_type_ref V) {
return ImmutableSetRef(Factory->remove(Root, V), Factory);
}
/// Returns true if the set contains the specified value.
bool contains(value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
return ImmutableSet<ValT>(canonicalize ?
Factory->getCanonicalTree(Root) : Root);
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
bool operator==(const ImmutableSetRef &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableSetRef &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
/// isEmpty - Return true if the set contains no elements.
bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element.
/// This method runs in constant time.
bool isSingleton() const { return getHeight() == 1; }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
ID.AddPointer(S.Root);
}
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); }
};
} // end namespace llvm
#endif
|