aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/STLExtras.h
blob: 6f4769260aa9063ca23991081f6d2305faf167d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H

#include <cstddef> // for std::size_t
#include <functional>
#include <iterator>
#include <utility> // for std::pair

namespace llvm {

//===----------------------------------------------------------------------===//
//     Extra additions to <functional>
//===----------------------------------------------------------------------===//

template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *left < *right;
  }
};

template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *right < *left;
  }
};

// deleter - Very very very simple method that is used to invoke operator
// delete on something.  It is used like this:
//
//   for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
static inline void deleter(T *Ptr) {
  delete Ptr;
}



//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
  RootIt current;
  UnaryFunc Fn;
public:
  typedef typename std::iterator_traits<RootIt>::iterator_category
          iterator_category;
  typedef typename std::iterator_traits<RootIt>::difference_type
          difference_type;
  typedef typename UnaryFunc::result_type value_type;

  typedef void pointer;
  //typedef typename UnaryFunc::result_type *pointer;
  typedef void reference;        // Can't modify value returned by fn

  typedef RootIt iterator_type;
  typedef mapped_iterator<RootIt, UnaryFunc> _Self;

  inline const RootIt &getCurrent() const { return current; }
  inline const UnaryFunc &getFunc() const { return Fn; }

  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
    : current(I), Fn(F) {}
  inline mapped_iterator(const mapped_iterator &It)
    : current(It.current), Fn(It.Fn) {}

  inline value_type operator*() const {   // All this work to do this
    return Fn(*current);         // little change
  }

  _Self& operator++() { ++current; return *this; }
  _Self& operator--() { --current; return *this; }
  _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
  _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
  _Self  operator+    (difference_type n) const {
    return _Self(current + n, Fn);
  }
  _Self& operator+=   (difference_type n) { current += n; return *this; }
  _Self  operator-    (difference_type n) const {
    return _Self(current - n, Fn);
  }
  _Self& operator-=   (difference_type n) { current -= n; return *this; }
  reference operator[](difference_type n) const { return *(*this + n); }

  inline bool operator!=(const _Self &X) const { return !operator==(X); }
  inline bool operator==(const _Self &X) const { return current == X.current; }
  inline bool operator< (const _Self &X) const { return current <  X.current; }

  inline difference_type operator-(const _Self &X) const {
    return current - X.current;
  }
};

template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
          const mapped_iterator<_Iterator, Func>& X) {
  return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}


// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(I, F);
}


// next/prior - These functions unlike std::advance do not modify the
// passed iterator but return a copy.
//
// next(myIt) returns copy of myIt incremented once
// next(myIt, n) returns copy of myIt incremented n times
// prior(myIt) returns copy of myIt decremented once
// prior(myIt, n) returns copy of myIt decremented n times

template <typename ItTy, typename Dist>
inline ItTy next(ItTy it, Dist n)
{
  std::advance(it, n);
  return it;
}

template <typename ItTy>
inline ItTy next(ItTy it)
{
  return ++it;
}

template <typename ItTy, typename Dist>
inline ItTy prior(ItTy it, Dist n)
{
  std::advance(it, -n);
  return it;
}

template <typename ItTy>
inline ItTy prior(ItTy it)
{
  return --it;
}

//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

// tie - this function ties two objects and returns a temporary object
// that is assignable from a std::pair. This can be used to make code
// more readable when using values returned from functions bundled in
// a std::pair. Since an example is worth 1000 words:
//
// typedef std::map<int, int> Int2IntMap;
//
// Int2IntMap myMap;
// Int2IntMap::iterator where;
// bool inserted;
// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
//
// if (inserted)
//   // do stuff
// else
//   // do other stuff

namespace
{
  template <typename T1, typename T2>
  struct tier {
    typedef T1 &first_type;
    typedef T2 &second_type;

    first_type first;
    second_type second;

    tier(first_type f, second_type s) : first(f), second(s) { }
    tier& operator=(const std::pair<T1, T2>& p) {
      first = p.first;
      second = p.second;
      return *this;
    }
  };
}

template <typename T1, typename T2>
inline tier<T1, T2> tie(T1& f, T2& s) {
  return tier<T1, T2>(f, s);
}

//===----------------------------------------------------------------------===//
//     Extra additions for arrays
//===----------------------------------------------------------------------===//

/// Find where an array ends (for ending iterators)
/// This returns a pointer to the byte immediately
/// after the end of an array.
template<class T, std::size_t N>
inline T *array_endof(T (&x)[N]) {
  return x+N;
}

/// Find the length of an array.
template<class T, std::size_t N>
inline size_t array_lengthof(T (&x)[N]) {
  return N;
}

/// array_pod_sort_comparator - This is helper function for array_pod_sort,
/// which just uses operator< on T.
template<typename T>
static inline int array_pod_sort_comparator(const void *P1, const void *P2) {
  if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
    return -1;
  if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
    return 1;
  return 0;
}

/// get_array_pad_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
static int (*get_array_pad_sort_comparator(const T &X))
             (const void*, const void*) {
  return array_pod_sort_comparator<T>;
}


/// array_pod_sort - This sorts an array with the specified start and end
/// extent.  This is just like std::sort, except that it calls qsort instead of
/// using an inlined template.  qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat.  This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with operator< and can be moved with memcpy.  If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
static inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
  // Don't dereference start iterator of empty sequence.
  if (Start == End) return;
  qsort(&*Start, End-Start, sizeof(*Start),
        get_array_pad_sort_comparator(*Start));
}

} // End llvm namespace

#endif