aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/SmallPtrSet.h
blob: ed7f4da4e1a71956e936b83d298523b022c01216 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallPtrSet class.  See the doxygen comment for
// SmallPtrSetImpl for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_SMALLPTRSET_H
#define LLVM_ADT_SMALLPTRSET_H

#include <cassert>
#include <cstring>
#include "llvm/Support/DataTypes.h"

namespace llvm {

/// SmallPtrSetImpl - This is the common code shared among all the
/// SmallPtrSet<>'s, which is almost everything.  SmallPtrSet has two modes, one
/// for small and one for large sets.
///
/// Small sets use an array of pointers allocated in the SmallPtrSet object,
/// which is treated as a simple array of pointers.  When a pointer is added to
/// the set, the array is scanned to see if the element already exists, if not
/// the element is 'pushed back' onto the array.  If we run out of space in the
/// array, we grow into the 'large set' case.  SmallSet should be used when the
/// sets are often small.  In this case, no memory allocation is used, and only
/// light-weight and cache-efficient scanning is used.
///
/// Large sets use a classic exponentially-probed hash table.  Empty buckets are
/// represented with an illegal pointer value (-1) to allow null pointers to be
/// inserted.  Tombstones are represented with another illegal pointer value
/// (-2), to allow deletion.  The hash table is resized when the table is 3/4 or
/// more.  When this happens, the table is doubled in size.
///
class SmallPtrSetImpl {
protected:
  /// CurArray - This is the current set of buckets.  If it points to
  /// SmallArray, then the set is in 'small mode'.
  void **CurArray;
  /// CurArraySize - The allocated size of CurArray, always a power of two.
  /// Note that CurArray points to an array that has CurArraySize+1 elements in
  /// it, so that the end iterator actually points to valid memory.
  unsigned CurArraySize;
  
  // If small, this is # elts allocated consequtively
  unsigned NumElements;
  void *SmallArray[1];  // Must be last ivar.
public:
  SmallPtrSetImpl(unsigned SmallSize) {
    assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
           "Initial size must be a power of two!");
    CurArray = &SmallArray[0];
    CurArraySize = SmallSize;
    // The end pointer, always valid, is set to a valid element to help the
    // iterator.
    CurArray[SmallSize] = 0;
    clear();
  }
  ~SmallPtrSetImpl() {
    if (!isSmall())
      delete[] CurArray;
  }
  
  bool empty() const { return size() == 0; }
  unsigned size() const { return NumElements; }
  
  static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
  static void *getEmptyMarker() {
    // Note that -1 is chosen to make clear() efficiently implementable with
    // memset and because it's not a valid pointer value.
    return reinterpret_cast<void*>(-1);
  }
  
  void clear() {
    // Fill the array with empty markers.
    memset(CurArray, -1, CurArraySize*sizeof(void*));
    NumElements = 0;
  }
  
  /// insert - This returns true if the pointer was new to the set, false if it
  /// was already in the set.
  bool insert(void *Ptr);
  
  /// erase - If the set contains the specified pointer, remove it and return
  /// true, otherwise return false.
  bool erase(void *Ptr);
  
  bool count(void *Ptr) const {
    if (isSmall()) {
      // Linear search for the item.
      for (void *const *APtr = SmallArray, *const *E = SmallArray+NumElements;
           APtr != E; ++APtr)
        if (*APtr == Ptr)
          return true;
      return false;
    }
    
    // Big set case.
    return *FindBucketFor(Ptr) == Ptr;
  }
  
private:
  bool isSmall() const { return CurArray == &SmallArray[0]; }

  unsigned Hash(void *Ptr) const {
    return ((uintptr_t)Ptr >> 4) & (CurArraySize-1);
  }
  void * const *FindBucketFor(void *Ptr) const;
  
  /// Grow - Allocate a larger backing store for the buckets and move it over.
  void Grow();
};

/// SmallPtrSetIteratorImpl - This is the common base class shared between all
/// instances of SmallPtrSetIterator.
class SmallPtrSetIteratorImpl {
protected:
  void *const *Bucket;
public:
  SmallPtrSetIteratorImpl(void *const *BP) : Bucket(BP) {
    AdvanceIfNotValid();
  }
  
  bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
    return Bucket == RHS.Bucket;
  }
  bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
    return Bucket != RHS.Bucket;
  }
  
protected:
  /// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
  /// that is.   This is guaranteed to stop because the end() bucket is marked
  /// valid.
  void AdvanceIfNotValid() {
    while (*Bucket == SmallPtrSetImpl::getEmptyMarker() ||
           *Bucket == SmallPtrSetImpl::getTombstoneMarker())
      ++Bucket;
  }
};

/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
template<typename PtrTy>
class SmallPtrSetIterator : public SmallPtrSetIteratorImpl {
public:
  SmallPtrSetIterator(void *const *BP) : SmallPtrSetIteratorImpl(BP) {}

  // Most methods provided by baseclass.
  
  PtrTy operator*() const {
    return static_cast<PtrTy>(*Bucket);
  }
  
  inline SmallPtrSetIterator& operator++() {          // Preincrement
    ++Bucket;
    AdvanceIfNotValid();
    return *this;
  }
  
  SmallPtrSetIterator operator++(int) {        // Postincrement
    SmallPtrSetIterator tmp = *this; ++*this; return tmp;
  }
};

/// NextPowerOfTwo - This is a helper template that rounds N up to the next
/// power of two.
template<unsigned N>
struct NextPowerOfTwo;

/// NextPowerOfTwoH - If N is not a power of two, increase it.  This is a helper
/// template used to implement NextPowerOfTwo.
template<unsigned N, bool isPowerTwo>
struct NextPowerOfTwoH {
  enum { Val = N };
};
template<unsigned N>
struct NextPowerOfTwoH<N, false> {
  enum {
    // We could just use NextVal = N+1, but this converges faster.  N|(N-1) sets
    // the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
    NextVal = (N|(N-1)) + 1,
    Val = NextPowerOfTwo<NextVal>::Val
  };
};

template<unsigned N>
struct NextPowerOfTwo {
  enum { Val = NextPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
};


/// SmallPtrSet - This class implements a set which is optimizer for holding
/// SmallSize or less elements.  This internally rounds up SmallSize to the next
/// power of two if it is not already a power of two.  See the comments above
/// SmallPtrSetImpl for details of the algorithm.
template<class PtrType, unsigned SmallSize>
class SmallPtrSet : public SmallPtrSetImpl {
  // Make sure that SmallSize is a power of two, round up if not.
  enum { SmallSizePowTwo = NextPowerOfTwo<SmallSize>::Val };
  void *SmallArray[SmallSizePowTwo];
public:
  SmallPtrSet() : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {}
  
  typedef SmallPtrSetIterator<PtrType> iterator;
  typedef SmallPtrSetIterator<PtrType> const_iterator;
  inline iterator begin() const {
    return iterator(CurArray);
  }
  inline iterator end() const {
    return iterator(CurArray+CurArraySize);
  }
};

}

#endif