aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/ilist.h
blob: 7f5cd171814201f15586c5cd8b1190c7a9d081d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes to implement an intrusive doubly linked list class
// (i.e. each node of the list must contain a next and previous field for the
// list.
//
// The ilist_traits trait class is used to gain access to the next and previous
// fields of the node type that the list is instantiated with.  If it is not
// specialized, the list defaults to using the getPrev(), getNext() method calls
// to get the next and previous pointers.
//
// The ilist class itself, should be a plug in replacement for list, assuming
// that the nodes contain next/prev pointers.  This list replacement does not
// provide a constant time size() method, so be careful to use empty() when you
// really want to know if it's empty.
//
// The ilist class is implemented by allocating a 'tail' node when the list is
// created (using ilist_traits<>::createSentinel()).  This tail node is
// absolutely required because the user must be able to compute end()-1. Because
// of this, users of the direct next/prev links will see an extra link on the
// end of the list, which should be ignored.
//
// Requirements for a user of this list:
//
//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
//      ilist_traits to provide an alternate way of getting and setting next and
//      prev links.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_ILIST_H
#define LLVM_ADT_ILIST_H

#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>

namespace llvm {

template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;

/// ilist_nextprev_traits - A fragment for template traits for intrusive list
/// that provides default next/prev implementations for common operations.
///
template<typename NodeTy>
struct ilist_nextprev_traits {
  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }

  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
};

template<typename NodeTy>
struct ilist_traits;

/// ilist_sentinel_traits - A fragment for template traits for intrusive list
/// that provides default sentinel implementations for common operations.
///
/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
/// strategy. The sentinel is stored in the prev field of ilist's Head.
///
template<typename NodeTy>
struct ilist_sentinel_traits {
  /// createSentinel - create the dynamic sentinel
  static NodeTy *createSentinel() { return new NodeTy(); }

  /// destroySentinel - deallocate the dynamic sentinel
  static void destroySentinel(NodeTy *N) { delete N; }

  /// provideInitialHead - when constructing an ilist, provide a starting
  /// value for its Head
  /// @return null node to indicate that it needs to be allocated later
  static NodeTy *provideInitialHead() { return 0; }

  /// ensureHead - make sure that Head is either already
  /// initialized or assigned a fresh sentinel
  /// @return the sentinel
  static NodeTy *ensureHead(NodeTy *&Head) {
    if (!Head) {
      Head = ilist_traits<NodeTy>::createSentinel();
      ilist_traits<NodeTy>::noteHead(Head, Head);
      ilist_traits<NodeTy>::setNext(Head, 0);
      return Head;
    }
    return ilist_traits<NodeTy>::getPrev(Head);
  }

  /// noteHead - stash the sentinel into its default location
  static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
    ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
  }
};

/// ilist_node_traits - A fragment for template traits for intrusive list
/// that provides default node related operations.
///
template<typename NodeTy>
struct ilist_node_traits {
  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
  static void deleteNode(NodeTy *V) { delete V; }

  void addNodeToList(NodeTy *) {}
  void removeNodeFromList(NodeTy *) {}
  void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
                             ilist_iterator<NodeTy> /*first*/,
                             ilist_iterator<NodeTy> /*last*/) {}
};

/// ilist_default_traits - Default template traits for intrusive list.
/// By inheriting from this, you can easily use default implementations
/// for all common operations.
///
template<typename NodeTy>
struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
                              public ilist_sentinel_traits<NodeTy>,
                              public ilist_node_traits<NodeTy> {
};

// Template traits for intrusive list.  By specializing this template class, you
// can change what next/prev fields are used to store the links...
template<typename NodeTy>
struct ilist_traits : public ilist_default_traits<NodeTy> {};

// Const traits are the same as nonconst traits...
template<typename Ty>
struct ilist_traits<const Ty> : public ilist_traits<Ty> {};

//===----------------------------------------------------------------------===//
// ilist_iterator<Node> - Iterator for intrusive list.
//
template<typename NodeTy>
class ilist_iterator
  : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {

public:
  typedef ilist_traits<NodeTy> Traits;
  typedef std::iterator<std::bidirectional_iterator_tag,
                        NodeTy, ptrdiff_t> super;

  typedef typename super::value_type value_type;
  typedef typename super::difference_type difference_type;
  typedef typename super::pointer pointer;
  typedef typename super::reference reference;
private:
  pointer NodePtr;

  // ilist_iterator is not a random-access iterator, but it has an
  // implicit conversion to pointer-type, which is. Declare (but
  // don't define) these functions as private to help catch
  // accidental misuse.
  void operator[](difference_type) const;
  void operator+(difference_type) const;
  void operator-(difference_type) const;
  void operator+=(difference_type) const;
  void operator-=(difference_type) const;
  template<class T> void operator<(T) const;
  template<class T> void operator<=(T) const;
  template<class T> void operator>(T) const;
  template<class T> void operator>=(T) const;
  template<class T> void operator-(T) const;
public:

  ilist_iterator(pointer NP) : NodePtr(NP) {}
  ilist_iterator(reference NR) : NodePtr(&NR) {}
  ilist_iterator() : NodePtr(0) {}

  // This is templated so that we can allow constructing a const iterator from
  // a nonconst iterator...
  template<class node_ty>
  ilist_iterator(const ilist_iterator<node_ty> &RHS)
    : NodePtr(RHS.getNodePtrUnchecked()) {}

  // This is templated so that we can allow assigning to a const iterator from
  // a nonconst iterator...
  template<class node_ty>
  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
    NodePtr = RHS.getNodePtrUnchecked();
    return *this;
  }

  // Accessors...
  operator pointer() const {
    return NodePtr;
  }

  reference operator*() const {
    return *NodePtr;
  }
  pointer operator->() const { return &operator*(); }

  // Comparison operators
  bool operator==(const ilist_iterator &RHS) const {
    return NodePtr == RHS.NodePtr;
  }
  bool operator!=(const ilist_iterator &RHS) const {
    return NodePtr != RHS.NodePtr;
  }

  // Increment and decrement operators...
  ilist_iterator &operator--() {      // predecrement - Back up
    NodePtr = Traits::getPrev(NodePtr);
    assert(NodePtr && "--'d off the beginning of an ilist!");
    return *this;
  }
  ilist_iterator &operator++() {      // preincrement - Advance
    NodePtr = Traits::getNext(NodePtr);
    return *this;
  }
  ilist_iterator operator--(int) {    // postdecrement operators...
    ilist_iterator tmp = *this;
    --*this;
    return tmp;
  }
  ilist_iterator operator++(int) {    // postincrement operators...
    ilist_iterator tmp = *this;
    ++*this;
    return tmp;
  }

  // Internal interface, do not use...
  pointer getNodePtrUnchecked() const { return NodePtr; }
};

// do not implement. this is to catch errors when people try to use
// them as random access iterators
template<typename T>
void operator-(int, ilist_iterator<T>);
template<typename T>
void operator-(ilist_iterator<T>,int);

template<typename T>
void operator+(int, ilist_iterator<T>);
template<typename T>
void operator+(ilist_iterator<T>,int);

// operator!=/operator== - Allow mixed comparisons without dereferencing
// the iterator, which could very likely be pointing to end().
template<typename T>
bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
  return LHS != RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
  return LHS == RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
  return LHS != RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
  return LHS == RHS.getNodePtrUnchecked();
}


// Allow ilist_iterators to convert into pointers to a node automatically when
// used by the dyn_cast, cast, isa mechanisms...

template<typename From> struct simplify_type;

template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
  typedef NodeTy* SimpleType;

  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    return &*Node;
  }
};
template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
  typedef NodeTy* SimpleType;

  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    return &*Node;
  }
};


//===----------------------------------------------------------------------===//
//
/// iplist - The subset of list functionality that can safely be used on nodes
/// of polymorphic types, i.e. a heterogeneous list with a common base class that
/// holds the next/prev pointers.  The only state of the list itself is a single
/// pointer to the head of the list.
///
/// This list can be in one of three interesting states:
/// 1. The list may be completely unconstructed.  In this case, the head
///    pointer is null.  When in this form, any query for an iterator (e.g.
///    begin() or end()) causes the list to transparently change to state #2.
/// 2. The list may be empty, but contain a sentinel for the end iterator. This
///    sentinel is created by the Traits::createSentinel method and is a link
///    in the list.  When the list is empty, the pointer in the iplist points
///    to the sentinel.  Once the sentinel is constructed, it
///    is not destroyed until the list is.
/// 3. The list may contain actual objects in it, which are stored as a doubly
///    linked list of nodes.  One invariant of the list is that the predecessor
///    of the first node in the list always points to the last node in the list,
///    and the successor pointer for the sentinel (which always stays at the
///    end of the list) is always null.
///
template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
class iplist : public Traits {
  mutable NodeTy *Head;

  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
  // circularly linked list where we snip the 'next' link from the sentinel node
  // back to the first node in the list (to preserve assertions about going off
  // the end of the list).
  NodeTy *getTail() { return this->ensureHead(Head); }
  const NodeTy *getTail() const { return this->ensureHead(Head); }
  void setTail(NodeTy *N) const { this->noteHead(Head, N); }

  /// CreateLazySentinel - This method verifies whether the sentinel for the
  /// list has been created and lazily makes it if not.
  void CreateLazySentinel() const {
    this->ensureHead(Head);
  }

  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }

  // No fundamental reason why iplist can't be copyable, but the default
  // copy/copy-assign won't do.
  iplist(const iplist &) LLVM_DELETED_FUNCTION;
  void operator=(const iplist &) LLVM_DELETED_FUNCTION;

public:
  typedef NodeTy *pointer;
  typedef const NodeTy *const_pointer;
  typedef NodeTy &reference;
  typedef const NodeTy &const_reference;
  typedef NodeTy value_type;
  typedef ilist_iterator<NodeTy> iterator;
  typedef ilist_iterator<const NodeTy> const_iterator;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;
  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
  typedef std::reverse_iterator<iterator>  reverse_iterator;

  iplist() : Head(this->provideInitialHead()) {}
  ~iplist() {
    if (!Head) return;
    clear();
    Traits::destroySentinel(getTail());
  }

  // Iterator creation methods.
  iterator begin() {
    CreateLazySentinel();
    return iterator(Head);
  }
  const_iterator begin() const {
    CreateLazySentinel();
    return const_iterator(Head);
  }
  iterator end() {
    CreateLazySentinel();
    return iterator(getTail());
  }
  const_iterator end() const {
    CreateLazySentinel();
    return const_iterator(getTail());
  }

  // reverse iterator creation methods.
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
  reverse_iterator rend()              { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}


  // Miscellaneous inspection routines.
  size_type max_size() const { return size_type(-1); }
  bool empty() const { return Head == 0 || Head == getTail(); }

  // Front and back accessor functions...
  reference front() {
    assert(!empty() && "Called front() on empty list!");
    return *Head;
  }
  const_reference front() const {
    assert(!empty() && "Called front() on empty list!");
    return *Head;
  }
  reference back() {
    assert(!empty() && "Called back() on empty list!");
    return *this->getPrev(getTail());
  }
  const_reference back() const {
    assert(!empty() && "Called back() on empty list!");
    return *this->getPrev(getTail());
  }

  void swap(iplist &RHS) {
    assert(0 && "Swap does not use list traits callback correctly yet!");
    std::swap(Head, RHS.Head);
  }

  iterator insert(iterator where, NodeTy *New) {
    NodeTy *CurNode = where.getNodePtrUnchecked();
    NodeTy *PrevNode = this->getPrev(CurNode);
    this->setNext(New, CurNode);
    this->setPrev(New, PrevNode);

    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
      this->setNext(PrevNode, New);
    else
      Head = New;
    this->setPrev(CurNode, New);

    this->addNodeToList(New);  // Notify traits that we added a node...
    return New;
  }

  iterator insertAfter(iterator where, NodeTy *New) {
    if (empty())
      return insert(begin(), New);
    else
      return insert(++where, New);
  }

  NodeTy *remove(iterator &IT) {
    assert(IT != end() && "Cannot remove end of list!");
    NodeTy *Node = &*IT;
    NodeTy *NextNode = this->getNext(Node);
    NodeTy *PrevNode = this->getPrev(Node);

    if (Node != Head)  // Is PrevNode off the beginning of the list?
      this->setNext(PrevNode, NextNode);
    else
      Head = NextNode;
    this->setPrev(NextNode, PrevNode);
    IT = NextNode;
    this->removeNodeFromList(Node);  // Notify traits that we removed a node...

    // Set the next/prev pointers of the current node to null.  This isn't
    // strictly required, but this catches errors where a node is removed from
    // an ilist (and potentially deleted) with iterators still pointing at it.
    // When those iterators are incremented or decremented, they will assert on
    // the null next/prev pointer instead of "usually working".
    this->setNext(Node, 0);
    this->setPrev(Node, 0);
    return Node;
  }

  NodeTy *remove(const iterator &IT) {
    iterator MutIt = IT;
    return remove(MutIt);
  }

  // erase - remove a node from the controlled sequence... and delete it.
  iterator erase(iterator where) {
    this->deleteNode(remove(where));
    return where;
  }


private:
  // transfer - The heart of the splice function.  Move linked list nodes from
  // [first, last) into position.
  //
  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
    assert(first != last && "Should be checked by callers");

    if (position != last) {
      // Note: we have to be careful about the case when we move the first node
      // in the list.  This node is the list sentinel node and we can't move it.
      NodeTy *ThisSentinel = getTail();
      setTail(0);
      NodeTy *L2Sentinel = L2.getTail();
      L2.setTail(0);

      // Remove [first, last) from its old position.
      NodeTy *First = &*first, *Prev = this->getPrev(First);
      NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
      if (Prev)
        this->setNext(Prev, Next);
      else
        L2.Head = Next;
      this->setPrev(Next, Prev);

      // Splice [first, last) into its new position.
      NodeTy *PosNext = position.getNodePtrUnchecked();
      NodeTy *PosPrev = this->getPrev(PosNext);

      // Fix head of list...
      if (PosPrev)
        this->setNext(PosPrev, First);
      else
        Head = First;
      this->setPrev(First, PosPrev);

      // Fix end of list...
      this->setNext(Last, PosNext);
      this->setPrev(PosNext, Last);

      this->transferNodesFromList(L2, First, PosNext);

      // Now that everything is set, restore the pointers to the list sentinels.
      L2.setTail(L2Sentinel);
      setTail(ThisSentinel);
    }
  }

public:

  //===----------------------------------------------------------------------===
  // Functionality derived from other functions defined above...
  //

  size_type size() const {
    if (Head == 0) return 0; // Don't require construction of sentinel if empty.
    return std::distance(begin(), end());
  }

  iterator erase(iterator first, iterator last) {
    while (first != last)
      first = erase(first);
    return last;
  }

  void clear() { if (Head) erase(begin(), end()); }

  // Front and back inserters...
  void push_front(NodeTy *val) { insert(begin(), val); }
  void push_back(NodeTy *val) { insert(end(), val); }
  void pop_front() {
    assert(!empty() && "pop_front() on empty list!");
    erase(begin());
  }
  void pop_back() {
    assert(!empty() && "pop_back() on empty list!");
    iterator t = end(); erase(--t);
  }

  // Special forms of insert...
  template<class InIt> void insert(iterator where, InIt first, InIt last) {
    for (; first != last; ++first) insert(where, *first);
  }

  // Splice members - defined in terms of transfer...
  void splice(iterator where, iplist &L2) {
    if (!L2.empty())
      transfer(where, L2, L2.begin(), L2.end());
  }
  void splice(iterator where, iplist &L2, iterator first) {
    iterator last = first; ++last;
    if (where == first || where == last) return; // No change
    transfer(where, L2, first, last);
  }
  void splice(iterator where, iplist &L2, iterator first, iterator last) {
    if (first != last) transfer(where, L2, first, last);
  }



  //===----------------------------------------------------------------------===
  // High-Level Functionality that shouldn't really be here, but is part of list
  //

  // These two functions are actually called remove/remove_if in list<>, but
  // they actually do the job of erase, rename them accordingly.
  //
  void erase(const NodeTy &val) {
    for (iterator I = begin(), E = end(); I != E; ) {
      iterator next = I; ++next;
      if (*I == val) erase(I);
      I = next;
    }
  }
  template<class Pr1> void erase_if(Pr1 pred) {
    for (iterator I = begin(), E = end(); I != E; ) {
      iterator next = I; ++next;
      if (pred(*I)) erase(I);
      I = next;
    }
  }

  template<class Pr2> void unique(Pr2 pred) {
    if (empty()) return;
    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
      if (pred(*I))
        erase(Next);
      else
        I = Next;
      Next = I;
    }
  }
  void unique() { unique(op_equal); }

  template<class Pr3> void merge(iplist &right, Pr3 pred) {
    iterator first1 = begin(), last1 = end();
    iterator first2 = right.begin(), last2 = right.end();
    while (first1 != last1 && first2 != last2)
      if (pred(*first2, *first1)) {
        iterator next = first2;
        transfer(first1, right, first2, ++next);
        first2 = next;
      } else {
        ++first1;
      }
    if (first2 != last2) transfer(last1, right, first2, last2);
  }
  void merge(iplist &right) { return merge(right, op_less); }

  template<class Pr3> void sort(Pr3 pred);
  void sort() { sort(op_less); }
};


template<typename NodeTy>
struct ilist : public iplist<NodeTy> {
  typedef typename iplist<NodeTy>::size_type size_type;
  typedef typename iplist<NodeTy>::iterator iterator;

  ilist() {}
  ilist(const ilist &right) {
    insert(this->begin(), right.begin(), right.end());
  }
  explicit ilist(size_type count) {
    insert(this->begin(), count, NodeTy());
  }
  ilist(size_type count, const NodeTy &val) {
    insert(this->begin(), count, val);
  }
  template<class InIt> ilist(InIt first, InIt last) {
    insert(this->begin(), first, last);
  }

  // bring hidden functions into scope
  using iplist<NodeTy>::insert;
  using iplist<NodeTy>::push_front;
  using iplist<NodeTy>::push_back;

  // Main implementation here - Insert for a node passed by value...
  iterator insert(iterator where, const NodeTy &val) {
    return insert(where, this->createNode(val));
  }


  // Front and back inserters...
  void push_front(const NodeTy &val) { insert(this->begin(), val); }
  void push_back(const NodeTy &val) { insert(this->end(), val); }

  void insert(iterator where, size_type count, const NodeTy &val) {
    for (; count != 0; --count) insert(where, val);
  }

  // Assign special forms...
  void assign(size_type count, const NodeTy &val) {
    iterator I = this->begin();
    for (; I != this->end() && count != 0; ++I, --count)
      *I = val;
    if (count != 0)
      insert(this->end(), val, val);
    else
      erase(I, this->end());
  }
  template<class InIt> void assign(InIt first1, InIt last1) {
    iterator first2 = this->begin(), last2 = this->end();
    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
      *first1 = *first2;
    if (first2 == last2)
      erase(first1, last1);
    else
      insert(last1, first2, last2);
  }


  // Resize members...
  void resize(size_type newsize, NodeTy val) {
    iterator i = this->begin();
    size_type len = 0;
    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;

    if (len == newsize)
      erase(i, this->end());
    else                                          // i == end()
      insert(this->end(), newsize - len, val);
  }
  void resize(size_type newsize) { resize(newsize, NodeTy()); }
};

} // End llvm namespace

namespace std {
  // Ensure that swap uses the fast list swap...
  template<class Ty>
  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
    Left.swap(Right);
  }
}  // End 'std' extensions...

#endif // LLVM_ADT_ILIST_H