1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the Location class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or UnknownSize if
// the size is not known. The TBAA tag identifies the "type" of the memory
// reference; see the TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CallSite.h"
namespace llvm {
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class TargetLibraryInfo;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class AliasAnalysis {
protected:
const DataLayout *TD;
const TargetLibraryInfo *TLI;
private:
AliasAnalysis *AA; // Previous Alias Analysis to chain to.
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P);
/// getAnalysisUsage - All alias analysis implementations should invoke this
/// directly (using AliasAnalysis::getAnalysisUsage(AU)).
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
static char ID; // Class identification, replacement for typeinfo
AliasAnalysis() : TD(0), TLI(0), AA(0) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// UnknownSize - This is a special value which can be used with the
/// size arguments in alias queries to indicate that the caller does not
/// know the sizes of the potential memory references.
static uint64_t const UnknownSize = ~UINT64_C(0);
/// getDataLayout - Return a pointer to the current DataLayout object, or
/// null if no DataLayout object is available.
///
const DataLayout *getDataLayout() const { return TD; }
/// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
/// object, or null if no TargetLibraryInfo object is available.
///
const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t getTypeStoreSize(Type *Ty);
//===--------------------------------------------------------------------===//
/// Alias Queries...
///
/// Location - A description of a memory location.
struct Location {
/// Ptr - The address of the start of the location.
const Value *Ptr;
/// Size - The maximum size of the location, in address-units, or
/// UnknownSize if the size is not known. Note that an unknown size does
/// not mean the pointer aliases the entire virtual address space, because
/// there are restrictions on stepping out of one object and into another.
/// See http://llvm.org/docs/LangRef.html#pointeraliasing
uint64_t Size;
/// TBAATag - The metadata node which describes the TBAA type of
/// the location, or null if there is no known unique tag.
const MDNode *TBAATag;
explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
const MDNode *N = 0)
: Ptr(P), Size(S), TBAATag(N) {}
Location getWithNewPtr(const Value *NewPtr) const {
Location Copy(*this);
Copy.Ptr = NewPtr;
return Copy;
}
Location getWithNewSize(uint64_t NewSize) const {
Location Copy(*this);
Copy.Size = NewSize;
return Copy;
}
Location getWithoutTBAATag() const {
Location Copy(*this);
Copy.TBAATag = 0;
return Copy;
}
};
/// getLocation - Fill in Loc with information about the memory reference by
/// the given instruction.
Location getLocation(const LoadInst *LI);
Location getLocation(const StoreInst *SI);
Location getLocation(const VAArgInst *VI);
Location getLocation(const AtomicCmpXchgInst *CXI);
Location getLocation(const AtomicRMWInst *RMWI);
static Location getLocationForSource(const MemTransferInst *MTI);
static Location getLocationForDest(const MemIntrinsic *MI);
/// Alias analysis result - Either we know for sure that it does not alias, we
/// know for sure it must alias, or we don't know anything: The two pointers
/// _might_ alias. This enum is designed so you can do things like:
/// if (AA.alias(P1, P2)) { ... }
/// to check to see if two pointers might alias.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
///
enum AliasResult {
NoAlias = 0, ///< No dependencies.
MayAlias, ///< Anything goes.
PartialAlias, ///< Pointers differ, but pointees overlap.
MustAlias ///< Pointers are equal.
};
/// alias - The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const Location &LocA, const Location &LocB);
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return alias(Location(V1, V1Size), Location(V2, V2Size));
}
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, UnknownSize, V2, UnknownSize);
}
/// isNoAlias - A trivial helper function to check to see if the specified
/// pointers are no-alias.
bool isNoAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(Location(V1), Location(V2));
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, 1, V2, 1) == MustAlias;
}
/// pointsToConstantMemory - If the specified memory location is
/// known to be constant, return true. If OrLocal is true and the
/// specified memory location is known to be "local" (derived from
/// an alloca), return true. Otherwise return false.
virtual bool pointsToConstantMemory(const Location &Loc,
bool OrLocal = false);
/// pointsToConstantMemory - A convenient wrapper.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(Location(P), OrLocal);
}
//===--------------------------------------------------------------------===//
/// Simple mod/ref information...
///
/// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// bits which may be or'd together.
///
enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// These values define additional bits used to define the
/// ModRefBehavior values.
enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
/// ModRefBehavior - Summary of how a function affects memory in the program.
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum ModRefBehavior {
/// DoesNotAccessMemory - This function does not perform any non-local loads
/// or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
DoesNotAccessMemory = Nowhere | NoModRef,
/// OnlyReadsArgumentPointees - The only memory references in this function
/// (if it has any) are non-volatile loads from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
OnlyReadsArgumentPointees = ArgumentPointees | Ref,
/// OnlyAccessesArgumentPointees - The only memory references in this
/// function (if it has any) are non-volatile loads and stores from objects
/// pointed to by its pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
/// OnlyReadsMemory - This function does not perform any non-local stores or
/// volatile loads, but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
OnlyReadsMemory = Anywhere | Ref,
/// UnknownModRefBehavior - This indicates that the function could not be
/// classified into one of the behaviors above.
UnknownModRefBehavior = Anywhere | ModRef
};
/// getModRefBehavior - Return the behavior when calling the given call site.
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
virtual ModRefBehavior getModRefBehavior(const Function *F);
/// doesNotAccessMemory - If the specified call is known to never read or
/// write memory, return true. If the call only reads from known-constant
/// memory, it is also legal to return true. Calls that unwind the stack
/// are legal for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
///
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == DoesNotAccessMemory;
}
/// doesNotAccessMemory - If the specified function is known to never read or
/// write memory, return true. For use when the call site is not known.
///
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == DoesNotAccessMemory;
}
/// onlyReadsMemory - If the specified call is known to only read from
/// non-volatile memory (or not access memory at all), return true. Calls
/// that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
///
bool onlyReadsMemory(ImmutableCallSite CS) {
return onlyReadsMemory(getModRefBehavior(CS));
}
/// onlyReadsMemory - If the specified function is known to only read from
/// non-volatile memory (or not access memory at all), return true. For use
/// when the call site is not known.
///
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// onlyReadsMemory - Return true if functions with the specified behavior are
/// known to only read from non-volatile memory (or not access memory at all).
///
static bool onlyReadsMemory(ModRefBehavior MRB) {
return !(MRB & Mod);
}
/// onlyAccessesArgPointees - Return true if functions with the specified
/// behavior are known to read and write at most from objects pointed to by
/// their pointer-typed arguments (with arbitrary offsets).
///
static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
return !(MRB & Anywhere & ~ArgumentPointees);
}
/// doesAccessArgPointees - Return true if functions with the specified
/// behavior are known to potentially read or write from objects pointed
/// to be their pointer-typed arguments (with arbitrary offsets).
///
static bool doesAccessArgPointees(ModRefBehavior MRB) {
return (MRB & ModRef) && (MRB & ArgumentPointees);
}
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write the specified memory location. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
ModRefResult getModRefInfo(const Instruction *I,
const Location &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
default: return NoModRef;
}
}
/// getModRefInfo - A convenience wrapper.
ModRefResult getModRefInfo(const Instruction *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Value *P, uint64_t Size) {
return getModRefInfo(CS, Location(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, Location(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefResult getModRefInfo(const InvokeInst *I,
const Location &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefResult getModRefInfo(const InvokeInst *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, Location(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
const Value *P, unsigned Size) {
return getModRefInfo(CX, Location(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
const Value *P, unsigned Size) {
return getModRefInfo(RMW, Location(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. See
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
/// for details.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
/// callCapturesBefore - Return information about whether a particular call
/// site modifies or reads the specified memory location.
ModRefResult callCapturesBefore(const Instruction *I,
const AliasAnalysis::Location &MemLoc,
DominatorTree *DT);
/// callCapturesBefore - A convenience wrapper.
ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT) {
return callCapturesBefore(I, Location(P, Size), DT);
}
//===--------------------------------------------------------------------===//
/// Higher level methods for querying mod/ref information.
///
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
/// canBasicBlockModify - A convenience wrapper.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
return canBasicBlockModify(BB, Location(P, Size));
}
/// canInstructionRangeModify - Return true if it is possible for the
/// execution of the specified instructions to modify the value pointed to by
/// Ptr. The instructions to consider are all of the instructions in the
/// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Location &Loc);
/// canInstructionRangeModify - A convenience wrapper.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size) {
return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
}
//===--------------------------------------------------------------------===//
/// Methods that clients should call when they transform the program to allow
/// alias analyses to update their internal data structures. Note that these
/// methods may be called on any instruction, regardless of whether or not
/// they have pointer-analysis implications.
///
/// deleteValue - This method should be called whenever an LLVM Value is
/// deleted from the program, for example when an instruction is found to be
/// redundant and is eliminated.
///
virtual void deleteValue(Value *V);
/// copyValue - This method should be used whenever a preexisting value in the
/// program is copied or cloned, introducing a new value. Note that analysis
/// implementations should tolerate clients that use this method to introduce
/// the same value multiple times: if the analysis already knows about a
/// value, it should ignore the request.
///
virtual void copyValue(Value *From, Value *To);
/// addEscapingUse - This method should be used whenever an escaping use is
/// added to a pointer value. Analysis implementations may either return
/// conservative responses for that value in the future, or may recompute
/// some or all internal state to continue providing precise responses.
///
/// Escaping uses are considered by anything _except_ the following:
/// - GEPs or bitcasts of the pointer
/// - Loads through the pointer
/// - Stores through (but not of) the pointer
virtual void addEscapingUse(Use &U);
/// replaceWithNewValue - This method is the obvious combination of the two
/// above, and it provided as a helper to simplify client code.
///
void replaceWithNewValue(Value *Old, Value *New) {
copyValue(Old, New);
deleteValue(Old);
}
};
// Specialize DenseMapInfo for Location.
template<>
struct DenseMapInfo<AliasAnalysis::Location> {
static inline AliasAnalysis::Location getEmptyKey() {
return
AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
0, 0);
}
static inline AliasAnalysis::Location getTombstoneKey() {
return
AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
0, 0);
}
static unsigned getHashValue(const AliasAnalysis::Location &Val) {
return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
}
static bool isEqual(const AliasAnalysis::Location &LHS,
const AliasAnalysis::Location &RHS) {
return LHS.Ptr == RHS.Ptr &&
LHS.Size == RHS.Size &&
LHS.TBAATag == RHS.TBAATag;
}
};
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool isNoAliasCall(const Value *V);
/// isNoAliasArgument - Return true if this is an argument with the noalias
/// attribute.
bool isNoAliasArgument(const Value *V);
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
} // End llvm namespace
#endif
|