1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
//===- CallGraph.h - Build a Module's call graph -----------------*- C++ -*--=//
//
// This interface is used to build and manipulate a call graph, which is a very
// useful tool for interprocedural optimization.
//
// Every method in a module is represented as a node in the call graph. The
// callgraph node keeps track of which methods the are called by the method
// corresponding to the node.
//
// A call graph will contain nodes where the method that they correspond to is
// null. This 'external' node is used to represent control flow that is not
// represented (or analyzable) in the module. As such, the external node will
// have edges to methods with the following properties:
// 1. All methods in the module without internal linkage, since they could
// be called by methods outside of the our analysis capability.
// 2. All methods whose address is used for something more than a direct call,
// for example being stored into a memory location. Since they may be
// called by an unknown caller later, they must be tracked as such.
//
// Similarly, methods have a call edge to the external node iff:
// 1. The method is external, reflecting the fact that they could call
// anything without internal linkage or that has its address taken.
// 2. The method contains an indirect method call.
//
// As an extension in the future, there may be multiple nodes with a null
// method. These will be used when we can prove (through pointer analysis) that
// an indirect call site can call only a specific set of methods.
//
// Because of these properties, the CallGraph captures a conservative superset
// of all of the caller-callee relationships, which is useful for
// transformations.
//
// The CallGraph class also attempts to figure out what the root of the
// CallGraph is, which is currently does by looking for a method named 'main'.
// If no method named 'main' is found, the external node is used as the entry
// node, reflecting the fact that any method without internal linkage could
// be called into (which is common for libraries).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPH_H
#define LLVM_ANALYSIS_CALLGRAPH_H
#include "Support/GraphTraits.h"
#include "llvm/Pass.h"
class Function;
class Module;
class CallGraphNode;
//===----------------------------------------------------------------------===//
// CallGraph class definition
//
class CallGraph : public Pass {
Module *Mod; // The module this call graph represents
typedef std::map<const Function *, CallGraphNode *> MethodMapTy;
MethodMapTy MethodMap; // Map from a method to its node
// Root is root of the call graph, or the external node if a 'main' function
// couldn't be found. ExternalNode is equivalent to (*this)[0].
//
CallGraphNode *Root, *ExternalNode;
public:
//===---------------------------------------------------------------------
// Accessors...
//
typedef MethodMapTy::iterator iterator;
typedef MethodMapTy::const_iterator const_iterator;
inline CallGraphNode *getRoot() { return Root; }
inline const CallGraphNode *getRoot() const { return Root; }
inline iterator begin() { return MethodMap.begin(); }
inline iterator end() { return MethodMap.end(); }
inline const_iterator begin() const { return MethodMap.begin(); }
inline const_iterator end() const { return MethodMap.end(); }
// Subscripting operators, return the call graph node for the provided method
inline const CallGraphNode *operator[](const Function *F) const {
const_iterator I = MethodMap.find(F);
assert(I != MethodMap.end() && "Method not in callgraph!");
return I->second;
}
inline CallGraphNode *operator[](const Function *F) {
const_iterator I = MethodMap.find(F);
assert(I != MethodMap.end() && "Method not in callgraph!");
return I->second;
}
//===---------------------------------------------------------------------
// Methods to keep a call graph up to date with a method that has been
// modified
//
void addMethodToModule(Function *Meth);
// removeMethodFromModule - Unlink the method from this module, returning it.
// Because this removes the method from the module, the call graph node is
// destroyed. This is only valid if the method does not call any other
// methods (ie, there are no edges in it's CGN). The easiest way to do this
// is to dropAllReferences before calling this.
//
Function *removeMethodFromModule(CallGraphNode *CGN);
Function *removeMethodFromModule(Function *Meth) {
return removeMethodFromModule((*this)[Meth]);
}
//===---------------------------------------------------------------------
// Pass infrastructure interface glue code...
//
static AnalysisID ID; // We are an analysis, we must have an ID
CallGraph(AnalysisID AID) : Root(0) { assert(AID == ID); }
~CallGraph() { destroy(); }
virtual const char *getPassName() const { return "Call Graph Construction"; }
// run - Compute the call graph for the specified module.
virtual bool run(Module &M);
// getAnalysisUsage - This obviously provides a call graph
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addProvided(ID);
}
// releaseMemory - Data structures can be large, so free memory aggressively.
virtual void releaseMemory() {
destroy();
}
private:
//===---------------------------------------------------------------------
// Implementation of CallGraph construction
//
// getNodeFor - Return the node for the specified function or create one if it
// does not already exist.
//
CallGraphNode *getNodeFor(Function *F);
// addToCallGraph - Add a function to the call graph, and link the node to all
// of the methods that it calls.
//
void addToCallGraph(Function *F);
// destroy - Release memory for the call graph
void destroy();
};
//===----------------------------------------------------------------------===//
// CallGraphNode class definition
//
class CallGraphNode {
Function *Meth;
std::vector<CallGraphNode*> CalledMethods;
CallGraphNode(const CallGraphNode &); // Do not implement
public:
//===---------------------------------------------------------------------
// Accessor methods...
//
typedef std::vector<CallGraphNode*>::iterator iterator;
typedef std::vector<CallGraphNode*>::const_iterator const_iterator;
// getMethod - Return the method that this call graph node represents...
Function *getMethod() const { return Meth; }
inline iterator begin() { return CalledMethods.begin(); }
inline iterator end() { return CalledMethods.end(); }
inline const_iterator begin() const { return CalledMethods.begin(); }
inline const_iterator end() const { return CalledMethods.end(); }
inline unsigned size() const { return CalledMethods.size(); }
// Subscripting operator - Return the i'th called method...
//
inline CallGraphNode *operator[](unsigned i) const { return CalledMethods[i];}
//===---------------------------------------------------------------------
// Methods to keep a call graph up to date with a method that has been
// modified
//
void removeAllCalledMethods() {
CalledMethods.clear();
}
private: // Stuff to construct the node, used by CallGraph
friend class CallGraph;
// CallGraphNode ctor - Create a node for the specified method...
inline CallGraphNode(Function *F) : Meth(F) {}
// addCalledMethod add a method to the list of methods called by this one
void addCalledMethod(CallGraphNode *M) {
CalledMethods.push_back(M);
}
};
//===----------------------------------------------------------------------===//
// GraphTraits specializations for call graphs so that they can be treated as
// graphs by the generic graph algorithms...
//
// Provide graph traits for tranversing call graphs using standard graph
// traversals.
template <> struct GraphTraits<CallGraphNode*> {
typedef CallGraphNode NodeType;
typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();}
static inline ChildIteratorType child_end (NodeType *N) { return N->end(); }
};
template <> struct GraphTraits<const CallGraphNode*> {
typedef const CallGraphNode NodeType;
typedef NodeType::const_iterator ChildIteratorType;
static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();}
static inline ChildIteratorType child_end (NodeType *N) { return N->end(); }
};
template<> struct GraphTraits<CallGraph*> :
public GraphTraits<CallGraphNode*> {
static NodeType *getEntryNode(CallGraph *CGN) {
return CGN->getRoot();
}
};
template<> struct GraphTraits<const CallGraph*> :
public GraphTraits<const CallGraphNode*> {
static NodeType *getEntryNode(const CallGraph *CGN) {
return CGN->getRoot();
}
};
//===----------------------------------------------------------------------===//
// Printing support for Call Graphs
//
// Stuff for printing out a callgraph...
void WriteToOutput(const CallGraph &, std::ostream &o);
inline std::ostream &operator <<(std::ostream &o, const CallGraph &CG) {
WriteToOutput(CG, o); return o;
}
void WriteToOutput(const CallGraphNode *, std::ostream &o);
inline std::ostream &operator <<(std::ostream &o, const CallGraphNode *CGN) {
WriteToOutput(CGN, o); return o;
}
#endif
|