aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/DataStructure/DataStructure.h
blob: 57bf0eb31a7a14eb33f0e02139238cf27d4414c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//===- DataStructure.h - Build data structure graphs -------------*- C++ -*--=//
//
// Implement the LLVM data structure analysis library.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DATA_STRUCTURE_H
#define LLVM_ANALYSIS_DATA_STRUCTURE_H

#include "llvm/Pass.h"
#include <string>

// Hack around broken gdb! stack traces from system assert don't work, but do
// from a fault.  :(
#undef assert
#define assert(x) \
  do { if (!(x)) { std::cerr << "assertion failure!: " #x "\n"; \
       int *P = 0; *P = 17; }} while (0)

class Type;
class GlobalValue;
class DSNode;                  // Each node in the graph
class DSGraph;                 // A graph for a function
class DSNodeIterator;          // Data structure graph traversal iterator
class LocalDataStructures;     // A collection of local graphs for a program
class BUDataStructures;        // A collection of bu graphs for a program
class TDDataStructures;        // A collection of td graphs for a program

//===----------------------------------------------------------------------===//
// DSNodeHandle - Implement a "handle" to a data structure node that takes care
// of all of the add/un'refing of the node to prevent the backpointers in the
// graph from getting out of date.
//
class DSNodeHandle {
  DSNode *N;
public:
  // Allow construction, destruction, and assignment...
  DSNodeHandle(DSNode *n = 0) : N(0) { operator=(n); }
  DSNodeHandle(const DSNodeHandle &H) : N(0) { operator=(H.N); }
  ~DSNodeHandle() { operator=(0); }
  DSNodeHandle &operator=(const DSNodeHandle &H) {operator=(H.N); return *this;}

  // Assignment of DSNode*, implement all of the add/un'refing (defined later)
  inline DSNodeHandle &operator=(DSNode *n);

  // Allow automatic, implicit, conversion to DSNode*
  operator DSNode*() { return N; }
  operator const DSNode*() const { return N; }
  operator bool() const { return N != 0; }
  operator bool() { return N != 0; }

  bool operator<(const DSNodeHandle &H) const {  // Allow sorting
    return N < H.N;
  }
  bool operator==(const DSNodeHandle &H) const { return N == H.N; }
  bool operator!=(const DSNodeHandle &H) const { return N != H.N; }
  bool operator==(const DSNode *Node) const { return N == Node; }
  bool operator!=(const DSNode *Node) const { return N != Node; }

  // Avoid having comparisons to null cause errors...
  bool operator==(int X) const { return operator==((DSNode*)X); }

  // Allow explicit conversion to DSNode...
  DSNode *get() { return N; }
  const DSNode *get() const { return N; }

  // Allow this to be treated like a pointer...
  DSNode *operator->() { return N; }
  const DSNode *operator->() const { return N; }
};


//===----------------------------------------------------------------------===//
// DSNode - Data structure node class
//
// This class keeps track of a node's type, and the fields in the data
// structure.
//
//
class DSNode {
  const Type *Ty;
  std::vector<DSNodeHandle> Links;
  std::vector<DSNodeHandle*> Referrers;

  // Globals - The list of global values that are merged into this node.
  std::vector<GlobalValue*> Globals;

  void operator=(const DSNode &); // DO NOT IMPLEMENT
public:
  enum NodeTy {
    ShadowNode = 0 << 0,   // Nothing is known about this node...
    ScalarNode = 1 << 0,   // Scalar of the current function contains this value
    AllocaNode = 1 << 1,   // This node was allocated with alloca
    NewNode    = 1 << 2,   // This node was allocated with malloc
    GlobalNode = 1 << 3,   // This node was allocated by a global var decl
    SubElement = 1 << 4,   // This node is a part of some other node
    CastNode   = 1 << 5,   // This node is accessed in unsafe ways
    Incomplete = 1 << 6,   // This node may not be complete
  };

  // NodeType - A union of the above bits.  "Shadow" nodes do not add any flags
  // to the nodes in the data structure graph, so it is possible to have nodes
  // with a value of 0 for their NodeType.  Scalar and Alloca markers go away
  // when function graphs are inlined.
  //
  unsigned char NodeType;

  DSNode(enum NodeTy NT, const Type *T);
  DSNode(const DSNode &);

  ~DSNode() {
#ifndef NDEBUG
    dropAllReferences();  // Only needed to satisfy assertion checks...
#endif
    assert(Referrers.empty() && "Referrers to dead node exist!");
  }

  // Iterator for graph interface...
  typedef DSNodeIterator iterator;
  inline iterator begin();   // Defined in DataStructureGraph.h
  inline iterator end();

  // Accessors
  const Type *getType() const { return Ty; }

  unsigned getNumLinks() const { return Links.size(); }
  DSNode *getLink(unsigned i) {
    assert(i < getNumLinks() && "Field links access out of range...");
    return Links[i];
  }
  const DSNode *getLink(unsigned i) const {
    assert(i < getNumLinks() && "Field links access out of range...");
    return Links[i];
  }

  void setLink(unsigned i, DSNode *N) {
    assert(i < getNumLinks() && "Field links access out of range...");
    Links[i] = N;
  }

  // addGlobal - Add an entry for a global value to the Globals list.  This also
  // marks the node with the 'G' flag if it does not already have it.
  //
  void addGlobal(GlobalValue *GV);
  const std::vector<GlobalValue*> &getGlobals() const { return Globals; }
  std::vector<GlobalValue*> &getGlobals() { return Globals; }

  // addEdgeTo - Add an edge from the current node to the specified node.  This
  // can cause merging of nodes in the graph.
  //
  void addEdgeTo(unsigned LinkNo, DSNode *N);
  void addEdgeTo(DSNode *N) {
    assert(getNumLinks() == 1 && "Must specify a field number to add edge if "
           " more than one field exists!");
    addEdgeTo(0, N);
  }

  // mergeWith - Merge this node into the specified node, moving all links to
  // and from the argument node into the current node.  The specified node may
  // be a null pointer (in which case, nothing happens).
  //
  void mergeWith(DSNode *N);

  // addReferrer - Keep the referrer set up to date...
  void addReferrer(DSNodeHandle *H) { Referrers.push_back(H); }
  void removeReferrer(DSNodeHandle *H);
  const std::vector<DSNodeHandle*> &getReferrers() const { return Referrers; }

  void print(std::ostream &O, const DSGraph *G) const;
  void dump() const;

  std::string getCaption(const DSGraph *G) const;

  void dropAllReferences() {
    Links.clear();
  }
};


inline DSNodeHandle &DSNodeHandle::operator=(DSNode *n) {
  if (N) N->removeReferrer(this);
  N = n;
  if (N) N->addReferrer(this);
  return *this;
}


// DSGraph - The graph that represents a function.
//
class DSGraph {
  Function &Func;
  std::vector<DSNode*> Nodes;
  DSNodeHandle RetNode;               // Node that gets returned...
  std::map<Value*, DSNodeHandle> ValueMap;

  // FunctionCalls - This vector maintains a single entry for each call
  // instruction in the current graph.  Each call entry contains DSNodeHandles
  // that refer to the arguments that are passed into the function call.  The
  // first entry in the vector is the scalar that holds the return value for the
  // call, the second is the function scalar being invoked, and the rest are
  // pointer arguments to the function.
  //
  std::vector<std::vector<DSNodeHandle> > FunctionCalls;

  // OrigFunctionCalls - This vector retains a copy of the original function
  // calls of the current graph.  This is needed to support top-down inlining
  // after bottom-up inlining is complete, since the latter deletes call nodes.
  // 
  std::vector<std::vector<DSNodeHandle> > OrigFunctionCalls;

  // PendingCallers - This vector records all unresolved callers of the
  // current function, i.e., ones whose graphs have not been inlined into
  // the current graph.  As long as there are unresolved callers, the nodes
  // for formal arguments in the current graph cannot be eliminated, and
  // nodes in the graph reachable from the formal argument nodes or
  // global variable nodes must be considered incomplete. 
  std::vector<Function*> PendingCallers;
  
private:
  // Define the interface only accessable to DataStructure
  friend class LocalDataStructures;
  friend class BUDataStructures;
  friend class TDDataStructures;
  DSGraph(Function &F);            // Compute the local DSGraph
  DSGraph(const DSGraph &DSG);     // Copy ctor
  ~DSGraph();

  // clone all the call nodes and save the copies in OrigFunctionCalls
  void saveOrigFunctionCalls() {
    assert(OrigFunctionCalls.size() == 0 && "Do this only once!");
    OrigFunctionCalls = FunctionCalls;
  }
  
  // get the saved copies of the original function call nodes
  std::vector<std::vector<DSNodeHandle> > &getOrigFunctionCalls() {
    return OrigFunctionCalls;
  }

  void operator=(const DSGraph &); // DO NOT IMPLEMENT
public:

  Function &getFunction() const { return Func; }

  // getValueMap - Get a map that describes what the nodes the scalars in this
  // function point to...
  //
  std::map<Value*, DSNodeHandle> &getValueMap() { return ValueMap; }
  const std::map<Value*, DSNodeHandle> &getValueMap() const { return ValueMap;}

  std::vector<std::vector<DSNodeHandle> > &getFunctionCalls() {
    return FunctionCalls;
  }

  const DSNode *getRetNode() const { return RetNode; }

  unsigned getGraphSize() const {
    return Nodes.size();
  }

  void print(std::ostream &O) const;
  void dump() const;

  // maskNodeTypes - Apply a mask to all of the node types in the graph.  This
  // is useful for clearing out markers like Scalar or Incomplete.
  //
  void maskNodeTypes(unsigned char Mask);
  void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); }

  // markIncompleteNodes - Traverse the graph, identifying nodes that may be
  // modified by other functions that have not been resolved yet.  This marks
  // nodes that are reachable through three sources of "unknownness":
  //   Global Variables, Function Calls, and Incoming Arguments
  //
  // For any node that may have unknown components (because something outside
  // the scope of current analysis may have modified it), the 'Incomplete' flag
  // is added to the NodeType.
  //
  void markIncompleteNodes();

  // removeTriviallyDeadNodes - After the graph has been constructed, this
  // method removes all unreachable nodes that are created because they got
  // merged with other nodes in the graph.
  //
  void removeTriviallyDeadNodes();

  // removeDeadNodes - Use a more powerful reachability analysis to eliminate
  // subgraphs that are unreachable.  This often occurs because the data
  // structure doesn't "escape" into it's caller, and thus should be eliminated
  // from the caller's graph entirely.  This is only appropriate to use when
  // inlining graphs.
  //
  void removeDeadNodes();


  // AddCaller - add a known caller node into the graph and mark it pending.
  // getCallers - get a vector of the functions that call this one
  // getCallersPending - get a matching vector of bools indicating if each
  //                     caller's DSGraph has been resolved into this one.
  // 
  void addCaller(Function& caller) {
    PendingCallers.push_back(&caller);
  }
  std::vector<Function*>& getPendingCallers() {
    return PendingCallers;
  }
  
  // cloneInto - Clone the specified DSGraph into the current graph, returning
  // the Return node of the graph.  The translated ValueMap for the old function
  // is filled into the OldValMap member.  If StripLocals is set to true, Scalar
  // and Alloca markers are removed from the graph, as the graph is being cloned
  // into a calling function's graph.
  //
  DSNode *cloneInto(const DSGraph &G, std::map<Value*, DSNodeHandle> &OldValMap,
                    std::map<const DSNode*, DSNode*>& OldNodeMap,
                    bool StripLocals = true);
private:
  bool isNodeDead(DSNode *N);
};



// LocalDataStructures - The analysis that computes the local data structure
// graphs for all of the functions in the program.
//
// FIXME: This should be a Function pass that can be USED by a Pass, and would
// be automatically preserved.  Until we can do that, this is a Pass.
//
class LocalDataStructures : public Pass {
  // DSInfo, one graph for each function
  std::map<Function*, DSGraph*> DSInfo;
public:
  static AnalysisID ID;            // DataStructure Analysis ID 

  LocalDataStructures(AnalysisID id) { assert(id == ID); }
  ~LocalDataStructures() { releaseMemory(); }

  virtual const char *getPassName() const {
    return "Local Data Structure Analysis";
  }

  virtual bool run(Module &M);

  // getDSGraph - Return the data structure graph for the specified function.
  DSGraph &getDSGraph(Function &F) const {
    std::map<Function*, DSGraph*>::const_iterator I = DSInfo.find(&F);
    assert(I != DSInfo.end() && "Function not in module!");
    return *I->second;
  }

  // print - Print out the analysis results...
  void print(std::ostream &O, Module *M) const;

  // If the pass pipeline is done with this pass, we can release our memory...
  virtual void releaseMemory();

  // getAnalysisUsage - This obviously provides a data structure graph.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addProvided(ID);
  }
};


// BUDataStructures - The analysis that computes the interprocedurally closed
// data structure graphs for all of the functions in the program.  This pass
// only performs a "Bottom Up" propogation (hence the name).
//
class BUDataStructures : public Pass {
  // DSInfo, one graph for each function
  std::map<Function*, DSGraph*> DSInfo;
public:
  static AnalysisID ID;            // BUDataStructure Analysis ID 

  BUDataStructures(AnalysisID id) { assert(id == ID); }
  ~BUDataStructures() { releaseMemory(); }

  virtual const char *getPassName() const {
    return "Bottom-Up Data Structure Analysis Closure";
  }

  virtual bool run(Module &M);

  // getDSGraph - Return the data structure graph for the specified function.
  DSGraph &getDSGraph(Function &F) const {
    std::map<Function*, DSGraph*>::const_iterator I = DSInfo.find(&F);
    assert(I != DSInfo.end() && "Function not in module!");
    return *I->second;
  }
  
  // print - Print out the analysis results...
  void print(std::ostream &O, Module *M) const;

  // If the pass pipeline is done with this pass, we can release our memory...
  virtual void releaseMemory();

  // getAnalysisUsage - This obviously provides a data structure graph.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addProvided(ID);
    AU.addRequired(LocalDataStructures::ID);
  }
private:
  DSGraph &calculateGraph(Function &F);
};


// TDDataStructures - Analysis that computes new data structure graphs
// for each function using the closed graphs for the callers computed
// by the bottom-up pass.
//
class TDDataStructures : public Pass {
  // DSInfo, one graph for each function
  std::map<Function*, DSGraph*> DSInfo;
public:
  static AnalysisID ID;            // TDDataStructure Analysis ID 

  TDDataStructures(AnalysisID id) { assert(id == ID); }
  ~TDDataStructures() { releaseMemory(); }

  virtual const char *getPassName() const {
    return "Top-down Data Structure Analysis Closure";
  }

  virtual bool run(Module &M);

  // getDSGraph - Return the data structure graph for the specified function.
  DSGraph &getDSGraph(Function &F) const {
    std::map<Function*, DSGraph*>::const_iterator I = DSInfo.find(&F);
    assert(I != DSInfo.end() && "Function not in module!");
    return *I->second;
  }

  // print - Print out the analysis results...
  void print(std::ostream &O, Module *M) const;

  // If the pass pipeline is done with this pass, we can release our memory...
  virtual void releaseMemory();

  // getAnalysisUsage - This obviously provides a data structure graph.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addProvided(ID);
    AU.addRequired(BUDataStructures::ID);
  }
private:
  DSGraph &calculateGraph(Function &F);
  void pushGraphIntoCallee(DSGraph &callerGraph, DSGraph &calleeGraph,
                           std::map<Value*, DSNodeHandle> &OldValMap,
                           std::map<const DSNode*, DSNode*> &OldNodeMap);
};
#endif