aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/Dominators.h
blob: f4c31a5f161a6ddc317f943f4e03b25f552dd17b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the following classes:
//  1. DominatorTree: Represent dominators as an explicit tree structure.
//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
//     function.
//
//  These data structures are listed in increasing order of complexity.  It
//  takes longer to calculate the dominator frontier, for example, than the
//  DominatorTree mapping.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H

#include "llvm/Pass.h"
#include <set>
#include "llvm/ADT/DenseMap.h"

namespace llvm {

class Instruction;

template <typename GraphType> struct GraphTraits;

//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
class DominatorBase : public FunctionPass {
protected:
  std::vector<BasicBlock*> Roots;
  const bool IsPostDominators;
  inline DominatorBase(intptr_t ID, bool isPostDom) : 
    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
public:

  /// getRoots -  Return the root blocks of the current CFG.  This may include
  /// multiple blocks if we are computing post dominators.  For forward
  /// dominators, this will always be a single block (the entry node).
  ///
  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }

  /// isPostDominator - Returns true if analysis based of postdoms
  ///
  bool isPostDominator() const { return IsPostDominators; }
};


//===----------------------------------------------------------------------===//
// DomTreeNode - Dominator Tree Node
class DominatorTreeBase;
class PostDominatorTree;
class DomTreeNode {
  BasicBlock *TheBB;
  DomTreeNode *IDom;
  std::vector<DomTreeNode*> Children;
  int DFSNumIn, DFSNumOut;

  friend class DominatorTreeBase;
  friend class PostDominatorTree;
public:
  typedef std::vector<DomTreeNode*>::iterator iterator;
  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
  
  iterator begin()             { return Children.begin(); }
  iterator end()               { return Children.end(); }
  const_iterator begin() const { return Children.begin(); }
  const_iterator end()   const { return Children.end(); }
  
  BasicBlock *getBlock() const { return TheBB; }
  DomTreeNode *getIDom() const { return IDom; }
  const std::vector<DomTreeNode*> &getChildren() const { return Children; }
  
  DomTreeNode(BasicBlock *BB, DomTreeNode *iDom)
    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
  DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
  void setIDom(DomTreeNode *NewIDom);

  
  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
  /// not call them.
  unsigned getDFSNumIn() const { return DFSNumIn; }
  unsigned getDFSNumOut() const { return DFSNumOut; }
private:
  // Return true if this node is dominated by other. Use this only if DFS info
  // is valid.
  bool DominatedBy(const DomTreeNode *other) const {
    return this->DFSNumIn >= other->DFSNumIn &&
      this->DFSNumOut <= other->DFSNumOut;
  }
};

//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
class DominatorTreeBase : public DominatorBase {
protected:
  void reset();
  typedef DenseMap<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
  DomTreeNodeMapType DomTreeNodes;
  DomTreeNode *RootNode;

  bool DFSInfoValid;
  unsigned int SlowQueries;
  // Information record used during immediate dominators computation.
  struct InfoRec {
    unsigned Semi;
    unsigned Size;
    BasicBlock *Label, *Parent, *Child, *Ancestor;

    std::vector<BasicBlock*> Bucket;

    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
  };

  DenseMap<BasicBlock*, BasicBlock*> IDoms;

  // Vertex - Map the DFS number to the BasicBlock*
  std::vector<BasicBlock*> Vertex;

  // Info - Collection of information used during the computation of idoms.
  DenseMap<BasicBlock*, InfoRec> Info;

public:
  DominatorTreeBase(intptr_t ID, bool isPostDom) 
    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
  ~DominatorTreeBase() { reset(); }

  virtual void releaseMemory() { reset(); }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  inline DomTreeNode *getNode(BasicBlock *BB) const {
    DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
    return I != DomTreeNodes.end() ? I->second : 0;
  }

  inline DomTreeNode *operator[](BasicBlock *BB) const {
    return getNode(BB);
  }

  /// getRootNode - This returns the entry node for the CFG of the function.  If
  /// this tree represents the post-dominance relations for a function, however,
  /// this root may be a node with the block == NULL.  This is the case when
  /// there are multiple exit nodes from a particular function.  Consumers of
  /// post-dominance information must be capable of dealing with this
  /// possibility.
  ///
  DomTreeNode *getRootNode() { return RootNode; }
  const DomTreeNode *getRootNode() const { return RootNode; }

  /// properlyDominates - Returns true iff this dominates N and this != N.
  /// Note that this is not a constant time operation!
  ///
  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
    if (A == 0 || B == 0) return false;
    return dominatedBySlowTreeWalk(A, B);
  }

  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
    return properlyDominates(getNode(A), getNode(B));
  }

  bool dominatedBySlowTreeWalk(const DomTreeNode *A, 
                               const DomTreeNode *B) const {
    const DomTreeNode *IDom;
    if (A == 0 || B == 0) return false;
    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
      B = IDom;   // Walk up the tree
    return IDom != 0;
  }


  /// isReachableFromEntry - Return true if A is dominated by the entry
  /// block of the function containing it.
  const bool isReachableFromEntry(BasicBlock* A);
  
  /// dominates - Returns true iff A dominates B.  Note that this is not a
  /// constant time operation!
  ///
  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
    if (B == A) 
      return true;  // A node trivially dominates itself.

    if (A == 0 || B == 0)
      return false;

    if (DFSInfoValid)
      return B->DominatedBy(A);

    // If we end up with too many slow queries, just update the
    // DFS numbers on the theory that we are going to keep querying.
    SlowQueries++;
    if (SlowQueries > 32) {
      updateDFSNumbers();
      return B->DominatedBy(A);
    }

    return dominatedBySlowTreeWalk(A, B);
  }

  inline bool dominates(BasicBlock *A, BasicBlock *B) {
    if (A == B) 
      return true;
    
    return dominates(getNode(A), getNode(B));
  }

  /// findNearestCommonDominator - Find nearest common dominator basic block
  /// for basic block A and B. If there is no such block then return NULL.
  BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B);

  // dominates - Return true if A dominates B. This performs the
  // special checks necessary if A and B are in the same basic block.
  bool dominates(Instruction *A, Instruction *B);

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorTree information based on modifications to
  // the CFG...

  /// addNewBlock - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of DomBB dominator node,linking it into 
  /// the children list of the immediate dominator.
  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
    DomTreeNode *IDomNode = getNode(DomBB);
    assert(IDomNode && "Not immediate dominator specified for block!");
    DFSInfoValid = false;
    return DomTreeNodes[BB] = 
      IDomNode->addChild(new DomTreeNode(BB, IDomNode));
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
    assert(N && NewIDom && "Cannot change null node pointers!");
    DFSInfoValid = false;
    N->setIDom(NewIDom);
  }

  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
    changeImmediateDominator(getNode(BB), getNode(NewBB));
  }

  /// eraseNode - Removes a node from  the dominator tree. Block must not
  /// domiante any other blocks. Removes node from its immediate dominator's
  /// children list. Deletes dominator node associated with basic block BB.
  void eraseNode(BasicBlock *BB);

  /// removeNode - Removes a node from the dominator tree.  Block must not
  /// dominate any other blocks.  Invalidates any node pointing to removed
  /// block.
  void removeNode(BasicBlock *BB) {
    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
    DomTreeNodes.erase(BB);
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS, const Module* = 0) const;
  void print(std::ostream *OS, const Module* M = 0) const {
    if (OS) print(*OS, M);
  }
  virtual void dump();
  
protected:
  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
  /// dominator tree in dfs order.
  void updateDFSNumbers();
  
  DomTreeNode *getNodeForBlock(BasicBlock *BB);
  
  inline BasicBlock *getIDom(BasicBlock *BB) const {
    DenseMap<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
    return I != IDoms.end() ? I->second : 0;
  }
};

//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class DominatorTree : public DominatorTreeBase {
public:
  static char ID; // Pass ID, replacement for typeid
  DominatorTree() : DominatorTreeBase(intptr_t(&ID), false) {}
  
  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }
  
  virtual bool runOnFunction(Function &F);
  
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }

  /// splitBlock
  /// BB is split and now it has one successor. Update dominator tree to
  /// reflect this change.
  void splitBlock(BasicBlock *BB);

private:
  friend void DTcalculate(DominatorTree& DT, Function& F);
  friend void DTCompress(DominatorTree& DT, BasicBlock *VIn);
  friend BasicBlock *DTEval(DominatorTree& DT, BasicBlock *v);
  friend void DTLink(DominatorTree& DT, BasicBlock *V,
                     BasicBlock *W, InfoRec &WInfo);
  
  unsigned DFSPass(BasicBlock *V, unsigned N);
};

//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DomTreeNode*> {
  typedef DomTreeNode NodeType;
  typedef NodeType::iterator  ChildIteratorType;
  
  static NodeType *getEntryNode(NodeType *N) {
    return N;
  }
  static inline ChildIteratorType child_begin(NodeType* N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType* N) {
    return N->end();
  }
};

template <> struct GraphTraits<DominatorTree*>
  : public GraphTraits<DomTreeNode*> {
  static NodeType *getEntryNode(DominatorTree *DT) {
    return DT->getRootNode();
  }
};


//===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
///
class DominanceFrontierBase : public DominatorBase {
public:
  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected:
  DomSetMapType Frontiers;
public:
  DominanceFrontierBase(intptr_t ID, bool isPostDom) 
    : DominatorBase(ID, isPostDom) {}

  virtual void releaseMemory() { Frontiers.clear(); }

  // Accessor interface:
  typedef DomSetMapType::iterator iterator;
  typedef DomSetMapType::const_iterator const_iterator;
  iterator       begin()       { return Frontiers.begin(); }
  const_iterator begin() const { return Frontiers.begin(); }
  iterator       end()         { return Frontiers.end(); }
  const_iterator end()   const { return Frontiers.end(); }
  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }

  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
    assert(find(BB) == end() && "Block already in DominanceFrontier!");
    Frontiers.insert(std::make_pair(BB, frontier));
  }

  /// removeBlock - Remove basic block BB's frontier.
  void removeBlock(BasicBlock *BB) {
    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
    for (iterator I = begin(), E = end(); I != E; ++I)
      I->second.erase(BB);
    Frontiers.erase(BB);
  }

  void addToFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    I->second.insert(Node);
  }

  void removeFromFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
    I->second.erase(Node);
  }

  /// print - Convert to human readable form
  ///
  virtual void print(std::ostream &OS, const Module* = 0) const;
  void print(std::ostream *OS, const Module* M = 0) const {
    if (OS) print(*OS, M);
  }
  virtual void dump();
};


//===-------------------------------------
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
/// used to compute a forward dominator frontiers.
///
class DominanceFrontier : public DominanceFrontierBase {
public:
  static char ID; // Pass ID, replacement for typeid
  DominanceFrontier() : 
    DominanceFrontierBase(intptr_t(&ID), false) {}

  BasicBlock *getRoot() const {
    assert(Roots.size() == 1 && "Should always have entry node!");
    return Roots[0];
  }

  virtual bool runOnFunction(Function &) {
    Frontiers.clear();
    DominatorTree &DT = getAnalysis<DominatorTree>();
    Roots = DT.getRoots();
    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
    calculate(DT, DT[Roots[0]]);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<DominatorTree>();
  }

  /// splitBlock - BB is split and now it has one successor. Update dominance
  /// frontier to reflect this change.
  void splitBlock(BasicBlock *BB);

  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
  /// to reflect this change.
  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
                                DominatorTree *DT) {
    // NewBB is now  dominating BB. Which means BB's dominance
    // frontier is now part of NewBB's dominance frontier. However, BB
    // itself is not member of NewBB's dominance frontier.
    DominanceFrontier::iterator NewDFI = find(NewBB);
    DominanceFrontier::iterator DFI = find(BB);
    DominanceFrontier::DomSetType BBSet = DFI->second;
    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
      BasicBlock *DFMember = *BBSetI;
      // Insert only if NewBB dominates DFMember.
      if (!DT->dominates(NewBB, DFMember))
        NewDFI->second.insert(DFMember);
    }
    NewDFI->second.erase(BB);
  }

private:
  const DomSetType &calculate(const DominatorTree &DT,
                              const DomTreeNode *Node);
};


} // End llvm namespace

#endif