aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/Dominators.h
blob: 3a4c4080a35690eed78cbb604bbe2be1d9facbe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation ---*- C++ -*--=//
//
// This file defines the following classes:
//  1. DominatorSet: Calculates the [reverse] dominator set for a function
//  2. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
//     and their immediate dominator.
//  3. DominatorTree: Represent the ImmediateDominator as an explicit tree
//     structure.
//  4. DominanceFrontier: Calculate and hold the dominance frontier for a 
//     function.
//
//  These data structures are listed in increasing order of complexity.  It
//  takes longer to calculate the dominator frontier, for example, than the 
//  ImmediateDominator mapping.
// 
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H

#include "llvm/Pass.h"
#include <set>
#include <assert.h>
class Instruction;

template <typename GraphType> struct GraphTraits;

//===----------------------------------------------------------------------===//
//
// DominatorBase - Base class that other, more interesting dominator analyses
// inherit from.
//
class DominatorBase : public FunctionPass {
protected:
  BasicBlock *Root;
  const bool IsPostDominators;

  inline DominatorBase(bool isPostDom) : Root(0), IsPostDominators(isPostDom) {}
public:
  inline BasicBlock *getRoot() const { return Root; }

  // Returns true if analysis based of postdoms
  bool isPostDominator() const { return IsPostDominators; }
};

//===----------------------------------------------------------------------===//
//
// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
// function, that represents the blocks that dominate the block.
//
class DominatorSetBase : public DominatorBase {
public:
  typedef std::set<BasicBlock*> DomSetType;    // Dom set for a bb
  // Map of dom sets
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
protected:
  DomSetMapType Doms;
public:
  DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { Doms.clear(); }

  // Accessor interface:
  typedef DomSetMapType::const_iterator const_iterator;
  typedef DomSetMapType::iterator iterator;
  inline const_iterator begin() const { return Doms.begin(); }
  inline       iterator begin()       { return Doms.begin(); }
  inline const_iterator end()   const { return Doms.end(); }
  inline       iterator end()         { return Doms.end(); }
  inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
  inline       iterator find(BasicBlock* B)       { return Doms.find(B); }


  /// getDominators - Return the set of basic blocks that dominate the specified
  /// block.
  ///
  inline const DomSetType &getDominators(BasicBlock *BB) const {
    const_iterator I = find(BB);
    assert(I != end() && "BB not in function!");
    return I->second;
  }

  /// dominates - Return true if A dominates B.
  ///
  inline bool dominates(BasicBlock *A, BasicBlock *B) const {
    return getDominators(B).count(A) != 0;
  }

  /// properlyDominates - Return true if A dominates B and A != B.
  ///
  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
    return dominates(A, B) && A != B;
  }

  /// print - Convert to human readable form
  virtual void print(std::ostream &OS) const;

  /// dominates - Return true if A dominates B.  This performs the special
  /// checks neccesary if A and B are in the same basic block.
  ///
  bool dominates(Instruction *A, Instruction *B) const;

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorSet information based on modifications to
  // the CFG...

  /// addBasicBlock - Call to update the dominator set with information about a
  /// new block that was inserted into the function.
  void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
    assert(find(BB) == end() && "Block already in DominatorSet!");
    Doms.insert(std::make_pair(BB, Dominators));
  }

  // addDominator - If a new block is inserted into the CFG, then method may be
  // called to notify the blocks it dominates that it is in their set.
  //
  void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
    iterator I = find(BB);
    assert(I != end() && "BB is not in DominatorSet!");
    I->second.insert(NewDominator);
  }
};


//===-------------------------------------
// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
// compute a normal dominator set.
//
struct DominatorSet : public DominatorSetBase {
  DominatorSet() : DominatorSetBase(false) {}

  virtual bool runOnFunction(Function &F);

  /// recalculate - This method may be called by external passes that modify the
  /// CFG and then need dominator information recalculated.  This method is
  /// obviously really slow, so it should be avoided if at all possible.
  void recalculate();

  // getAnalysisUsage - This simply provides a dominator set
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }
private:
  void calculateDominatorsFromBlock(BasicBlock *BB);
};


//===----------------------------------------------------------------------===//
//
// ImmediateDominators - Calculate the immediate dominator for each node in a
// function.
//
class ImmediateDominatorsBase : public DominatorBase {
protected:
  std::map<BasicBlock*, BasicBlock*> IDoms;
  void calcIDoms(const DominatorSetBase &DS);
public:
  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { IDoms.clear(); }

  // Accessor interface:
  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
  typedef IDomMapType::const_iterator const_iterator;
  inline const_iterator begin() const { return IDoms.begin(); }
  inline const_iterator end()   const { return IDoms.end(); }
  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}

  // operator[] - Return the idom for the specified basic block.  The start
  // node returns null, because it does not have an immediate dominator.
  //
  inline BasicBlock *operator[](BasicBlock *BB) const {
    return get(BB);
  }

  // get() - Synonym for operator[].
  inline BasicBlock *get(BasicBlock *BB) const {
    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
    return I != IDoms.end() ? I->second : 0;
  }

  //===--------------------------------------------------------------------===//
  // API to update Immediate(Post)Dominators information based on modifications
  // to the CFG...

  /// addNewBlock - Add a new block to the CFG, with the specified immediate
  /// dominator.
  ///
  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
    assert(get(BB) == 0 && "BasicBlock already in idom info!");
    IDoms[BB] = IDom;
  }

  /// setImmediateDominator - Update the immediate dominator information to
  /// change the current immediate dominator for the specified block to another
  /// block.  This method requires that BB already have an IDom, otherwise just
  /// use addNewBlock.
  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
    IDoms[BB] = NewIDom;
  }

  // print - Convert to human readable form
  virtual void print(std::ostream &OS) const;
};

//===-------------------------------------
// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase that
// is used to compute a normal immediate dominator set.
//
struct ImmediateDominators : public ImmediateDominatorsBase {
  ImmediateDominators() : ImmediateDominatorsBase(false) {}

  virtual bool runOnFunction(Function &F) {
    IDoms.clear();     // Reset from the last time we were run...
    DominatorSet &DS = getAnalysis<DominatorSet>();
    Root = DS.getRoot();
    calcIDoms(DS);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<DominatorSet>();
  }
};


//===----------------------------------------------------------------------===//
//
// DominatorTree - Calculate the immediate dominator tree for a function.
//
class DominatorTreeBase : public DominatorBase {
protected:
  class Node2;
public:
  typedef Node2 Node;
protected:
  std::map<BasicBlock*, Node*> Nodes;
  void reset();
  typedef std::map<BasicBlock*, Node*> NodeMapType;
public:
  class Node2 {
    friend class DominatorTree;
    friend class PostDominatorTree;
    friend class DominatorTreeBase;
    BasicBlock *TheNode;
    Node2 *IDom;
    std::vector<Node*> Children;
  public:
    typedef std::vector<Node*>::iterator iterator;
    typedef std::vector<Node*>::const_iterator const_iterator;

    iterator begin()             { return Children.begin(); }
    iterator end()               { return Children.end(); }
    const_iterator begin() const { return Children.begin(); }
    const_iterator end()   const { return Children.end(); }

    inline BasicBlock *getNode() const { return TheNode; }
    inline Node2 *getIDom() const { return IDom; }
    inline const std::vector<Node*> &getChildren() const { return Children; }

    // dominates - Returns true iff this dominates N.  Note that this is not a 
    // constant time operation!
    inline bool dominates(const Node2 *N) const {
      const Node2 *IDom;
      while ((IDom = N->getIDom()) != 0 && IDom != this)
	N = IDom;   // Walk up the tree
      return IDom != 0;
    }

  private:
    inline Node2(BasicBlock *node, Node *iDom) 
      : TheNode(node), IDom(iDom) {}
    inline Node2 *addChild(Node *C) { Children.push_back(C); return C; }

    void setIDom(Node2 *NewIDom);
  };

public:
  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
  ~DominatorTreeBase() { reset(); }

  virtual void releaseMemory() { reset(); }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  inline Node *getNode(BasicBlock *BB) const {
    NodeMapType::const_iterator i = Nodes.find(BB);
    return (i != Nodes.end()) ? i->second : 0;
  }

  inline Node *operator[](BasicBlock *BB) const {
    return getNode(BB);
  }

  //===--------------------------------------------------------------------===//  // API to update (Post)DominatorTree information based on modifications to
  // the CFG...

  /// createNewNode - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of IDomNode, linking it into the children
  /// list of the immediate dominator.
  ///
  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
    assert(IDomNode && "Not immediate dominator specified for block!");
    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  void changeImmediateDominator(Node *Node, Node *NewIDom) {
    assert(Node && NewIDom && "Cannot change null node pointers!");
    Node->setIDom(NewIDom);
  }

  /// print - Convert to human readable form
  virtual void print(std::ostream &OS) const;
};


//===-------------------------------------
// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
// compute a normal dominator tree.
//
struct DominatorTree : public DominatorTreeBase {
  DominatorTree() : DominatorTreeBase(false) {}

  virtual bool runOnFunction(Function &F) {
    reset();     // Reset from the last time we were run...
    DominatorSet &DS = getAnalysis<DominatorSet>();
    Root = DS.getRoot();
    calculate(DS);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<DominatorSet>();
  }
private:
  void calculate(const DominatorSet &DS);
};

//===-------------------------------------
// DominatorTree GraphTraits specialization so the DominatorTree can be
// iterable by generic graph iterators.

template <> struct GraphTraits<DominatorTree::Node*> {
  typedef DominatorTree::Node NodeType;
  typedef NodeType::iterator  ChildIteratorType;

  static NodeType *getEntryNode(NodeType *N) {
    return N;
  }
  static inline ChildIteratorType child_begin(NodeType* N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType* N) {
    return N->end();
  }
};

template <> struct GraphTraits<DominatorTree*>
  : public GraphTraits<DominatorTree::Node*> {
  static NodeType *getEntryNode(DominatorTree *DT) {
    return DT->getNode(DT->getRoot());
  }
};

//===----------------------------------------------------------------------===//
//
// DominanceFrontier - Calculate the dominance frontiers for a function.
//
class DominanceFrontierBase : public DominatorBase {
public:
  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected:
  DomSetMapType Frontiers;
public:
  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}

  virtual void releaseMemory() { Frontiers.clear(); }

  // Accessor interface:
  typedef DomSetMapType::iterator iterator;
  typedef DomSetMapType::const_iterator const_iterator;
  iterator       begin()       { return Frontiers.begin(); }
  const_iterator begin() const { return Frontiers.begin(); }
  iterator       end()         { return Frontiers.end(); }
  const_iterator end()   const { return Frontiers.end(); }
  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }

  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
    assert(find(BB) == end() && "Block already in DominanceFrontier!");
    Frontiers.insert(std::make_pair(BB, frontier));
  }

  void addToFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    I->second.insert(Node);
  }

  void removeFromFrontier(iterator I, BasicBlock *Node) {
    assert(I != end() && "BB is not in DominanceFrontier!");
    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
    I->second.erase(Node);
  }

  // print - Convert to human readable form
  virtual void print(std::ostream &OS) const;
};


//===-------------------------------------
// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
// compute a normal dominator tree.
//
struct DominanceFrontier : public DominanceFrontierBase {
  DominanceFrontier() : DominanceFrontierBase(false) {}

  virtual bool runOnFunction(Function &) {
    Frontiers.clear();
    DominatorTree &DT = getAnalysis<DominatorTree>();
    Root = DT.getRoot();
    calculate(DT, DT[Root]);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    AU.addRequired<DominatorTree>();
  }
private:
  const DomSetType &calculate(const DominatorTree &DT,
                              const DominatorTree::Node *Node);
};

#endif