aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/LoopInfo.h
blob: 01e5fa96fccb97a8f5bd2faad2c8bb35bde86b28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG.  Note that natural
// loops may actually be several loops that share the same header node.
//
// This analysis calculates the nesting structure of loops in a function.  For
// each natural loop identified, this analysis identifies natural loops
// contained entirely within the loop and the basic blocks the make up the loop.
//
// It can calculate on the fly various bits of information, for example:
//
//  * whether there is a preheader for the loop
//  * the number of back edges to the header
//  * whether or not a particular block branches out of the loop
//  * the successor blocks of the loop
//  * the loop depth
//  * the trip count
//  * etc...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOP_INFO_H
#define LLVM_ANALYSIS_LOOP_INFO_H

#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
#include <ostream>

namespace llvm {

template<typename T>
static void RemoveFromVector(std::vector<T*> &V, T *N) {
  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
  assert(I != V.end() && "N is not in this list!");
  V.erase(I);
}

class DominatorTree;
class LoopInfo;
template<class N> class LoopInfoBase;
template<class N> class LoopBase;

typedef LoopBase<BasicBlock> Loop;

//===----------------------------------------------------------------------===//
/// LoopBase class - Instances of this class are used to represent loops that
/// are detected in the flow graph
///
template<class BlockT>
class LoopBase {
  LoopBase<BlockT> *ParentLoop;
  // SubLoops - Loops contained entirely within this one.
  std::vector<LoopBase<BlockT>*> SubLoops;

  // Blocks - The list of blocks in this loop.  First entry is the header node.
  std::vector<BlockT*> Blocks;

  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
public:
  /// Loop ctor - This creates an empty loop.
  LoopBase() : ParentLoop(0) {}
  ~LoopBase() {
    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
      delete SubLoops[i];
  }

  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
  /// loop has depth 1, for consistency with loop depth values used for basic
  /// blocks, where depth 0 is used for blocks not inside any loops.
  unsigned getLoopDepth() const {
    unsigned D = 1;
    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
         CurLoop = CurLoop->ParentLoop)
      ++D;
    return D;
  }
  BlockT *getHeader() const { return Blocks.front(); }
  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }

  /// contains - Return true if the specified basic block is in this loop
  ///
  bool contains(const BlockT *BB) const {
    return std::find(block_begin(), block_end(), BB) != block_end();
  }

  /// iterator/begin/end - Return the loops contained entirely within this loop.
  ///
  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
  iterator begin() const { return SubLoops.begin(); }
  iterator end() const { return SubLoops.end(); }
  bool empty() const { return SubLoops.empty(); }

  /// getBlocks - Get a list of the basic blocks which make up this loop.
  ///
  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
  block_iterator block_begin() const { return Blocks.begin(); }
  block_iterator block_end() const { return Blocks.end(); }

  /// isLoopExit - True if terminator in the block can branch to another block
  /// that is outside of the current loop.
  ///
  bool isLoopExit(const BlockT *BB) const {
    typedef GraphTraits<BlockT*> BlockTraits;
    for (typename BlockTraits::ChildIteratorType SI =
         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
      if (!contains(*SI))
        return true;
    }
    return false;
  }

  /// getNumBackEdges - Calculate the number of back edges to the loop header
  ///
  unsigned getNumBackEdges() const {
    unsigned NumBackEdges = 0;
    BlockT *H = getHeader();

    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    for (typename InvBlockTraits::ChildIteratorType I =
         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
      if (contains(*I))
        ++NumBackEdges;

    return NumBackEdges;
  }

  /// isLoopInvariant - Return true if the specified value is loop invariant
  ///
  inline bool isLoopInvariant(Value *V) const {
    if (Instruction *I = dyn_cast<Instruction>(V))
      return !contains(I->getParent());
    return true;  // All non-instructions are loop invariant
  }

  //===--------------------------------------------------------------------===//
  // APIs for simple analysis of the loop.
  //
  // Note that all of these methods can fail on general loops (ie, there may not
  // be a preheader, etc).  For best success, the loop simplification and
  // induction variable canonicalization pass should be used to normalize loops
  // for easy analysis.  These methods assume canonical loops.

  /// getExitingBlocks - Return all blocks inside the loop that have successors
  /// outside of the loop.  These are the blocks _inside of the current loop_
  /// which branch out.  The returned list is always unique.
  ///
  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
    // Sort the blocks vector so that we can use binary search to do quick
    // lookups.
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    std::sort(LoopBBs.begin(), LoopBBs.end());

    typedef GraphTraits<BlockT*> BlockTraits;
    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
      for (typename BlockTraits::ChildIteratorType I =
          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
          I != E; ++I)
        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
          // Not in current loop? It must be an exit block.
          ExitingBlocks.push_back(*BI);
          break;
        }
  }

  /// getExitingBlock - If getExitingBlocks would return exactly one block,
  /// return that block. Otherwise return null.
  BlockT *getExitingBlock() const {
    SmallVector<BlockT*, 8> ExitingBlocks;
    getExitingBlocks(ExitingBlocks);
    if (ExitingBlocks.size() == 1)
      return ExitingBlocks[0];
    return 0;
  }

  /// getExitBlocks - Return all of the successor blocks of this loop.  These
  /// are the blocks _outside of the current loop_ which are branched to.
  ///
  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
    // Sort the blocks vector so that we can use binary search to do quick
    // lookups.
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    std::sort(LoopBBs.begin(), LoopBBs.end());

    typedef GraphTraits<BlockT*> BlockTraits;
    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
      for (typename BlockTraits::ChildIteratorType I =
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
           I != E; ++I)
        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
          // Not in current loop? It must be an exit block.
          ExitBlocks.push_back(*I);
  }

  /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 
  /// These are the blocks _outside of the current loop_ which are branched to.
  /// This assumes that loop is in canonical form.
  ///
  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
    // Sort the blocks vector so that we can use binary search to do quick
    // lookups.
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    std::sort(LoopBBs.begin(), LoopBBs.end());

    std::vector<BlockT*> switchExitBlocks;  

    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {

      BlockT *current = *BI;
      switchExitBlocks.clear();

      typedef GraphTraits<BlockT*> BlockTraits;
      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
      for (typename BlockTraits::ChildIteratorType I =
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
           I != E; ++I) {
        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
      // If block is inside the loop then it is not a exit block.
          continue;
      
        typename InvBlockTraits::ChildIteratorType PI =
                                                InvBlockTraits::child_begin(*I);
        BlockT *firstPred = *PI;

        // If current basic block is this exit block's first predecessor
        // then only insert exit block in to the output ExitBlocks vector.
        // This ensures that same exit block is not inserted twice into
        // ExitBlocks vector.
        if (current != firstPred) 
          continue;

        // If a terminator has more then two successors, for example SwitchInst,
        // then it is possible that there are multiple edges from current block 
        // to one exit block. 
        if (std::distance(BlockTraits::child_begin(current),
                          BlockTraits::child_end(current)) <= 2) {
          ExitBlocks.push_back(*I);
          continue;
        }

        // In case of multiple edges from current block to exit block, collect
        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
        // duplicate edges.
        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 
            == switchExitBlocks.end()) {
          switchExitBlocks.push_back(*I);
          ExitBlocks.push_back(*I);
        }
      }
    }
  }

  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
  /// loop has a preheader if there is only one edge to the header of the loop
  /// from outside of the loop.  If this is the case, the block branching to the
  /// header of the loop is the preheader node.
  ///
  /// This method returns null if there is no preheader for the loop.
  ///
  BlockT *getLoopPreheader() const {
    // Keep track of nodes outside the loop branching to the header...
    BlockT *Out = 0;

    // Loop over the predecessors of the header node...
    BlockT *Header = getHeader();
    typedef GraphTraits<BlockT*> BlockTraits;
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    for (typename InvBlockTraits::ChildIteratorType PI =
         InvBlockTraits::child_begin(Header),
         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
      if (!contains(*PI)) {     // If the block is not in the loop...
        if (Out && Out != *PI)
          return 0;             // Multiple predecessors outside the loop
        Out = *PI;
      }

    // Make sure there is only one exit out of the preheader.
    assert(Out && "Header of loop has no predecessors from outside loop?");
    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    ++SI;
    if (SI != BlockTraits::child_end(Out))
      return 0;  // Multiple exits from the block, must not be a preheader.

    // If there is exactly one preheader, return it.  If there was zero, then
    // Out is still null.
    return Out;
  }

  /// getLoopLatch - If there is a single latch block for this loop, return it.
  /// A latch block is a block that contains a branch back to the header.
  /// A loop header in normal form has two edges into it: one from a preheader
  /// and one from a latch block.
  BlockT *getLoopLatch() const {
    BlockT *Header = getHeader();
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    typename InvBlockTraits::ChildIteratorType PI =
                                            InvBlockTraits::child_begin(Header);
    typename InvBlockTraits::ChildIteratorType PE =
                                              InvBlockTraits::child_end(Header);
    if (PI == PE) return 0;  // no preds?

    BlockT *Latch = 0;
    if (contains(*PI))
      Latch = *PI;
    ++PI;
    if (PI == PE) return 0;  // only one pred?

    if (contains(*PI)) {
      if (Latch) return 0;  // multiple backedges
      Latch = *PI;
    }
    ++PI;
    if (PI != PE) return 0;  // more than two preds

    return Latch;
  }
  
  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
  /// induction variable: an integer recurrence that starts at 0 and increments
  /// by one each time through the loop.  If so, return the phi node that
  /// corresponds to it.
  ///
  inline PHINode *getCanonicalInductionVariable() const {
    BlockT *H = getHeader();

    BlockT *Incoming = 0, *Backedge = 0;
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    typename InvBlockTraits::ChildIteratorType PI =
                                                 InvBlockTraits::child_begin(H);
    assert(PI != InvBlockTraits::child_end(H) &&
           "Loop must have at least one backedge!");
    Backedge = *PI++;
    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
    Incoming = *PI++;
    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?

    if (contains(Incoming)) {
      if (contains(Backedge))
        return 0;
      std::swap(Incoming, Backedge);
    } else if (!contains(Backedge))
      return 0;

    // Loop over all of the PHI nodes, looking for a canonical indvar.
    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      if (ConstantInt *CI =
          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
        if (CI->isNullValue())
          if (Instruction *Inc =
              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
            if (Inc->getOpcode() == Instruction::Add &&
                Inc->getOperand(0) == PN)
              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
                if (CI->equalsInt(1))
                  return PN;
    }
    return 0;
  }

  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
  /// the canonical induction variable value for the "next" iteration of the
  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
  ///
  inline Instruction *getCanonicalInductionVariableIncrement() const {
    if (PHINode *PN = getCanonicalInductionVariable()) {
      bool P1InLoop = contains(PN->getIncomingBlock(1));
      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
    }
    return 0;
  }

  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
  /// times the loop will be executed.  Note that this means that the backedge
  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
  /// this returns null.
  ///
  inline Value *getTripCount() const {
    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
    // canonical induction variable and V is the trip count of the loop.
    Instruction *Inc = getCanonicalInductionVariableIncrement();
    if (Inc == 0) return 0;
    PHINode *IV = cast<PHINode>(Inc->getOperand(0));

    BlockT *BackedgeBlock =
            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));

    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
      if (BI->isConditional()) {
        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
          if (ICI->getOperand(0) == Inc) {
            if (BI->getSuccessor(0) == getHeader()) {
              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
                return ICI->getOperand(1);
            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
              return ICI->getOperand(1);
            }
          }
        }
      }

    return 0;
  }
  
  /// getSmallConstantTripCount - Returns the trip count of this loop as a
  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
  /// of not constant. Will also return 0 if the trip count is very large 
  /// (>= 2^32)
  inline unsigned getSmallConstantTripCount() const {
    Value* TripCount = this->getTripCount();
    if (TripCount) {
      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
        // Guard against huge trip counts.
        if (TripCountC->getValue().getActiveBits() <= 32) {
          return (unsigned)TripCountC->getZExtValue();
        }
      }
    }
    return 0;
  }

  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
  /// trip count of this loop as a normal unsigned value, if possible. This
  /// means that the actual trip count is always a multiple of the returned
  /// value (don't forget the trip count could very well be zero as well!).
  ///
  /// Returns 1 if the trip count is unknown or not guaranteed to be the
  /// multiple of a constant (which is also the case if the trip count is simply
  /// constant, use getSmallConstantTripCount for that case), Will also return 1
  /// if the trip count is very large (>= 2^32).
  inline unsigned getSmallConstantTripMultiple() const {
    Value* TripCount = this->getTripCount();
    // This will hold the ConstantInt result, if any
    ConstantInt *Result = NULL;
    if (TripCount) {
      // See if the trip count is constant itself
      Result = dyn_cast<ConstantInt>(TripCount);
      // if not, see if it is a multiplication
      if (!Result)
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
          switch (BO->getOpcode()) {
          case BinaryOperator::Mul:
            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
            break;
          default: 
            break;
          }
        }
    }
    // Guard against huge trip counts.
    if (Result && Result->getValue().getActiveBits() <= 32) {
      return (unsigned)Result->getZExtValue();
    } else {
      return 1;
    }
  }
  
  /// isLCSSAForm - Return true if the Loop is in LCSSA form
  inline bool isLCSSAForm() const {
    // Sort the blocks vector so that we can use binary search to do quick
    // lookups.
    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());

    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
      BlockT *BB = *BI;
      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
             ++UI) {
          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
            UserBB = P->getIncomingBlock(UI);
          }

          // Check the current block, as a fast-path.  Most values are used in
          // the same block they are defined in.
          if (UserBB != BB && !LoopBBs.count(UserBB))
            return false;
        }
    }

    return true;
  }

  //===--------------------------------------------------------------------===//
  // APIs for updating loop information after changing the CFG
  //

  /// addBasicBlockToLoop - This method is used by other analyses to update loop
  /// information.  NewBB is set to be a new member of the current loop.
  /// Because of this, it is added as a member of all parent loops, and is added
  /// to the specified LoopInfo object as being in the current basic block.  It
  /// is not valid to replace the loop header with this method.
  ///
  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);

  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
  /// the OldChild entry in our children list with NewChild, and updates the
  /// parent pointer of OldChild to be null and the NewChild to be this loop.
  /// This updates the loop depth of the new child.
  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
                            LoopBase<BlockT> *NewChild) {
    assert(OldChild->ParentLoop == this && "This loop is already broken!");
    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    typename std::vector<LoopBase<BlockT>*>::iterator I =
                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    assert(I != SubLoops.end() && "OldChild not in loop!");
    *I = NewChild;
    OldChild->ParentLoop = 0;
    NewChild->ParentLoop = this;
  }

  /// addChildLoop - Add the specified loop to be a child of this loop.  This
  /// updates the loop depth of the new child.
  ///
  void addChildLoop(LoopBase<BlockT> *NewChild) {
    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    NewChild->ParentLoop = this;
    SubLoops.push_back(NewChild);
  }

  /// removeChildLoop - This removes the specified child from being a subloop of
  /// this loop.  The loop is not deleted, as it will presumably be inserted
  /// into another loop.
  LoopBase<BlockT> *removeChildLoop(iterator I) {
    assert(I != SubLoops.end() && "Cannot remove end iterator!");
    LoopBase<BlockT> *Child = *I;
    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    SubLoops.erase(SubLoops.begin()+(I-begin()));
    Child->ParentLoop = 0;
    return Child;
  }

  /// addBlockEntry - This adds a basic block directly to the basic block list.
  /// This should only be used by transformations that create new loops.  Other
  /// transformations should use addBasicBlockToLoop.
  void addBlockEntry(BlockT *BB) {
    Blocks.push_back(BB);
  }

  /// moveToHeader - This method is used to move BB (which must be part of this
  /// loop) to be the loop header of the loop (the block that dominates all
  /// others).
  void moveToHeader(BlockT *BB) {
    if (Blocks[0] == BB) return;
    for (unsigned i = 0; ; ++i) {
      assert(i != Blocks.size() && "Loop does not contain BB!");
      if (Blocks[i] == BB) {
        Blocks[i] = Blocks[0];
        Blocks[0] = BB;
        return;
      }
    }
  }

  /// removeBlockFromLoop - This removes the specified basic block from the
  /// current loop, updating the Blocks as appropriate.  This does not update
  /// the mapping in the LoopInfo class.
  void removeBlockFromLoop(BlockT *BB) {
    RemoveFromVector(Blocks, BB);
  }

  /// verifyLoop - Verify loop structure
  void verifyLoop() const {
#ifndef NDEBUG
    assert (getHeader() && "Loop header is missing");
    assert (getLoopPreheader() && "Loop preheader is missing");
    assert (getLoopLatch() && "Loop latch is missing");
    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
      (*I)->verifyLoop();
#endif
  }

  void print(std::ostream &OS, unsigned Depth = 0) const {
    OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
       << " containing: ";

    for (unsigned i = 0; i < getBlocks().size(); ++i) {
      if (i) OS << ",";
      BlockT *BB = getBlocks()[i];
      WriteAsOperand(OS, BB, false);
      if (BB == getHeader())    OS << "<header>";
      if (BB == getLoopLatch()) OS << "<latch>";
      if (isLoopExit(BB))       OS << "<exit>";
    }
    OS << "\n";

    for (iterator I = begin(), E = end(); I != E; ++I)
      (*I)->print(OS, Depth+2);
  }
  
  void print(std::ostream *O, unsigned Depth = 0) const {
    if (O) print(*O, Depth);
  }
  
  void dump() const {
    print(cerr);
  }
  
private:
  friend class LoopInfoBase<BlockT>;
  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    Blocks.push_back(BB);
  }
};


//===----------------------------------------------------------------------===//
/// LoopInfo - This class builds and contains all of the top level loop
/// structures in the specified function.
///

template<class BlockT>
class LoopInfoBase {
  // BBMap - Mapping of basic blocks to the inner most loop they occur in
  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
  std::vector<LoopBase<BlockT>*> TopLevelLoops;
  friend class LoopBase<BlockT>;
  
public:
  LoopInfoBase() { }
  ~LoopInfoBase() { releaseMemory(); }
  
  void releaseMemory() {
    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
      delete *I;   // Delete all of the loops...

    BBMap.clear();                           // Reset internal state of analysis
    TopLevelLoops.clear();
  }
  
  /// iterator/begin/end - The interface to the top-level loops in the current
  /// function.
  ///
  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
  iterator begin() const { return TopLevelLoops.begin(); }
  iterator end() const { return TopLevelLoops.end(); }
  bool empty() const { return TopLevelLoops.empty(); }
  
  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
  /// block is in no loop (for example the entry node), null is returned.
  ///
  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
      BBMap.find(const_cast<BlockT*>(BB));
    return I != BBMap.end() ? I->second : 0;
  }
  
  /// operator[] - same as getLoopFor...
  ///
  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
    return getLoopFor(BB);
  }
  
  /// getLoopDepth - Return the loop nesting level of the specified block.  A
  /// depth of 0 means the block is not inside any loop.
  ///
  unsigned getLoopDepth(const BlockT *BB) const {
    const LoopBase<BlockT> *L = getLoopFor(BB);
    return L ? L->getLoopDepth() : 0;
  }

  // isLoopHeader - True if the block is a loop header node
  bool isLoopHeader(BlockT *BB) const {
    const LoopBase<BlockT> *L = getLoopFor(BB);
    return L && L->getHeader() == BB;
  }
  
  /// removeLoop - This removes the specified top-level loop from this loop info
  /// object.  The loop is not deleted, as it will presumably be inserted into
  /// another loop.
  LoopBase<BlockT> *removeLoop(iterator I) {
    assert(I != end() && "Cannot remove end iterator!");
    LoopBase<BlockT> *L = *I;
    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    return L;
  }
  
  /// changeLoopFor - Change the top-level loop that contains BB to the
  /// specified loop.  This should be used by transformations that restructure
  /// the loop hierarchy tree.
  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
    LoopBase<BlockT> *&OldLoop = BBMap[BB];
    assert(OldLoop && "Block not in a loop yet!");
    OldLoop = L;
  }
  
  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
  /// list with the indicated loop.
  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
                          LoopBase<BlockT> *NewLoop) {
    typename std::vector<LoopBase<BlockT>*>::iterator I =
                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    *I = NewLoop;
    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
           "Loops already embedded into a subloop!");
  }
  
  /// addTopLevelLoop - This adds the specified loop to the collection of
  /// top-level loops.
  void addTopLevelLoop(LoopBase<BlockT> *New) {
    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    TopLevelLoops.push_back(New);
  }
  
  /// removeBlock - This method completely removes BB from all data structures,
  /// including all of the Loop objects it is nested in and our mapping from
  /// BasicBlocks to loops.
  void removeBlock(BlockT *BB) {
    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
    if (I != BBMap.end()) {
      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
        L->removeBlockFromLoop(BB);

      BBMap.erase(I);
    }
  }
  
  // Internals
  
  static bool isNotAlreadyContainedIn(const LoopBase<BlockT> *SubLoop,
                                      const LoopBase<BlockT> *ParentLoop) {
    if (SubLoop == 0) return true;
    if (SubLoop == ParentLoop) return false;
    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
  }
  
  void Calculate(DominatorTreeBase<BlockT> &DT) {
    BlockT *RootNode = DT.getRootNode()->getBlock();

    for (df_iterator<BlockT*> NI = df_begin(RootNode),
           NE = df_end(RootNode); NI != NE; ++NI)
      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
        TopLevelLoops.push_back(L);
  }
  
  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?

    std::vector<BlockT *> TodoStack;

    // Scan the predecessors of BB, checking to see if BB dominates any of
    // them.  This identifies backedges which target this node...
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    for (typename InvBlockTraits::ChildIteratorType I =
         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
         I != E; ++I)
      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
        TodoStack.push_back(*I);

    if (TodoStack.empty()) return 0;  // No backedges to this block...

    // Create a new loop to represent this basic block...
    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
    BBMap[BB] = L;

    BlockT *EntryBlock = BB->getParent()->begin();

    while (!TodoStack.empty()) {  // Process all the nodes in the loop
      BlockT *X = TodoStack.back();
      TodoStack.pop_back();

      if (!L->contains(X) &&         // As of yet unprocessed??
          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
        // Check to see if this block already belongs to a loop.  If this occurs
        // then we have a case where a loop that is supposed to be a child of
        // the current loop was processed before the current loop.  When this
        // occurs, this child loop gets added to a part of the current loop,
        // making it a sibling to the current loop.  We have to reparent this
        // loop.
        if (LoopBase<BlockT> *SubLoop =
            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
            // Remove the subloop from it's current parent...
            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
            typename std::vector<LoopBase<BlockT>*>::iterator I =
              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
            SLP->SubLoops.erase(I);   // Remove from parent...

            // Add the subloop to THIS loop...
            SubLoop->ParentLoop = L;
            L->SubLoops.push_back(SubLoop);
          }

        // Normal case, add the block to our loop...
        L->Blocks.push_back(X);
        
        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
        
        // Add all of the predecessors of X to the end of the work stack...
        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
                         InvBlockTraits::child_end(X));
      }
    }

    // If there are any loops nested within this loop, create them now!
    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
         E = L->Blocks.end(); I != E; ++I)
      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
        L->SubLoops.push_back(NewLoop);
        NewLoop->ParentLoop = L;
      }

    // Add the basic blocks that comprise this loop to the BBMap so that this
    // loop can be found for them.
    //
    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
           E = L->Blocks.end(); I != E; ++I) {
      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
                                                          BBMap.find(*I);
      if (BBMI == BBMap.end())                       // Not in map yet...
        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
    }

    // Now that we have a list of all of the child loops of this loop, check to
    // see if any of them should actually be nested inside of each other.  We
    // can accidentally pull loops our of their parents, so we must make sure to
    // organize the loop nests correctly now.
    {
      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
        LoopBase<BlockT> *Child = L->SubLoops[i];
        assert(Child->getParentLoop() == L && "Not proper child loop?");

        if (LoopBase<BlockT> *ContainingLoop =
                                          ContainingLoops[Child->getHeader()]) {
          // If there is already a loop which contains this loop, move this loop
          // into the containing loop.
          MoveSiblingLoopInto(Child, ContainingLoop);
          --i;  // The loop got removed from the SubLoops list.
        } else {
          // This is currently considered to be a top-level loop.  Check to see
          // if any of the contained blocks are loop headers for subloops we
          // have already processed.
          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
            if (BlockLoop == 0) {   // Child block not processed yet...
              BlockLoop = Child;
            } else if (BlockLoop != Child) {
              LoopBase<BlockT> *SubLoop = BlockLoop;
              // Reparent all of the blocks which used to belong to BlockLoops
              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
                ContainingLoops[SubLoop->Blocks[j]] = Child;

              // There is already a loop which contains this block, that means
              // that we should reparent the loop which the block is currently
              // considered to belong to to be a child of this loop.
              MoveSiblingLoopInto(SubLoop, Child);
              --i;  // We just shrunk the SubLoops list.
            }
          }
        }
      }
    }

    return L;
  }
  
  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
  /// of the NewParent Loop, instead of being a sibling of it.
  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
                           LoopBase<BlockT> *NewParent) {
    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
    assert(OldParent && OldParent == NewParent->getParentLoop() &&
           NewChild != NewParent && "Not sibling loops!");

    // Remove NewChild from being a child of OldParent
    typename std::vector<LoopBase<BlockT>*>::iterator I =
      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
                NewChild);
    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
    NewChild->ParentLoop = 0;

    InsertLoopInto(NewChild, NewParent);
  }
  
  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
  /// the parent loop contains a loop which should contain L, the loop gets
  /// inserted into L instead.
  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
    BlockT *LHeader = L->getHeader();
    assert(Parent->contains(LHeader) &&
           "This loop should not be inserted here!");

    // Check to see if it belongs in a child loop...
    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
         i != e; ++i)
      if (Parent->SubLoops[i]->contains(LHeader)) {
        InsertLoopInto(L, Parent->SubLoops[i]);
        return;
      }

    // If not, insert it here!
    Parent->SubLoops.push_back(L);
    L->ParentLoop = Parent;
  }
  
  // Debugging
  
  void print(std::ostream &OS, const Module* ) const {
    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
      TopLevelLoops[i]->print(OS);
  #if 0
    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
           E = BBMap.end(); I != E; ++I)
      OS << "BB '" << I->first->getName() << "' level = "
         << I->second->getLoopDepth() << "\n";
  #endif
  }
};

class LoopInfo : public FunctionPass {
  LoopInfoBase<BasicBlock>* LI;
  friend class LoopBase<BasicBlock>;
  
public:
  static char ID; // Pass identification, replacement for typeid

  LoopInfo() : FunctionPass(&ID) {
    LI = new LoopInfoBase<BasicBlock>();
  }
  
  ~LoopInfo() { delete LI; }

  LoopInfoBase<BasicBlock>& getBase() { return *LI; }

  /// iterator/begin/end - The interface to the top-level loops in the current
  /// function.
  ///
  typedef std::vector<Loop*>::const_iterator iterator;
  inline iterator begin() const { return LI->begin(); }
  inline iterator end() const { return LI->end(); }
  bool empty() const { return LI->empty(); }

  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
  /// block is in no loop (for example the entry node), null is returned.
  ///
  inline Loop *getLoopFor(const BasicBlock *BB) const {
    return LI->getLoopFor(BB);
  }

  /// operator[] - same as getLoopFor...
  ///
  inline const Loop *operator[](const BasicBlock *BB) const {
    return LI->getLoopFor(BB);
  }

  /// getLoopDepth - Return the loop nesting level of the specified block.  A
  /// depth of 0 means the block is not inside any loop.
  ///
  inline unsigned getLoopDepth(const BasicBlock *BB) const {
    return LI->getLoopDepth(BB);
  }

  // isLoopHeader - True if the block is a loop header node
  inline bool isLoopHeader(BasicBlock *BB) const {
    return LI->isLoopHeader(BB);
  }

  /// runOnFunction - Calculate the natural loop information.
  ///
  virtual bool runOnFunction(Function &F);

  virtual void releaseMemory() { LI->releaseMemory(); }

  virtual void print(std::ostream &O, const Module* M = 0) const {
    if (O) LI->print(O, M);
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  /// removeLoop - This removes the specified top-level loop from this loop info
  /// object.  The loop is not deleted, as it will presumably be inserted into
  /// another loop.
  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }

  /// changeLoopFor - Change the top-level loop that contains BB to the
  /// specified loop.  This should be used by transformations that restructure
  /// the loop hierarchy tree.
  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
    LI->changeLoopFor(BB, L);
  }

  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
  /// list with the indicated loop.
  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
    LI->changeTopLevelLoop(OldLoop, NewLoop);
  }

  /// addTopLevelLoop - This adds the specified loop to the collection of
  /// top-level loops.
  inline void addTopLevelLoop(Loop *New) {
    LI->addTopLevelLoop(New);
  }

  /// removeBlock - This method completely removes BB from all data structures,
  /// including all of the Loop objects it is nested in and our mapping from
  /// BasicBlocks to loops.
  void removeBlock(BasicBlock *BB) {
    LI->removeBlock(BB);
  }
};


// Allow clients to walk the list of nested loops...
template <> struct GraphTraits<const Loop*> {
  typedef const Loop NodeType;
  typedef std::vector<Loop*>::const_iterator ChildIteratorType;

  static NodeType *getEntryNode(const Loop *L) { return L; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return N->end();
  }
};

template <> struct GraphTraits<Loop*> {
  typedef Loop NodeType;
  typedef std::vector<Loop*>::const_iterator ChildIteratorType;

  static NodeType *getEntryNode(Loop *L) { return L; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return N->end();
  }
};

template<class BlockT>
void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
                                           LoopInfoBase<BlockT> &LIB) {
  assert((Blocks.empty() || LIB[getHeader()] == this) &&
         "Incorrect LI specified for this loop!");
  assert(NewBB && "Cannot add a null basic block to the loop!");
  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");

  // Add the loop mapping to the LoopInfo object...
  LIB.BBMap[NewBB] = this;

  // Add the basic block to this loop and all parent loops...
  LoopBase<BlockT> *L = this;
  while (L) {
    L->Blocks.push_back(NewBB);
    L = L->getParentLoop();
  }
}

} // End llvm namespace

#endif