aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/RegionInfo.h
blob: 9d8954595d617b1991bcd4fc9dcbef0d5df2f84c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_REGION_INFO_H
#define LLVM_ANALYSIS_REGION_INFO_H

#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Support/Allocator.h"
#include <map>

namespace llvm {

class Region;
class RegionInfo;
class raw_ostream;
class Loop;
class LoopInfo;

/// @brief Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock.  If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};

/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
class RegionNode {
  // DO NOT IMPLEMENT
  RegionNode(const RegionNode &);
  // DO NOT IMPLEMENT
  const RegionNode &operator=(const RegionNode &);

protected:
  /// This is the entry basic block that starts this region node.  If this is a
  /// BasicBlock RegionNode, then entry is just the basic block, that this
  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
  ///
  /// In the BBtoRegionNode map of the parent of this node, BB will always map
  /// to this node no matter which kind of node this one is.
  ///
  /// The node can hold either a Region or a BasicBlock.
  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
  /// RegionNode.
  PointerIntPair<BasicBlock*, 1, bool> entry;

  /// @brief The parent Region of this RegionNode.
  /// @see getParent()
  Region* parent;

public:
  /// @brief Create a RegionNode.
  ///
  /// @param Parent      The parent of this RegionNode.
  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
  ///                    RegionNode represents a BasicBlock, this is the
  ///                    BasicBlock itself.  If it represents a subregion, this
  ///                    is the entry BasicBlock of the subregion.
  /// @param isSubRegion If this RegionNode represents a SubRegion.
  inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
    : entry(Entry, isSubRegion), parent(Parent) {}

  /// @brief Get the parent Region of this RegionNode.
  ///
  /// The parent Region is the Region this RegionNode belongs to. If for
  /// example a BasicBlock is element of two Regions, there exist two
  /// RegionNodes for this BasicBlock. Each with the getParent() function
  /// pointing to the Region this RegionNode belongs to.
  ///
  /// @return Get the parent Region of this RegionNode.
  inline Region* getParent() const { return parent; }

  /// @brief Get the entry BasicBlock of this RegionNode.
  ///
  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
  /// itself, otherwise we return the entry BasicBlock of the Subregion
  ///
  /// @return The entry BasicBlock of this RegionNode.
  inline BasicBlock* getEntry() const { return entry.getPointer(); }

  /// @brief Get the content of this RegionNode.
  ///
  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
  /// check the type of the content with the isSubRegion() function call.
  ///
  /// @return The content of this RegionNode.
  template<class T>
  inline T* getNodeAs() const;

  /// @brief Is this RegionNode a subregion?
  ///
  /// @return True if it contains a subregion. False if it contains a
  ///         BasicBlock.
  inline bool isSubRegion() const {
    return entry.getInt();
  }
};

/// Print a RegionNode.
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);

template<>
inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
  return getEntry();
}

template<>
inline Region* RegionNode::getNodeAs<Region>() const {
  assert(isSubRegion() && "This is not a subregion RegionNode!");
  return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
}

//===----------------------------------------------------------------------===//
/// @brief A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaining graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
///        1
///       / |
///      2   |
///     / \   3
///    4   5  |
///    |   |  |
///    6   7  8
///     \  | /
///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
///        9        Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
class Region : public RegionNode {
  friend class RegionInfo;
  // DO NOT IMPLEMENT
  Region(const Region &);
  // DO NOT IMPLEMENT
  const Region &operator=(const Region &);

  // Information necessary to manage this Region.
  RegionInfo* RI;
  DominatorTree *DT;

  // The exit BasicBlock of this region.
  // (The entry BasicBlock is part of RegionNode)
  BasicBlock *exit;

  typedef std::vector<Region*> RegionSet;

  // The subregions of this region.
  RegionSet children;

  typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;

  // Save the BasicBlock RegionNodes that are element of this Region.
  mutable BBNodeMapT BBNodeMap;

  /// verifyBBInRegion - Check if a BB is in this Region. This check also works
  /// if the region is incorrectly built. (EXPENSIVE!)
  void verifyBBInRegion(BasicBlock* BB) const;

  /// verifyWalk - Walk over all the BBs of the region starting from BB and
  /// verify that all reachable basic blocks are elements of the region.
  /// (EXPENSIVE!)
  void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;

  /// verifyRegionNest - Verify if the region and its children are valid
  /// regions (EXPENSIVE!)
  void verifyRegionNest() const;

public:
  /// @brief Create a new region.
  ///
  /// @param Entry  The entry basic block of the region.
  /// @param Exit   The exit basic block of the region.
  /// @param RI     The region info object that is managing this region.
  /// @param DT     The dominator tree of the current function.
  /// @param Parent The surrounding region or NULL if this is a top level
  ///               region.
  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
         DominatorTree *DT, Region *Parent = 0);

  /// Delete the Region and all its subregions.
  ~Region();

  /// @brief Get the entry BasicBlock of the Region.
  /// @return The entry BasicBlock of the region.
  BasicBlock *getEntry() const { return RegionNode::getEntry(); }

  /// @brief Replace the entry basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new entry basic block of the region.
  void replaceEntry(BasicBlock *BB);

  /// @brief Replace the exit basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new exit basic block of the region.
  void replaceExit(BasicBlock *BB);

  /// @brief Get the exit BasicBlock of the Region.
  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
  ///         Region.
  BasicBlock *getExit() const { return exit; }

  /// @brief Get the parent of the Region.
  /// @return The parent of the Region or NULL if this is a top level
  ///         Region.
  Region *getParent() const { return RegionNode::getParent(); }

  /// @brief Get the RegionNode representing the current Region.
  /// @return The RegionNode representing the current Region.
  RegionNode* getNode() const {
    return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
  }

  /// @brief Get the nesting level of this Region.
  ///
  /// An toplevel Region has depth 0.
  ///
  /// @return The depth of the region.
  unsigned getDepth() const;

  /// @brief Check if a Region is the TopLevel region.
  ///
  /// The toplevel region represents the whole function.
  bool isTopLevelRegion() const { return exit == NULL; }

  /// @brief Return a new (non canonical) region, that is obtained by joining
  ///        this region with its predecessors.
  ///
  /// @return A region also starting at getEntry(), but reaching to the next
  ///         basic block that forms with getEntry() a (non canonical) region.
  ///         NULL if such a basic block does not exist.
  Region *getExpandedRegion() const;

  /// @brief Return the first block of this region's single entry edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single entry edge,
  ///         else NULL.
  BasicBlock *getEnteringBlock() const;

  /// @brief Return the first block of this region's single exit edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single exit edge,
  ///         else NULL.
  BasicBlock *getExitingBlock() const;

  /// @brief Is this a simple region?
  ///
  /// A region is simple if it has exactly one exit and one entry edge.
  ///
  /// @return True if the Region is simple.
  bool isSimple() const;

  /// @brief Returns the name of the Region.
  /// @return The Name of the Region.
  std::string getNameStr() const;

  /// @brief Return the RegionInfo object, that belongs to this Region.
  RegionInfo *getRegionInfo() const {
    return RI;
  }

  /// PrintStyle - Print region in difference ways.
  enum PrintStyle { PrintNone, PrintBB, PrintRN  };

  /// @brief Print the region.
  ///
  /// @param OS The output stream the Region is printed to.
  /// @param printTree Print also the tree of subregions.
  /// @param level The indentation level used for printing.
  void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
             enum PrintStyle Style = PrintNone) const;

  /// @brief Print the region to stderr.
  void dump() const;

  /// @brief Check if the region contains a BasicBlock.
  ///
  /// @param BB The BasicBlock that might be contained in this Region.
  /// @return True if the block is contained in the region otherwise false.
  bool contains(const BasicBlock *BB) const;

  /// @brief Check if the region contains another region.
  ///
  /// @param SubRegion The region that might be contained in this Region.
  /// @return True if SubRegion is contained in the region otherwise false.
  bool contains(const Region *SubRegion) const {
    // Toplevel Region.
    if (!getExit())
      return true;

    return contains(SubRegion->getEntry())
      && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
  }

  /// @brief Check if the region contains an Instruction.
  ///
  /// @param Inst The Instruction that might be contained in this region.
  /// @return True if the Instruction is contained in the region otherwise false.
  bool contains(const Instruction *Inst) const {
    return contains(Inst->getParent());
  }

  /// @brief Check if the region contains a loop.
  ///
  /// @param L The loop that might be contained in this region.
  /// @return True if the loop is contained in the region otherwise false.
  ///         In case a NULL pointer is passed to this function the result
  ///         is false, except for the region that describes the whole function.
  ///         In that case true is returned.
  bool contains(const Loop *L) const;

  /// @brief Get the outermost loop in the region that contains a loop.
  ///
  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
  /// and is itself contained in the region.
  ///
  /// @param L The loop the lookup is started.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  Loop *outermostLoopInRegion(Loop *L) const;

  /// @brief Get the outermost loop in the region that contains a basic block.
  ///
  /// Find for a basic block BB the outermost loop L that contains BB and is
  /// itself contained in the region.
  ///
  /// @param LI A pointer to a LoopInfo analysis.
  /// @param BB The basic block surrounded by the loop.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;

  /// @brief Get the subregion that starts at a BasicBlock
  ///
  /// @param BB The BasicBlock the subregion should start.
  /// @return The Subregion if available, otherwise NULL.
  Region* getSubRegionNode(BasicBlock *BB) const;

  /// @brief Get the RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock at which the RegionNode should start.
  /// @return If available, the RegionNode that represents the subregion
  ///         starting at BB. If no subregion starts at BB, the RegionNode
  ///         representing BB.
  RegionNode* getNode(BasicBlock *BB) const;

  /// @brief Get the BasicBlock RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock for which the RegionNode is requested.
  /// @return The RegionNode representing the BB.
  RegionNode* getBBNode(BasicBlock *BB) const;

  /// @brief Add a new subregion to this Region.
  ///
  /// @param SubRegion The new subregion that will be added.
  /// @param moveChildren Move the children of this region, that are also
  ///                     contained in SubRegion into SubRegion.
  void addSubRegion(Region *SubRegion, bool moveChildren = false);

  /// @brief Remove a subregion from this Region.
  ///
  /// The subregion is not deleted, as it will probably be inserted into another
  /// region.
  /// @param SubRegion The SubRegion that will be removed.
  Region *removeSubRegion(Region *SubRegion);

  /// @brief Move all direct child nodes of this Region to another Region.
  ///
  /// @param To The Region the child nodes will be transferred to.
  void transferChildrenTo(Region *To);

  /// @brief Verify if the region is a correct region.
  ///
  /// Check if this is a correctly build Region. This is an expensive check, as
  /// the complete CFG of the Region will be walked.
  void verifyRegion() const;

  /// @brief Clear the cache for BB RegionNodes.
  ///
  /// After calling this function the BasicBlock RegionNodes will be stored at
  /// different memory locations. RegionNodes obtained before this function is
  /// called are therefore not comparable to RegionNodes abtained afterwords.
  void clearNodeCache();

  /// @name Subregion Iterators
  ///
  /// These iterators iterator over all subregions of this Region.
  //@{
  typedef RegionSet::iterator iterator;
  typedef RegionSet::const_iterator const_iterator;

  iterator begin() { return children.begin(); }
  iterator end() { return children.end(); }

  const_iterator begin() const { return children.begin(); }
  const_iterator end() const { return children.end(); }
  //@}

  /// @name BasicBlock Iterators
  ///
  /// These iterators iterate over all BasicBlock RegionNodes that are
  /// contained in this Region. The iterator also iterates over BasicBlocks
  /// that are elements of a subregion of this Region. It is therefore called a
  /// flat iterator.
  //@{
  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
                      GraphTraits<FlatIt<RegionNode*> > > block_iterator;

  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
                      false, GraphTraits<FlatIt<const RegionNode*> > >
            const_block_iterator;

  block_iterator block_begin();
  block_iterator block_end();

  const_block_iterator block_begin() const;
  const_block_iterator block_end() const;
  //@}

  /// @name Element Iterators
  ///
  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
  /// are direct children of this Region. It does not iterate over any
  /// RegionNodes that are also element of a subregion of this Region.
  //@{
  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
                      GraphTraits<RegionNode*> > element_iterator;

  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
                      false, GraphTraits<const RegionNode*> >
            const_element_iterator;

  element_iterator element_begin();
  element_iterator element_end();

  const_element_iterator element_begin() const;
  const_element_iterator element_end() const;
  //@}
};

//===----------------------------------------------------------------------===//
/// @brief Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
class RegionInfo : public FunctionPass {
  typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
  typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
  typedef SmallPtrSet<Region*, 4> RegionSet;

  // DO NOT IMPLEMENT
  RegionInfo(const RegionInfo &);
  // DO NOT IMPLEMENT
  const RegionInfo &operator=(const RegionInfo &);

  DominatorTree *DT;
  PostDominatorTree *PDT;
  DominanceFrontier *DF;

  /// The top level region.
  Region *TopLevelRegion;

  /// Map every BB to the smallest region, that contains BB.
  BBtoRegionMap BBtoRegion;

  // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
  // entry, because it was inherited from exit. In the other case there is an
  // edge going from entry to BB without passing exit.
  bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
                           BasicBlock* exit) const;

  // isRegion - Check if entry and exit surround a valid region, based on
  // dominance tree and dominance frontier.
  bool isRegion(BasicBlock* entry, BasicBlock* exit) const;

  // insertShortCut - Saves a shortcut pointing from entry to exit.
  // This function may extend this shortcut if possible.
  void insertShortCut(BasicBlock* entry, BasicBlock* exit,
                      BBtoBBMap* ShortCut) const;

  // getNextPostDom - Returns the next BB that postdominates N, while skipping
  // all post dominators that cannot finish a canonical region.
  DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;

  // isTrivialRegion - A region is trivial, if it contains only one BB.
  bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;

  // createRegion - Creates a single entry single exit region.
  Region *createRegion(BasicBlock *entry, BasicBlock *exit);

  // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
  void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);

  // scanForRegions - Detects regions in F.
  void scanForRegions(Function &F, BBtoBBMap *ShortCut);

  // getTopMostParent - Get the top most parent with the same entry block.
  Region *getTopMostParent(Region *region);

  // buildRegionsTree - build the region hierarchy after all region detected.
  void buildRegionsTree(DomTreeNode *N, Region *region);

  // Calculate - detecte all regions in function and build the region tree.
  void Calculate(Function& F);

  void releaseMemory();

  // updateStatistics - Update statistic about created regions.
  void updateStatistics(Region *R);

  // isSimple - Check if a region is a simple region with exactly one entry
  // edge and exactly one exit edge.
  bool isSimple(Region* R) const;

public:
  static char ID;
  explicit RegionInfo();

  ~RegionInfo();

  /// @name FunctionPass interface
  //@{
  virtual bool runOnFunction(Function &F);
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void print(raw_ostream &OS, const Module *) const;
  virtual void verifyAnalysis() const;
  //@}

  /// @brief Get the smallest region that contains a BasicBlock.
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  Region *getRegionFor(BasicBlock *BB) const;

  /// @brief  Set the smallest region that surrounds a basic block.
  ///
  /// @param BB The basic block surrounded by a region.
  /// @param R The smallest region that surrounds BB.
  void setRegionFor(BasicBlock *BB, Region *R);

  /// @brief A shortcut for getRegionFor().
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  Region *operator[](BasicBlock *BB) const;

  /// @brief Return the exit of the maximal refined region, that starts at a
  /// BasicBlock.
  ///
  /// @param BB The BasicBlock the refined region starts.
  BasicBlock *getMaxRegionExit(BasicBlock *BB) const;

  /// @brief Find the smallest region that contains two regions.
  ///
  /// @param A The first region.
  /// @param B The second region.
  /// @return The smallest region containing A and B.
  Region *getCommonRegion(Region* A, Region *B) const;

  /// @brief Find the smallest region that contains two basic blocks.
  ///
  /// @param A The first basic block.
  /// @param B The second basic block.
  /// @return The smallest region that contains A and B.
  Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
    return getCommonRegion(getRegionFor(A), getRegionFor(B));
  }

  /// @brief Find the smallest region that contains a set of regions.
  ///
  /// @param Regions A vector of regions.
  /// @return The smallest region that contains all regions in Regions.
  Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;

  /// @brief Find the smallest region that contains a set of basic blocks.
  ///
  /// @param BBs A vector of basic blocks.
  /// @return The smallest region that contains all basic blocks in BBS.
  Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;

  Region *getTopLevelRegion() const {
    return TopLevelRegion;
  }

  /// @brief Update RegionInfo after a basic block was split.
  ///
  /// @param NewBB The basic block that was created before OldBB.
  /// @param OldBB The old basic block.
  void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);

  /// @brief Clear the Node Cache for all Regions.
  ///
  /// @see Region::clearNodeCache()
  void clearNodeCache() {
    if (TopLevelRegion)
      TopLevelRegion->clearNodeCache();
  }
};

inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
  if (Node.isSubRegion())
    return OS << Node.getNodeAs<Region>()->getNameStr();
  else
    return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
}
} // End llvm namespace
#endif