aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/TargetTransformInfoImpl.h
blob: 3e02c0ce3ca92a26e24ca2050626ad97ba8f6f84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides helpers for the implementation of
/// a TargetTransformInfo-conforming class.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H

#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"

namespace llvm {

/// \brief Base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
class TargetTransformInfoImplBase {
protected:
  typedef TargetTransformInfo TTI;

  const DataLayout *DL;

  explicit TargetTransformInfoImplBase(const DataLayout *DL)
      : DL(DL) {}

public:
  // Provide value semantics. MSVC requires that we spell all of these out.
  TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
      : DL(Arg.DL) {}
  TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
      : DL(std::move(Arg.DL)) {}
  TargetTransformInfoImplBase &
  operator=(const TargetTransformInfoImplBase &RHS) {
    DL = RHS.DL;
    return *this;
  }
  TargetTransformInfoImplBase &operator=(TargetTransformInfoImplBase &&RHS) {
    DL = std::move(RHS.DL);
    return *this;
  }

  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
    switch (Opcode) {
    default:
      // By default, just classify everything as 'basic'.
      return TTI::TCC_Basic;

    case Instruction::GetElementPtr:
      llvm_unreachable("Use getGEPCost for GEP operations!");

    case Instruction::BitCast:
      assert(OpTy && "Cast instructions must provide the operand type");
      if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
        // Identity and pointer-to-pointer casts are free.
        return TTI::TCC_Free;

      // Otherwise, the default basic cost is used.
      return TTI::TCC_Basic;

    case Instruction::IntToPtr: {
      if (!DL)
        return TTI::TCC_Basic;

      // An inttoptr cast is free so long as the input is a legal integer type
      // which doesn't contain values outside the range of a pointer.
      unsigned OpSize = OpTy->getScalarSizeInBits();
      if (DL->isLegalInteger(OpSize) &&
          OpSize <= DL->getPointerTypeSizeInBits(Ty))
        return TTI::TCC_Free;

      // Otherwise it's not a no-op.
      return TTI::TCC_Basic;
    }
    case Instruction::PtrToInt: {
      if (!DL)
        return TTI::TCC_Basic;

      // A ptrtoint cast is free so long as the result is large enough to store
      // the pointer, and a legal integer type.
      unsigned DestSize = Ty->getScalarSizeInBits();
      if (DL->isLegalInteger(DestSize) &&
          DestSize >= DL->getPointerTypeSizeInBits(OpTy))
        return TTI::TCC_Free;

      // Otherwise it's not a no-op.
      return TTI::TCC_Basic;
    }
    case Instruction::Trunc:
      // trunc to a native type is free (assuming the target has compare and
      // shift-right of the same width).
      if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
        return TTI::TCC_Free;

      return TTI::TCC_Basic;
    }
  }

  unsigned getGEPCost(const Value *Ptr, ArrayRef<const Value *> Operands) {
    // In the basic model, we just assume that all-constant GEPs will be folded
    // into their uses via addressing modes.
    for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
      if (!isa<Constant>(Operands[Idx]))
        return TTI::TCC_Basic;

    return TTI::TCC_Free;
  }

  unsigned getCallCost(FunctionType *FTy, int NumArgs) {
    assert(FTy && "FunctionType must be provided to this routine.");

    // The target-independent implementation just measures the size of the
    // function by approximating that each argument will take on average one
    // instruction to prepare.

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = FTy->getNumParams();

    return TTI::TCC_Basic * (NumArgs + 1);
  }

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<Type *> ParamTys) {
    switch (IID) {
    default:
      // Intrinsics rarely (if ever) have normal argument setup constraints.
      // Model them as having a basic instruction cost.
      // FIXME: This is wrong for libc intrinsics.
      return TTI::TCC_Basic;

    case Intrinsic::annotation:
    case Intrinsic::assume:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_value:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::objectsize:
    case Intrinsic::ptr_annotation:
    case Intrinsic::var_annotation:
    case Intrinsic::experimental_gc_result_int:
    case Intrinsic::experimental_gc_result_float:
    case Intrinsic::experimental_gc_result_ptr:
    case Intrinsic::experimental_gc_result:
    case Intrinsic::experimental_gc_relocate:
      // These intrinsics don't actually represent code after lowering.
      return TTI::TCC_Free;
    }
  }

  bool hasBranchDivergence() { return false; }

  bool isLoweredToCall(const Function *F) {
    // FIXME: These should almost certainly not be handled here, and instead
    // handled with the help of TLI or the target itself. This was largely
    // ported from existing analysis heuristics here so that such refactorings
    // can take place in the future.

    if (F->isIntrinsic())
      return false;

    if (F->hasLocalLinkage() || !F->hasName())
      return true;

    StringRef Name = F->getName();

    // These will all likely lower to a single selection DAG node.
    if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
        Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
        Name == "fmin" || Name == "fminf" || Name == "fminl" ||
        Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
        Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
        Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
      return false;

    // These are all likely to be optimized into something smaller.
    if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
        Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
        Name == "floorf" || Name == "ceil" || Name == "round" ||
        Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
        Name == "llabs")
      return false;

    return true;
  }

  void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {}

  bool isLegalAddImmediate(int64_t Imm) { return false; }

  bool isLegalICmpImmediate(int64_t Imm) { return false; }

  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale) {
    // Guess that reg+reg addressing is allowed. This heuristic is taken from
    // the implementation of LSR.
    return !BaseGV && BaseOffset == 0 && Scale <= 1;
  }

  bool isLegalMaskedStore(Type *DataType, int Consecutive) { return false; }

  bool isLegalMaskedLoad(Type *DataType, int Consecutive) { return false; }

  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale) {
    // Guess that all legal addressing mode are free.
    if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
      return 0;
    return -1;
  }

  bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }

  bool isProfitableToHoist(Instruction *I) { return true; }

  bool isTypeLegal(Type *Ty) { return false; }

  unsigned getJumpBufAlignment() { return 0; }

  unsigned getJumpBufSize() { return 0; }

  bool shouldBuildLookupTables() { return true; }

  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
    return TTI::PSK_Software;
  }

  bool haveFastSqrt(Type *Ty) { return false; }

  unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }

  unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }

  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                         Type *Ty) {
    return TTI::TCC_Free;
  }

  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                         Type *Ty) {
    return TTI::TCC_Free;
  }

  unsigned getNumberOfRegisters(bool Vector) { return 8; }

  unsigned getRegisterBitWidth(bool Vector) { return 32; }

  unsigned getMaxInterleaveFactor() { return 1; }

  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                  TTI::OperandValueKind Opd1Info,
                                  TTI::OperandValueKind Opd2Info,
                                  TTI::OperandValueProperties Opd1PropInfo,
                                  TTI::OperandValueProperties Opd2PropInfo) {
    return 1;
  }

  unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
                          Type *SubTp) {
    return 1;
  }

  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; }

  unsigned getCFInstrCost(unsigned Opcode) { return 1; }

  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
    return 1;
  }

  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    return 1;
  }

  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                           unsigned AddressSpace) {
    return 1;
  }

  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                                 unsigned AddressSpace) {
    return 1;
  }

  unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                                 ArrayRef<Type *> Tys) {
    return 1;
  }

  unsigned getNumberOfParts(Type *Tp) { return 0; }

  unsigned getAddressComputationCost(Type *Tp, bool) { return 0; }

  unsigned getReductionCost(unsigned, Type *, bool) { return 1; }

  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }

  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
    return false;
  }

  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) {
    return nullptr;
  }
};

/// \brief CRTP base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
template <typename T>
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
private:
  typedef TargetTransformInfoImplBase BaseT;

protected:
  explicit TargetTransformInfoImplCRTPBase(const DataLayout *DL)
      : BaseT(DL) {}

public:
  // Provide value semantics. MSVC requires that we spell all of these out.
  TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg)
      : BaseT(static_cast<const BaseT &>(Arg)) {}
  TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg)
      : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
  TargetTransformInfoImplCRTPBase &
  operator=(const TargetTransformInfoImplCRTPBase &RHS) {
    BaseT::operator=(static_cast<const BaseT &>(RHS));
    return *this;
  }
  TargetTransformInfoImplCRTPBase &
  operator=(TargetTransformInfoImplCRTPBase &&RHS) {
    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
    return *this;
  }

  using BaseT::getCallCost;

  unsigned getCallCost(const Function *F, int NumArgs) {
    assert(F && "A concrete function must be provided to this routine.");

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = F->arg_size();

    if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
      FunctionType *FTy = F->getFunctionType();
      SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
      return static_cast<T *>(this)
          ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
    }

    if (!static_cast<T *>(this)->isLoweredToCall(F))
      return TTI::TCC_Basic; // Give a basic cost if it will be lowered
                             // directly.

    return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
  }

  unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
    // Simply delegate to generic handling of the call.
    // FIXME: We should use instsimplify or something else to catch calls which
    // will constant fold with these arguments.
    return static_cast<T *>(this)->getCallCost(F, Arguments.size());
  }

  using BaseT::getIntrinsicCost;

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<const Value *> Arguments) {
    // Delegate to the generic intrinsic handling code. This mostly provides an
    // opportunity for targets to (for example) special case the cost of
    // certain intrinsics based on constants used as arguments.
    SmallVector<Type *, 8> ParamTys;
    ParamTys.reserve(Arguments.size());
    for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
      ParamTys.push_back(Arguments[Idx]->getType());
    return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
  }

  unsigned getUserCost(const User *U) {
    if (isa<PHINode>(U))
      return TTI::TCC_Free; // Model all PHI nodes as free.

    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
      SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
      return static_cast<T *>(this)
          ->getGEPCost(GEP->getPointerOperand(), Indices);
    }

    if (ImmutableCallSite CS = U) {
      const Function *F = CS.getCalledFunction();
      if (!F) {
        // Just use the called value type.
        Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
        return static_cast<T *>(this)
            ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
      }

      SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
      return static_cast<T *>(this)->getCallCost(F, Arguments);
    }

    if (const CastInst *CI = dyn_cast<CastInst>(U)) {
      // Result of a cmp instruction is often extended (to be used by other
      // cmp instructions, logical or return instructions). These are usually
      // nop on most sane targets.
      if (isa<CmpInst>(CI->getOperand(0)))
        return TTI::TCC_Free;
    }

    return static_cast<T *>(this)->getOperationCost(
        Operator::getOpcode(U), U->getType(),
        U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
  }
};
}

#endif