aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/InstrForest.h
blob: d6eaf7673ad83ff2a2271a89727a0da6c5a08a9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//===-- llvm/CodeGen/InstForest.h ------------------------------*- C++ -*--===//
//
// Purpose:
//	Convert SSA graph to instruction trees for instruction selection.
// 
// Strategy:
//  The basic idea is that we would like to group instructions into a single
//  tree if one or more of them might be potentially combined into a single
//  complex instruction in the target machine.
//  Since this grouping is completely machine-independent, it is as
//  aggressive as possible.  In particular, we group two instructions
//  O and I if:
//  (1) Instruction O computes an operand of instruction I, and
//  (2) O and I are part of the same basic block, and
//  (3) O has only a single use, viz., I.
// 
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_INSTRFOREST_H
#define LLVM_CODEGEN_INSTRFOREST_H

#include "llvm/Instruction.h"
#include "Support/HashExtras.h"
#include <assert.h>

class Constant;
class BasicBlock;
class Function;
class InstrTreeNode;
class InstrForest;

//--------------------------------------------------------------------------
// OpLabel values for special-case nodes created for instruction selection.
// All op-labels not defined here are identical to the instruction
// opcode returned by Instruction::getOpcode()
//--------------------------------------------------------------------------

const int  InvalidOp	=  -1;
const int  VRegListOp   =  97;
const int  VRegNodeOp	=  98;
const int  ConstantNodeOp= 99;
const int  LabelNodeOp	= 100;

const int  RetValueOp	= 100 + Instruction::Ret;               // 101
const int  BrCondOp	= 100 + Instruction::Br;                // 102

const int  BAndOp       = 100 + Instruction::And;               // 111
const int  BOrOp        = 100 + Instruction::Or;                // 112
const int  BXorOp       = 100 + Instruction::Xor;               // 113
const int  BNotOp       = 200 + Instruction::Xor;               // 213
const int   NotOp       = 300 + Instruction::Xor;               // 313

const int  SetCCOp	= 100 + Instruction::SetEQ;             // 114

const int  AllocaN	= 100 + Instruction::Alloca;		// 122
const int  LoadIdx	= 100 + Instruction::Load;		// 123
const int  GetElemPtrIdx= 100 + Instruction::GetElementPtr;	// 125

const int  ToBoolTy	= 100 + Instruction::Cast;		// 127
const int  ToUByteTy	= ToBoolTy +  1;
const int  ToSByteTy	= ToBoolTy +  2;
const int  ToUShortTy	= ToBoolTy +  3;
const int  ToShortTy	= ToBoolTy +  4;
const int  ToUIntTy	= ToBoolTy +  5;
const int  ToIntTy	= ToBoolTy +  6;
const int  ToULongTy	= ToBoolTy +  7;
const int  ToLongTy	= ToBoolTy +  8;
const int  ToFloatTy	= ToBoolTy +  9;
const int  ToDoubleTy	= ToBoolTy + 10;
const int  ToArrayTy	= ToBoolTy + 11;
const int  ToPointerTy	= ToBoolTy + 12;

//-------------------------------------------------------------------------
// Data types needed by BURG and implemented by us
//-------------------------------------------------------------------------

typedef int OpLabel;
typedef int StateLabel;

//-------------------------------------------------------------------------
// Declarations of data and functions created by BURG
//-------------------------------------------------------------------------

extern short*		burm_nts[];
  
extern StateLabel	burm_label	(InstrTreeNode* p);
  
extern StateLabel	burm_state	(OpLabel op, StateLabel leftState,
					 StateLabel rightState);

extern StateLabel	burm_rule	(StateLabel state, int goalNT);
  
extern InstrTreeNode**  burm_kids	(InstrTreeNode* p, int eruleno,
					 InstrTreeNode* kids[]);
  
extern void		printcover	(InstrTreeNode*, int, int);
extern void		printtree	(InstrTreeNode*);
extern int		treecost	(InstrTreeNode*, int, int);
extern void		printMatches	(InstrTreeNode*);


//------------------------------------------------------------------------ 
// class InstrTreeNode
// 
// A single tree node in the instruction tree used for
// instruction selection via BURG.
//------------------------------------------------------------------------ 

class InstrTreeNode {
  InstrTreeNode(const InstrTreeNode &);   // DO NOT IMPLEMENT
  void operator=(const InstrTreeNode &);  // DO NOT IMPLEMENT
public:
  enum InstrTreeNodeType { NTInstructionNode,
			   NTVRegListNode,
			   NTVRegNode,
			   NTConstNode,
			   NTLabelNode };
  
  // BASIC TREE NODE START
  InstrTreeNode* LeftChild;
  InstrTreeNode* RightChild;
  InstrTreeNode* Parent;
  OpLabel        opLabel;
  StateLabel     state;
  // BASIC TREE NODE END

protected:
  InstrTreeNodeType treeNodeType;
  Value*	   val;
  
public:
  InstrTreeNode(InstrTreeNodeType nodeType, Value* _val)
    : treeNodeType(nodeType), val(_val) {
    LeftChild = RightChild = Parent = 0;
    opLabel   = InvalidOp;
  }
  virtual ~InstrTreeNode() {
    delete LeftChild;
    delete RightChild;
  }
  
  InstrTreeNodeType	getNodeType	() const { return treeNodeType; }
  
  Value*		getValue	() const { return val; }
  
  inline OpLabel	getOpLabel	() const { return opLabel; }
  
  inline InstrTreeNode*	leftChild() const {
    return LeftChild;
  }
  
  // If right child is a list node, recursively get its *left* child
  inline InstrTreeNode* rightChild() const {
    return (!RightChild ? 0 : 
	    (RightChild->getOpLabel() == VRegListOp
	     ? RightChild->LeftChild : RightChild));
  }
  
  inline InstrTreeNode *parent() const {
    return Parent;
  }
  
  void dump(int dumpChildren, int indent) const;

protected:
  virtual void dumpNode(int indent) const = 0;

  friend class InstrForest;
};


class InstructionNode : public InstrTreeNode {
private:
  bool codeIsFoldedIntoParent;
  
public:
  InstructionNode(Instruction *_instr);

  Instruction *getInstruction() const {
    assert(treeNodeType == NTInstructionNode);
    return cast<Instruction>(val);
  }

  void markFoldedIntoParent() { codeIsFoldedIntoParent = true; }
  bool isFoldedIntoParent()   { return codeIsFoldedIntoParent; }

  // Methods to support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InstructionNode *N) { return true; }
  static inline bool classof(const InstrTreeNode *N) {
    return N->getNodeType() == InstrTreeNode::NTInstructionNode;
  }
  
protected:
  virtual void dumpNode(int indent) const;
};


class VRegListNode : public InstrTreeNode {
public:
  VRegListNode() : InstrTreeNode(NTVRegListNode, 0) {
    opLabel = VRegListOp;
  }

  // Methods to support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VRegListNode  *N) { return true; }
  static inline bool classof(const InstrTreeNode *N) {
    return N->getNodeType() == InstrTreeNode::NTVRegListNode;
  }

protected:
  virtual void dumpNode(int indent) const;
};


class VRegNode : public InstrTreeNode {
public:
  VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) {
    opLabel = VRegNodeOp;
  }

  // Methods to support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VRegNode  *N) { return true; }
  static inline bool classof(const InstrTreeNode *N) {
    return N->getNodeType() == InstrTreeNode::NTVRegNode;
  }

protected:
  virtual void dumpNode(int indent) const;
};


class ConstantNode : public InstrTreeNode {
public:
  ConstantNode(Constant *constVal) 
    : InstrTreeNode(NTConstNode, (Value*)constVal) {
    opLabel = ConstantNodeOp;    
  }
  Constant *getConstVal() const { return (Constant*) val;}

  // Methods to support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ConstantNode  *N) { return true; }
  static inline bool classof(const InstrTreeNode *N) {
    return N->getNodeType() == InstrTreeNode::NTConstNode;
  }

protected:
  virtual void dumpNode(int indent) const;
};


class LabelNode : public InstrTreeNode {
public:
  LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) {
    opLabel = LabelNodeOp;
  }

  BasicBlock *getBasicBlock() const { return (BasicBlock*)val;}

  // Methods to support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const LabelNode     *N) { return true; }
  static inline bool classof(const InstrTreeNode *N) {
    return N->getNodeType() == InstrTreeNode::NTLabelNode;
  }

protected:
  virtual void dumpNode(int indent) const;
};


//------------------------------------------------------------------------
// class InstrForest
// 
// A forest of instruction trees, usually for a single method.
//
// Methods:
//     buildTreesForMethod()	Builds the forest of trees for a method
//     getTreeNodeForInstr()	Returns the tree node for an Instruction
//     getRootSet()		Returns a set of root nodes for all the trees
// 
//------------------------------------------------------------------------ 

class InstrForest : private hash_map<const Instruction *, InstructionNode*> {
public:
  // Use a vector for the root set to get a deterministic iterator
  // for stable code generation.  Even though we need to erase nodes
  // during forest construction, a vector should still be efficient
  // because the elements to erase are nearly always near the end.
  typedef std::vector<InstructionNode*> RootSet;
  typedef RootSet::      iterator       root_iterator;
  typedef RootSet::const_iterator const_root_iterator;
  
private:
  RootSet treeRoots;
  
public:
  /*ctor*/	InstrForest	(Function *F);
  /*dtor*/	~InstrForest	();
  
  inline InstructionNode *getTreeNodeForInstr(Instruction* instr) {
    return (*this)[instr];
  }
  
  const_root_iterator roots_begin() const     { return treeRoots.begin(); }
        root_iterator roots_begin()           { return treeRoots.begin(); }
  const_root_iterator roots_end  () const     { return treeRoots.end();   }
        root_iterator roots_end  ()           { return treeRoots.end();   }
  
  void dump() const;
  
private:
  //
  // Private methods for buidling the instruction forest
  //
  void eraseRoot    (InstructionNode* node);
  void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child);
  void setRightChild(InstrTreeNode* parent, InstrTreeNode* child);
  void setParent    (InstrTreeNode* child,  InstrTreeNode* parent);
  void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode);
  
  InstructionNode* buildTreeForInstruction(Instruction* instr);
};

#endif