aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/MachineFrameInfo.h
blob: 76b9d9b7e3c21b6c89da5545b0434e53ae5d397d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//


#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
#define LLVM_CODEGEN_MACHINEFRAMEINFO_H

#include <vector>

namespace llvm {
class TargetData;
class TargetRegisterClass;
class Type;
class MachineModuleInfo;
class MachineFunction;

/// The CalleeSavedInfo class tracks the information need to locate where a
/// callee saved register in the current frame.  
class CalleeSavedInfo {

private:
  unsigned Reg;
  const TargetRegisterClass *RegClass;
  int FrameIdx;
  
public:
  CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0)
  : Reg(R)
  , RegClass(RC)
  , FrameIdx(FI)
  {}
  
  // Accessors.
  unsigned getReg()                        const { return Reg; }
  const TargetRegisterClass *getRegClass() const { return RegClass; }
  int getFrameIdx()                        const { return FrameIdx; }
  void setFrameIdx(int FI)                       { FrameIdx = FI; }
};

/// The MachineFrameInfo class represents an abstract stack frame until
/// prolog/epilog code is inserted.  This class is key to allowing stack frame
/// representation optimizations, such as frame pointer elimination.  It also
/// allows more mundane (but still important) optimizations, such as reordering
/// of abstract objects on the stack frame.
///
/// To support this, the class assigns unique integer identifiers to stack
/// objects requested clients.  These identifiers are negative integers for
/// fixed stack objects (such as arguments passed on the stack) or positive
/// for objects that may be reordered.  Instructions which refer to stack
/// objects use a special MO_FrameIndex operand to represent these frame
/// indexes.
///
/// Because this class keeps track of all references to the stack frame, it
/// knows when a variable sized object is allocated on the stack.  This is the
/// sole condition which prevents frame pointer elimination, which is an
/// important optimization on register-poor architectures.  Because original
/// variable sized alloca's in the source program are the only source of
/// variable sized stack objects, it is safe to decide whether there will be
/// any variable sized objects before all stack objects are known (for
/// example, register allocator spill code never needs variable sized
/// objects).
///
/// When prolog/epilog code emission is performed, the final stack frame is
/// built and the machine instructions are modified to refer to the actual
/// stack offsets of the object, eliminating all MO_FrameIndex operands from
/// the program.
///
/// @brief Abstract Stack Frame Information
class MachineFrameInfo {

  // StackObject - Represent a single object allocated on the stack.
  struct StackObject {
    // The size of this object on the stack. 0 means a variable sized object
    uint64_t Size;

    // Alignment - The required alignment of this stack slot.
    unsigned Alignment;

    // SPOffset - The offset of this object from the stack pointer on entry to
    // the function.  This field has no meaning for a variable sized element.
    int64_t SPOffset;

    StackObject(uint64_t Sz, unsigned Al, int64_t SP)
      : Size(Sz), Alignment(Al), SPOffset(SP) {}
  };

  /// Objects - The list of stack objects allocated...
  ///
  std::vector<StackObject> Objects;

  /// NumFixedObjects - This contains the number of fixed objects contained on
  /// the stack.  Because fixed objects are stored at a negative index in the
  /// Objects list, this is also the index to the 0th object in the list.
  ///
  unsigned NumFixedObjects;

  /// HasVarSizedObjects - This boolean keeps track of whether any variable
  /// sized objects have been allocated yet.
  ///
  bool HasVarSizedObjects;

  /// StackSize - The prolog/epilog code inserter calculates the final stack
  /// offsets for all of the fixed size objects, updating the Objects list
  /// above.  It then updates StackSize to contain the number of bytes that need
  /// to be allocated on entry to the function.
  ///
  uint64_t StackSize;
  
  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
  /// have the actual offset from the stack/frame pointer.  The calculation is 
  /// MFI->getObjectOffset(Index) + StackSize - TFI.getOffsetOfLocalArea() +
  /// OffsetAdjustment.  If OffsetAdjustment is zero (default) then offsets are
  /// away from TOS. If OffsetAdjustment == StackSize then offsets are toward
  /// TOS.
  int OffsetAdjustment;
  
  /// MaxAlignment - The prolog/epilog code inserter may process objects 
  /// that require greater alignment than the default alignment the target
  /// provides. To handle this, MaxAlignment is set to the maximum alignment 
  /// needed by the objects on the current frame.  If this is greater than the
  /// native alignment maintained by the compiler, dynamic alignment code will
  /// be needed.
  ///
  unsigned MaxAlignment;

  /// HasCalls - Set to true if this function has any function calls.  This is
  /// only valid during and after prolog/epilog code insertion.
  bool HasCalls;

  /// MaxCallFrameSize - This contains the size of the largest call frame if the
  /// target uses frame setup/destroy pseudo instructions (as defined in the
  /// TargetFrameInfo class).  This information is important for frame pointer
  /// elimination.  If is only valid during and after prolog/epilog code
  /// insertion.
  ///
  unsigned MaxCallFrameSize;
  
  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
  /// callee saved register saved in the frame.  Beyond its use by the prolog/
  /// epilog code inserter, this data used for debug info and exception
  /// handling.
  std::vector<CalleeSavedInfo> CSInfo;
  
  /// MMI - This field is set (via setMachineModuleInfo) by a module info
  /// consumer (ex. DwarfWriter) to indicate that frame layout information
  /// should be acquired.  Typically, it's the responsibility of the target's
  /// MRegisterInfo prologue/epilogue emitting code to inform MachineModuleInfo
  /// of frame layouts.
  MachineModuleInfo *MMI;
  
public:
  MachineFrameInfo() {
    NumFixedObjects = StackSize = OffsetAdjustment = MaxAlignment = 0;
    HasVarSizedObjects = false;
    HasCalls = false;
    MaxCallFrameSize = 0;
    MMI = 0;
  }

  /// hasStackObjects - Return true if there are any stack objects in this
  /// function.
  ///
  bool hasStackObjects() const { return !Objects.empty(); }

  /// hasVarSizedObjects - This method may be called any time after instruction
  /// selection is complete to determine if the stack frame for this function
  /// contains any variable sized objects.
  ///
  bool hasVarSizedObjects() const { return HasVarSizedObjects; }

  /// getObjectIndexBegin - Return the minimum frame object index...
  ///
  int getObjectIndexBegin() const { return -NumFixedObjects; }

  /// getObjectIndexEnd - Return one past the maximum frame object index...
  ///
  int getObjectIndexEnd() const { return Objects.size()-NumFixedObjects; }

  /// getObjectSize - Return the size of the specified object
  ///
  int64_t getObjectSize(int ObjectIdx) const {
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
    return Objects[ObjectIdx+NumFixedObjects].Size;
  }

  /// getObjectAlignment - Return the alignment of the specified stack object...
  int getObjectAlignment(int ObjectIdx) const {
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
    return Objects[ObjectIdx+NumFixedObjects].Alignment;
  }

  /// getObjectOffset - Return the assigned stack offset of the specified object
  /// from the incoming stack pointer.
  ///
  int64_t getObjectOffset(int ObjectIdx) const {
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
  }

  /// setObjectOffset - Set the stack frame offset of the specified object.  The
  /// offset is relative to the stack pointer on entry to the function.
  ///
  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
  }

  /// getStackSize - Return the number of bytes that must be allocated to hold
  /// all of the fixed size frame objects.  This is only valid after
  /// Prolog/Epilog code insertion has finalized the stack frame layout.
  ///
  unsigned getStackSize() const { return StackSize; }

  /// setStackSize - Set the size of the stack...
  ///
  void setStackSize(unsigned Size) { StackSize = Size; }
  
  /// getOffsetAdjustment - Return the correction for frame offsets.
  ///
  int getOffsetAdjustment() const { return OffsetAdjustment; }
  
  /// setOffsetAdjustment - Set the correction for frame offsets.
  ///
  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }

  /// getMaxAlignment - Return the alignment in bytes that this function must be 
  /// aligned to, which is greater than the default stack alignment provided by 
  /// the target.
  ///
  unsigned getMaxAlignment() const { return MaxAlignment; }
  
  /// setMaxAlignment - Set the preferred alignment.
  ///
  void setMaxAlignment(unsigned Align) { MaxAlignment = Align; }
  
  /// hasCalls - Return true if the current function has no function calls.
  /// This is only valid during or after prolog/epilog code emission.
  ///
  bool hasCalls() const { return HasCalls; }
  void setHasCalls(bool V) { HasCalls = V; }

  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
  /// allocated for an outgoing function call.  This is only available if
  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
  /// then only during or after prolog/epilog code insertion.
  ///
  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }

  /// CreateFixedObject - Create a new object at a fixed location on the stack.
  /// All fixed objects should be created before other objects are created for
  /// efficiency.  This returns an index with a negative value.
  ///
  int CreateFixedObject(uint64_t Size, int64_t SPOffset) {
    assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
    Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset));
    return -++NumFixedObjects;
  }

  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
  /// fixed stack object.
  bool isFixedObjectIndex(int ObjectIdx) const {
    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
  }

  /// CreateStackObject - Create a new statically sized stack object, returning
  /// a postive identifier to represent it.
  ///
  int CreateStackObject(uint64_t Size, unsigned Alignment) {
    // Keep track of the maximum alignment.
    if (MaxAlignment < Alignment) MaxAlignment = Alignment;
    
    assert(Size != 0 && "Cannot allocate zero size stack objects!");
    Objects.push_back(StackObject(Size, Alignment, -1));
    return Objects.size()-NumFixedObjects-1;
  }

  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
  /// variable sized object has been created.  This must be created whenever a
  /// variable sized object is created, whether or not the index returned is
  /// actually used.
  ///
  int CreateVariableSizedObject() {
    HasVarSizedObjects = true;
    if (MaxAlignment < 1) MaxAlignment = 1;
    Objects.push_back(StackObject(0, 1, -1));
    return Objects.size()-NumFixedObjects-1;
  }
  
  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
  /// current function.
  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    return CSInfo;
  }

  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
  /// callee saved information.
  void  setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    CSInfo = CSI;
  }

  /// getMachineModuleInfo - Used by a prologue/epilogue emitter (MRegisterInfo)
  /// to provide frame layout information. 
  MachineModuleInfo *getMachineModuleInfo() const { return MMI; }

  /// setMachineModuleInfo - Used by a meta info consumer (DwarfWriter) to
  /// indicate that frame layout information should be gathered.
  void setMachineModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; }

  /// print - Used by the MachineFunction printer to print information about
  /// stack objects.  Implemented in MachineFunction.cpp
  ///
  void print(const MachineFunction &MF, std::ostream &OS) const;

  /// dump - Call print(MF, std::cerr) to be called from the debugger.
  void dump(const MachineFunction &MF) const;
};

} // End llvm namespace

#endif