1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
//===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Heuristic PBQP solver for register allocation problems. This solver uses a
// graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
// optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
// nodes are present, a heuristic derived from Brigg's graph coloring approach
// is used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
#define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
#include "CostAllocator.h"
#include "Graph.h"
#include "ReductionRules.h"
#include "Solution.h"
#include "llvm/Support/ErrorHandling.h"
#include <limits>
#include <vector>
namespace PBQP {
namespace RegAlloc {
/// \brief Metadata to speed allocatability test.
///
/// Keeps track of the number of infinities in each row and column.
class MatrixMetadata {
private:
MatrixMetadata(const MatrixMetadata&);
void operator=(const MatrixMetadata&);
public:
MatrixMetadata(const PBQP::Matrix& M)
: WorstRow(0), WorstCol(0),
UnsafeRows(new bool[M.getRows() - 1]()),
UnsafeCols(new bool[M.getCols() - 1]()) {
unsigned* ColCounts = new unsigned[M.getCols() - 1]();
for (unsigned i = 1; i < M.getRows(); ++i) {
unsigned RowCount = 0;
for (unsigned j = 1; j < M.getCols(); ++j) {
if (M[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
++RowCount;
++ColCounts[j - 1];
UnsafeRows[i - 1] = true;
UnsafeCols[j - 1] = true;
}
}
WorstRow = std::max(WorstRow, RowCount);
}
unsigned WorstColCountForCurRow =
*std::max_element(ColCounts, ColCounts + M.getCols() - 1);
WorstCol = std::max(WorstCol, WorstColCountForCurRow);
delete[] ColCounts;
}
~MatrixMetadata() {
delete[] UnsafeRows;
delete[] UnsafeCols;
}
unsigned getWorstRow() const { return WorstRow; }
unsigned getWorstCol() const { return WorstCol; }
const bool* getUnsafeRows() const { return UnsafeRows; }
const bool* getUnsafeCols() const { return UnsafeCols; }
private:
unsigned WorstRow, WorstCol;
bool* UnsafeRows;
bool* UnsafeCols;
};
class NodeMetadata {
public:
typedef enum { Unprocessed,
OptimallyReducible,
ConservativelyAllocatable,
NotProvablyAllocatable } ReductionState;
NodeMetadata() : RS(Unprocessed), DeniedOpts(0), OptUnsafeEdges(nullptr){}
~NodeMetadata() { delete[] OptUnsafeEdges; }
void setup(const Vector& Costs) {
NumOpts = Costs.getLength() - 1;
OptUnsafeEdges = new unsigned[NumOpts]();
}
ReductionState getReductionState() const { return RS; }
void setReductionState(ReductionState RS) { this->RS = RS; }
void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
DeniedOpts += Transpose ? MD.getWorstCol() : MD.getWorstRow();
const bool* UnsafeOpts =
Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
for (unsigned i = 0; i < NumOpts; ++i)
OptUnsafeEdges[i] += UnsafeOpts[i];
}
void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
DeniedOpts -= Transpose ? MD.getWorstCol() : MD.getWorstRow();
const bool* UnsafeOpts =
Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
for (unsigned i = 0; i < NumOpts; ++i)
OptUnsafeEdges[i] -= UnsafeOpts[i];
}
bool isConservativelyAllocatable() const {
return (DeniedOpts < NumOpts) ||
(std::find(OptUnsafeEdges, OptUnsafeEdges + NumOpts, 0) !=
OptUnsafeEdges + NumOpts);
}
private:
ReductionState RS;
unsigned NumOpts;
unsigned DeniedOpts;
unsigned* OptUnsafeEdges;
};
class RegAllocSolverImpl {
private:
typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
public:
typedef PBQP::Vector RawVector;
typedef PBQP::Matrix RawMatrix;
typedef PBQP::Vector Vector;
typedef RAMatrix Matrix;
typedef PBQP::PoolCostAllocator<
Vector, PBQP::VectorComparator,
Matrix, PBQP::MatrixComparator> CostAllocator;
typedef PBQP::GraphBase::NodeId NodeId;
typedef PBQP::GraphBase::EdgeId EdgeId;
typedef RegAlloc::NodeMetadata NodeMetadata;
struct EdgeMetadata { };
typedef PBQP::Graph<RegAllocSolverImpl> Graph;
RegAllocSolverImpl(Graph &G) : G(G) {}
Solution solve() {
G.setSolver(*this);
Solution S;
setup();
S = backpropagate(G, reduce());
G.unsetSolver();
return S;
}
void handleAddNode(NodeId NId) {
G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
}
void handleRemoveNode(NodeId NId) {}
void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
void handleAddEdge(EdgeId EId) {
handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
}
void handleRemoveEdge(EdgeId EId) {
handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
}
void handleDisconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& NMd = G.getNodeMetadata(NId);
const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
if (G.getNodeDegree(NId) == 3) {
// This node is becoming optimally reducible.
moveToOptimallyReducibleNodes(NId);
} else if (NMd.getReductionState() ==
NodeMetadata::NotProvablyAllocatable &&
NMd.isConservativelyAllocatable()) {
// This node just became conservatively allocatable.
moveToConservativelyAllocatableNodes(NId);
}
}
void handleReconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& NMd = G.getNodeMetadata(NId);
const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
}
void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
handleRemoveEdge(EId);
NodeId N1Id = G.getEdgeNode1Id(EId);
NodeId N2Id = G.getEdgeNode2Id(EId);
NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
const MatrixMetadata& MMd = NewCosts.getMetadata();
N1Md.handleAddEdge(MMd, N1Id != G.getEdgeNode1Id(EId));
N2Md.handleAddEdge(MMd, N2Id != G.getEdgeNode1Id(EId));
}
private:
void removeFromCurrentSet(NodeId NId) {
switch (G.getNodeMetadata(NId).getReductionState()) {
case NodeMetadata::Unprocessed: break;
case NodeMetadata::OptimallyReducible:
assert(OptimallyReducibleNodes.find(NId) !=
OptimallyReducibleNodes.end() &&
"Node not in optimally reducible set.");
OptimallyReducibleNodes.erase(NId);
break;
case NodeMetadata::ConservativelyAllocatable:
assert(ConservativelyAllocatableNodes.find(NId) !=
ConservativelyAllocatableNodes.end() &&
"Node not in conservatively allocatable set.");
ConservativelyAllocatableNodes.erase(NId);
break;
case NodeMetadata::NotProvablyAllocatable:
assert(NotProvablyAllocatableNodes.find(NId) !=
NotProvablyAllocatableNodes.end() &&
"Node not in not-provably-allocatable set.");
NotProvablyAllocatableNodes.erase(NId);
break;
}
}
void moveToOptimallyReducibleNodes(NodeId NId) {
removeFromCurrentSet(NId);
OptimallyReducibleNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::OptimallyReducible);
}
void moveToConservativelyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
ConservativelyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::ConservativelyAllocatable);
}
void moveToNotProvablyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
NotProvablyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::NotProvablyAllocatable);
}
void setup() {
// Set up worklists.
for (auto NId : G.nodeIds()) {
if (G.getNodeDegree(NId) < 3)
moveToOptimallyReducibleNodes(NId);
else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
moveToConservativelyAllocatableNodes(NId);
else
moveToNotProvablyAllocatableNodes(NId);
}
}
// Compute a reduction order for the graph by iteratively applying PBQP
// reduction rules. Locally optimal rules are applied whenever possible (R0,
// R1, R2). If no locally-optimal rules apply then any conservatively
// allocatable node is reduced. Finally, if no conservatively allocatable
// node exists then the node with the lowest spill-cost:degree ratio is
// selected.
std::vector<GraphBase::NodeId> reduce() {
assert(!G.empty() && "Cannot reduce empty graph.");
typedef GraphBase::NodeId NodeId;
std::vector<NodeId> NodeStack;
// Consume worklists.
while (true) {
if (!OptimallyReducibleNodes.empty()) {
NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
NodeId NId = *NItr;
OptimallyReducibleNodes.erase(NItr);
NodeStack.push_back(NId);
switch (G.getNodeDegree(NId)) {
case 0:
break;
case 1:
applyR1(G, NId);
break;
case 2:
applyR2(G, NId);
break;
default: llvm_unreachable("Not an optimally reducible node.");
}
} else if (!ConservativelyAllocatableNodes.empty()) {
// Conservatively allocatable nodes will never spill. For now just
// take the first node in the set and push it on the stack. When we
// start optimizing more heavily for register preferencing, it may
// would be better to push nodes with lower 'expected' or worst-case
// register costs first (since early nodes are the most
// constrained).
NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
NodeId NId = *NItr;
ConservativelyAllocatableNodes.erase(NItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else if (!NotProvablyAllocatableNodes.empty()) {
NodeSet::iterator NItr =
std::min_element(NotProvablyAllocatableNodes.begin(),
NotProvablyAllocatableNodes.end(),
SpillCostComparator(G));
NodeId NId = *NItr;
NotProvablyAllocatableNodes.erase(NItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else
break;
}
return NodeStack;
}
class SpillCostComparator {
public:
SpillCostComparator(const Graph& G) : G(G) {}
bool operator()(NodeId N1Id, NodeId N2Id) {
PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
return N1SC < N2SC;
}
private:
const Graph& G;
};
Graph& G;
typedef std::set<NodeId> NodeSet;
NodeSet OptimallyReducibleNodes;
NodeSet ConservativelyAllocatableNodes;
NodeSet NotProvablyAllocatableNodes;
};
typedef Graph<RegAllocSolverImpl> Graph;
inline Solution solve(Graph& G) {
if (G.empty())
return Solution();
RegAllocSolverImpl RegAllocSolver(G);
return RegAllocSolver.solve();
}
}
}
#endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
|