aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/ScheduleDAG.h
blob: d5e702031223a112164b5c782e799c57d2e48ad6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleDAG class, which is used as the common
// base class for instruction schedulers.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PointerIntPair.h"

namespace llvm {
  class AliasAnalysis;
  class SUnit;
  class MachineConstantPool;
  class MachineFunction;
  class MachineModuleInfo;
  class MachineRegisterInfo;
  class MachineInstr;
  class TargetRegisterInfo;
  class ScheduleDAG;
  class SDNode;
  class TargetInstrInfo;
  class TargetInstrDesc;
  class TargetLowering;
  class TargetMachine;
  class TargetRegisterClass;
  template<class Graph> class GraphWriter;

  /// SDep - Scheduling dependency. This represents one direction of an
  /// edge in the scheduling DAG.
  class SDep {
  public:
    /// Kind - These are the different kinds of scheduling dependencies.
    enum Kind {
      Data,        ///< Regular data dependence (aka true-dependence).
      Anti,        ///< A register anti-dependedence (aka WAR).
      Output,      ///< A register output-dependence (aka WAW).
      Order        ///< Any other ordering dependency.
    };

  private:
    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
    /// indicating the kind of the dependency.
    PointerIntPair<SUnit *, 2, Kind> Dep;

    /// Contents - A union discriminated by the dependence kind.
    union {
      /// Reg - For Data, Anti, and Output dependencies, the associated
      /// register. For Data dependencies that don't currently have a register
      /// assigned, this is set to zero.
      unsigned Reg;

      /// Order - Additional information about Order dependencies.
      struct {
        /// isNormalMemory - True if both sides of the dependence
        /// access memory in non-volatile and fully modeled ways.
        bool isNormalMemory : 1;

        /// isMustAlias - True if both sides of the dependence are known to
        /// access the same memory.
        bool isMustAlias : 1;

        /// isArtificial - True if this is an artificial dependency, meaning
        /// it is not necessary for program correctness, and may be safely
        /// deleted if necessary.
        bool isArtificial : 1;
      } Order;
    } Contents;

    /// Latency - The time associated with this edge. Often this is just
    /// the value of the Latency field of the predecessor, however advanced
    /// models may provide additional information about specific edges.
    unsigned Latency;

  public:
    /// SDep - Construct a null SDep. This is only for use by container
    /// classes which require default constructors. SUnits may not
    /// have null SDep edges.
    SDep() : Dep(0, Data) {}

    /// SDep - Construct an SDep with the specified values.
    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
         bool isNormalMemory = false, bool isMustAlias = false,
         bool isArtificial = false)
      : Dep(S, kind), Contents(), Latency(latency) {
      switch (kind) {
      case Anti:
      case Output:
        assert(Reg != 0 &&
               "SDep::Anti and SDep::Output must use a non-zero Reg!");
        // fall through
      case Data:
        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
        Contents.Reg = Reg;
        break;
      case Order:
        assert(Reg == 0 && "Reg given for non-register dependence!");
        Contents.Order.isNormalMemory = isNormalMemory;
        Contents.Order.isMustAlias = isMustAlias;
        Contents.Order.isArtificial = isArtificial;
        break;
      }
    }

    bool operator==(const SDep &Other) const {
      if (Dep != Other.Dep || Latency != Other.Latency) return false;
      switch (Dep.getInt()) {
      case Data:
      case Anti:
      case Output:
        return Contents.Reg == Other.Contents.Reg;
      case Order:
        return Contents.Order.isNormalMemory ==
                 Other.Contents.Order.isNormalMemory &&
               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
      }
      assert(0 && "Invalid dependency kind!");
      return false;
    }

    bool operator!=(const SDep &Other) const {
      return !operator==(Other);
    }

    /// getLatency - Return the latency value for this edge, which roughly
    /// means the minimum number of cycles that must elapse between the
    /// predecessor and the successor, given that they have this edge
    /// between them.
    unsigned getLatency() const {
      return Latency;
    }

    /// setLatency - Set the latency for this edge.
    void setLatency(unsigned Lat) {
      Latency = Lat;
    }

    //// getSUnit - Return the SUnit to which this edge points.
    SUnit *getSUnit() const {
      return Dep.getPointer();
    }

    //// setSUnit - Assign the SUnit to which this edge points.
    void setSUnit(SUnit *SU) {
      Dep.setPointer(SU);
    }

    /// getKind - Return an enum value representing the kind of the dependence.
    Kind getKind() const {
      return Dep.getInt();
    }

    /// isCtrl - Shorthand for getKind() != SDep::Data.
    bool isCtrl() const {
      return getKind() != Data;
    }

    /// isNormalMemory - Test if this is an Order dependence between two
    /// memory accesses where both sides of the dependence access memory
    /// in non-volatile and fully modeled ways.
    bool isNormalMemory() const {
      return getKind() == Order && Contents.Order.isNormalMemory;
    }

    /// isMustAlias - Test if this is an Order dependence that is marked
    /// as "must alias", meaning that the SUnits at either end of the edge
    /// have a memory dependence on a known memory location.
    bool isMustAlias() const {
      return getKind() == Order && Contents.Order.isMustAlias;
    }

    /// isArtificial - Test if this is an Order dependence that is marked
    /// as "artificial", meaning it isn't necessary for correctness.
    bool isArtificial() const {
      return getKind() == Order && Contents.Order.isArtificial;
    }

    /// isAssignedRegDep - Test if this is a Data dependence that is
    /// associated with a register.
    bool isAssignedRegDep() const {
      return getKind() == Data && Contents.Reg != 0;
    }

    /// getReg - Return the register associated with this edge. This is
    /// only valid on Data, Anti, and Output edges. On Data edges, this
    /// value may be zero, meaning there is no associated register.
    unsigned getReg() const {
      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
             "getReg called on non-register dependence edge!");
      return Contents.Reg;
    }

    /// setReg - Assign the associated register for this edge. This is
    /// only valid on Data, Anti, and Output edges. On Anti and Output
    /// edges, this value must not be zero. On Data edges, the value may
    /// be zero, which would mean that no specific register is associated
    /// with this edge.
    void setReg(unsigned Reg) {
      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
             "setReg called on non-register dependence edge!");
      assert((getKind() != Anti || Reg != 0) &&
             "SDep::Anti edge cannot use the zero register!");
      assert((getKind() != Output || Reg != 0) &&
             "SDep::Output edge cannot use the zero register!");
      Contents.Reg = Reg;
    }
  };

  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
  class SUnit {
  private:
    SDNode *Node;                       // Representative node.
    MachineInstr *Instr;                // Alternatively, a MachineInstr.
  public:
    SUnit *OrigNode;                    // If not this, the node from which
                                        // this node was cloned.
    
    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
    // is true if the edge is a token chain edge, false if it is a value edge. 
    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
    SmallVector<SDep, 4> Succs;  // All sunit successors.

    typedef SmallVector<SDep, 4>::iterator pred_iterator;
    typedef SmallVector<SDep, 4>::iterator succ_iterator;
    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
    
    unsigned NodeNum;                   // Entry # of node in the node vector.
    unsigned NodeQueueId;               // Queue id of node.
    unsigned short Latency;             // Node latency.
    unsigned NumPreds;                  // # of SDep::Data preds.
    unsigned NumSuccs;                  // # of SDep::Data sucss.
    unsigned NumPredsLeft;              // # of preds not scheduled.
    unsigned NumSuccsLeft;              // # of succs not scheduled.
    bool isTwoAddress     : 1;          // Is a two-address instruction.
    bool isCommutable     : 1;          // Is a commutable instruction.
    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
    bool isPending        : 1;          // True once pending.
    bool isAvailable      : 1;          // True once available.
    bool isScheduled      : 1;          // True once scheduled.
    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
    bool isCloned         : 1;          // True if this node has been cloned.
  private:
    bool isDepthCurrent   : 1;          // True if Depth is current.
    bool isHeightCurrent  : 1;          // True if Height is current.
    unsigned Depth;                     // Node depth.
    unsigned Height;                    // Node height.
  public:
    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
    const TargetRegisterClass *CopySrcRC;
    
    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
    /// an SDNode and any nodes flagged to it.
    SUnit(SDNode *node, unsigned nodenum)
      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
        hasPhysRegClobbers(false),
        isPending(false), isAvailable(false), isScheduled(false),
        isScheduleHigh(false), isCloned(false),
        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
        CopyDstRC(NULL), CopySrcRC(NULL) {}

    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
    /// a MachineInstr.
    SUnit(MachineInstr *instr, unsigned nodenum)
      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
        hasPhysRegClobbers(false),
        isPending(false), isAvailable(false), isScheduled(false),
        isScheduleHigh(false), isCloned(false),
        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
        CopyDstRC(NULL), CopySrcRC(NULL) {}

    /// SUnit - Construct a placeholder SUnit.
    SUnit()
      : Node(0), Instr(0), OrigNode(0), NodeNum(~0u), NodeQueueId(0),
        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
        hasPhysRegClobbers(false),
        isPending(false), isAvailable(false), isScheduled(false),
        isScheduleHigh(false), isCloned(false),
        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
        CopyDstRC(NULL), CopySrcRC(NULL) {}

    /// setNode - Assign the representative SDNode for this SUnit.
    /// This may be used during pre-regalloc scheduling.
    void setNode(SDNode *N) {
      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
      Node = N;
    }

    /// getNode - Return the representative SDNode for this SUnit.
    /// This may be used during pre-regalloc scheduling.
    SDNode *getNode() const {
      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
      return Node;
    }

    /// setInstr - Assign the instruction for the SUnit.
    /// This may be used during post-regalloc scheduling.
    void setInstr(MachineInstr *MI) {
      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
      Instr = MI;
    }

    /// getInstr - Return the representative MachineInstr for this SUnit.
    /// This may be used during post-regalloc scheduling.
    MachineInstr *getInstr() const {
      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
      return Instr;
    }

    /// addPred - This adds the specified edge as a pred of the current node if
    /// not already.  It also adds the current node as a successor of the
    /// specified node.
    void addPred(const SDep &D);

    /// removePred - This removes the specified edge as a pred of the current
    /// node if it exists.  It also removes the current node as a successor of
    /// the specified node.
    void removePred(const SDep &D);

    /// getDepth - Return the depth of this node, which is the length of the
    /// maximum path up to any node with has no predecessors. If IgnoreAntiDep
    /// is true, ignore anti-dependence edges.
    unsigned getDepth(bool IgnoreAntiDep=false) const {
      if (!isDepthCurrent) 
        const_cast<SUnit *>(this)->ComputeDepth(IgnoreAntiDep);
      return Depth;
    }

    /// getHeight - Return the height of this node, which is the length of the
    /// maximum path down to any node with has no successors. If IgnoreAntiDep
    /// is true, ignore anti-dependence edges.
    unsigned getHeight(bool IgnoreAntiDep=false) const {
      if (!isHeightCurrent) 
        const_cast<SUnit *>(this)->ComputeHeight(IgnoreAntiDep);
      return Height;
    }

    /// setDepthToAtLeast - If NewDepth is greater than this node's
    /// depth value, set it to be the new depth value. This also
    /// recursively marks successor nodes dirty.  If IgnoreAntiDep is
    /// true, ignore anti-dependence edges.
    void setDepthToAtLeast(unsigned NewDepth, bool IgnoreAntiDep=false);

    /// setDepthToAtLeast - If NewDepth is greater than this node's
    /// depth value, set it to be the new height value. This also
    /// recursively marks predecessor nodes dirty. If IgnoreAntiDep is
    /// true, ignore anti-dependence edges.
    void setHeightToAtLeast(unsigned NewHeight, bool IgnoreAntiDep=false);

    /// setDepthDirty - Set a flag in this node to indicate that its
    /// stored Depth value will require recomputation the next time
    /// getDepth() is called.
    void setDepthDirty();

    /// setHeightDirty - Set a flag in this node to indicate that its
    /// stored Height value will require recomputation the next time
    /// getHeight() is called.
    void setHeightDirty();

    /// isPred - Test if node N is a predecessor of this node.
    bool isPred(SUnit *N) {
      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
        if (Preds[i].getSUnit() == N)
          return true;
      return false;
    }
    
    /// isSucc - Test if node N is a successor of this node.
    bool isSucc(SUnit *N) {
      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
        if (Succs[i].getSUnit() == N)
          return true;
      return false;
    }
    
    void dump(const ScheduleDAG *G) const;
    void dumpAll(const ScheduleDAG *G) const;
    void print(raw_ostream &O, const ScheduleDAG *G) const;

  private:
    void ComputeDepth(bool IgnoreAntiDep);
    void ComputeHeight(bool IgnoreAntiDep);
  };

  //===--------------------------------------------------------------------===//
  /// SchedulingPriorityQueue - This interface is used to plug different
  /// priorities computation algorithms into the list scheduler. It implements
  /// the interface of a standard priority queue, where nodes are inserted in 
  /// arbitrary order and returned in priority order.  The computation of the
  /// priority and the representation of the queue are totally up to the
  /// implementation to decide.
  /// 
  class SchedulingPriorityQueue {
  public:
    virtual ~SchedulingPriorityQueue() {}
  
    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
    virtual void addNode(const SUnit *SU) = 0;
    virtual void updateNode(const SUnit *SU) = 0;
    virtual void releaseState() = 0;

    virtual unsigned size() const = 0;
    virtual bool empty() const = 0;
    virtual void push(SUnit *U) = 0;
  
    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
    virtual SUnit *pop() = 0;

    virtual void remove(SUnit *SU) = 0;

    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
    /// allows the priority function to adjust the priority of related
    /// unscheduled nodes, for example.
    ///
    virtual void ScheduledNode(SUnit *) {}

    virtual void UnscheduledNode(SUnit *) {}
  };

  class ScheduleDAG {
  public:
    MachineBasicBlock *BB;          // The block in which to insert instructions
    MachineBasicBlock::iterator InsertPos;// The position to insert instructions
    const TargetMachine &TM;              // Target processor
    const TargetInstrInfo *TII;           // Target instruction information
    const TargetRegisterInfo *TRI;        // Target processor register info
    const TargetLowering *TLI;            // Target lowering info
    MachineFunction &MF;                  // Machine function
    MachineRegisterInfo &MRI;             // Virtual/real register map
    MachineConstantPool *ConstPool;       // Target constant pool
    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
                                          // represent noop instructions.
    std::vector<SUnit> SUnits;            // The scheduling units.
    SUnit EntrySU;                        // Special node for the region entry.
    SUnit ExitSU;                         // Special node for the region exit.

    explicit ScheduleDAG(MachineFunction &mf);

    virtual ~ScheduleDAG();

    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
    /// using 'dot'.
    ///
    void viewGraph();
  
    /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
    /// according to the order specified in Sequence.
    ///
    virtual MachineBasicBlock*
    EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*>*) = 0;

    void dumpSchedule() const;

    virtual void dumpNode(const SUnit *SU) const = 0;

    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
    /// of the ScheduleDAG.
    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;

    /// addCustomGraphFeatures - Add custom features for a visualization of
    /// the ScheduleDAG.
    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}

#ifndef NDEBUG
    /// VerifySchedule - Verify that all SUnits were scheduled and that
    /// their state is consistent.
    void VerifySchedule(bool isBottomUp);
#endif

  protected:
    /// Run - perform scheduling.
    ///
    void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos);

    /// BuildSchedGraph - Build SUnits and set up their Preds and Succs
    /// to form the scheduling dependency graph.
    ///
    virtual void BuildSchedGraph(AliasAnalysis *AA) = 0;

    /// ComputeLatency - Compute node latency.
    ///
    virtual void ComputeLatency(SUnit *SU) = 0;

    /// ComputeOperandLatency - Override dependence edge latency using
    /// operand use/def information
    ///
    virtual void ComputeOperandLatency(SUnit *, SUnit *,
                                       SDep&) const { }

    /// Schedule - Order nodes according to selected style, filling
    /// in the Sequence member.
    ///
    virtual void Schedule() = 0;

    /// ForceUnitLatencies - Return true if all scheduling edges should be given
    /// a latency value of one.  The default is to return false; schedulers may
    /// override this as needed.
    virtual bool ForceUnitLatencies() const { return false; }

    /// EmitNoop - Emit a noop instruction.
    ///
    void EmitNoop();

    void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
  };

  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
                                             SUnit, ptrdiff_t> {
    SUnit *Node;
    unsigned Operand;

    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
  public:
    bool operator==(const SUnitIterator& x) const {
      return Operand == x.Operand;
    }
    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }

    const SUnitIterator &operator=(const SUnitIterator &I) {
      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
      Operand = I.Operand;
      return *this;
    }

    pointer operator*() const {
      return Node->Preds[Operand].getSUnit();
    }
    pointer operator->() const { return operator*(); }

    SUnitIterator& operator++() {                // Preincrement
      ++Operand;
      return *this;
    }
    SUnitIterator operator++(int) { // Postincrement
      SUnitIterator tmp = *this; ++*this; return tmp;
    }

    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
    static SUnitIterator end  (SUnit *N) {
      return SUnitIterator(N, (unsigned)N->Preds.size());
    }

    unsigned getOperand() const { return Operand; }
    const SUnit *getNode() const { return Node; }
    /// isCtrlDep - Test if this is not an SDep::Data dependence.
    bool isCtrlDep() const {
      return getSDep().isCtrl();
    }
    bool isArtificialDep() const {
      return getSDep().isArtificial();
    }
    const SDep &getSDep() const {
      return Node->Preds[Operand];
    }
  };

  template <> struct GraphTraits<SUnit*> {
    typedef SUnit NodeType;
    typedef SUnitIterator ChildIteratorType;
    static inline NodeType *getEntryNode(SUnit *N) { return N; }
    static inline ChildIteratorType child_begin(NodeType *N) {
      return SUnitIterator::begin(N);
    }
    static inline ChildIteratorType child_end(NodeType *N) {
      return SUnitIterator::end(N);
    }
  };

  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
    typedef std::vector<SUnit>::iterator nodes_iterator;
    static nodes_iterator nodes_begin(ScheduleDAG *G) {
      return G->SUnits.begin();
    }
    static nodes_iterator nodes_end(ScheduleDAG *G) {
      return G->SUnits.end();
    }
  };

  /// ScheduleDAGTopologicalSort is a class that computes a topological
  /// ordering for SUnits and provides methods for dynamically updating
  /// the ordering as new edges are added.
  ///
  /// This allows a very fast implementation of IsReachable, for example.
  ///
  class ScheduleDAGTopologicalSort {
    /// SUnits - A reference to the ScheduleDAG's SUnits.
    std::vector<SUnit> &SUnits;

    /// Index2Node - Maps topological index to the node number.
    std::vector<int> Index2Node;
    /// Node2Index - Maps the node number to its topological index.
    std::vector<int> Node2Index;
    /// Visited - a set of nodes visited during a DFS traversal.
    BitVector Visited;

    /// DFS - make a DFS traversal and mark all nodes affected by the 
    /// edge insertion. These nodes will later get new topological indexes
    /// by means of the Shift method.
    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);

    /// Shift - reassign topological indexes for the nodes in the DAG
    /// to preserve the topological ordering.
    void Shift(BitVector& Visited, int LowerBound, int UpperBound);

    /// Allocate - assign the topological index to the node n.
    void Allocate(int n, int index);

  public:
    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);

    /// InitDAGTopologicalSorting - create the initial topological 
    /// ordering from the DAG to be scheduled.
    void InitDAGTopologicalSorting();

    /// IsReachable - Checks if SU is reachable from TargetSU.
    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);

    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
    /// will create a cycle.
    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);

    /// AddPred - Updates the topological ordering to accomodate an edge
    /// to be added from SUnit X to SUnit Y.
    void AddPred(SUnit *Y, SUnit *X);

    /// RemovePred - Updates the topological ordering to accomodate an
    /// an edge to be removed from the specified node N from the predecessors
    /// of the current node M.
    void RemovePred(SUnit *M, SUnit *N);

    typedef std::vector<int>::iterator iterator;
    typedef std::vector<int>::const_iterator const_iterator;
    iterator begin() { return Index2Node.begin(); }
    const_iterator begin() const { return Index2Node.begin(); }
    iterator end() { return Index2Node.end(); }
    const_iterator end() const { return Index2Node.end(); }

    typedef std::vector<int>::reverse_iterator reverse_iterator;
    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
    reverse_iterator rbegin() { return Index2Node.rbegin(); }
    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
    reverse_iterator rend() { return Index2Node.rend(); }
    const_reverse_iterator rend() const { return Index2Node.rend(); }
  };
}

#endif