aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/ScheduleDAG.h
blob: 5dbdd605bc757077991d3bff6a5b28b136224e6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleDAG class, which is used as the common
// base class for SelectionDAG-based instruction scheduler.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H

#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallSet.h"

namespace llvm {
  struct InstrStage;
  struct SUnit;
  class MachineConstantPool;
  class MachineModuleInfo;
  class MachineInstr;
  class MRegisterInfo;
  class SelectionDAG;
  class SelectionDAGISel;
  class SSARegMap;
  class TargetInstrInfo;
  class TargetInstrDescriptor;
  class TargetMachine;
  class TargetRegisterClass;

  /// HazardRecognizer - This determines whether or not an instruction can be
  /// issued this cycle, and whether or not a noop needs to be inserted to handle
  /// the hazard.
  class HazardRecognizer {
  public:
    virtual ~HazardRecognizer();
    
    enum HazardType {
      NoHazard,      // This instruction can be emitted at this cycle.
      Hazard,        // This instruction can't be emitted at this cycle.
      NoopHazard     // This instruction can't be emitted, and needs noops.
    };
    
    /// getHazardType - Return the hazard type of emitting this node.  There are
    /// three possible results.  Either:
    ///  * NoHazard: it is legal to issue this instruction on this cycle.
    ///  * Hazard: issuing this instruction would stall the machine.  If some
    ///     other instruction is available, issue it first.
    ///  * NoopHazard: issuing this instruction would break the program.  If
    ///     some other instruction can be issued, do so, otherwise issue a noop.
    virtual HazardType getHazardType(SDNode *Node) {
      return NoHazard;
    }
    
    /// EmitInstruction - This callback is invoked when an instruction is
    /// emitted, to advance the hazard state.
    virtual void EmitInstruction(SDNode *Node) {
    }
    
    /// AdvanceCycle - This callback is invoked when no instructions can be
    /// issued on this cycle without a hazard.  This should increment the
    /// internal state of the hazard recognizer so that previously "Hazard"
    /// instructions will now not be hazards.
    virtual void AdvanceCycle() {
    }
    
    /// EmitNoop - This callback is invoked when a noop was added to the
    /// instruction stream.
    virtual void EmitNoop() {
    }
  };

  /// SDep - Scheduling dependency. It keeps track of dependent nodes,
  /// cost of the depdenency, etc.
  struct SDep {
    SUnit    *Dep;           // Dependent - either a predecessor or a successor.
    unsigned  Reg;           // If non-zero, this dep is a phy register dependency.
    int       Cost;          // Cost of the dependency.
    bool      isCtrl    : 1; // True iff it's a control dependency.
    bool      isSpecial : 1; // True iff it's a special ctrl dep added during sched.
    SDep(SUnit *d, unsigned r, int t, bool c, bool s)
      : Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
  };

  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
  /// a group of nodes flagged together.
  struct SUnit {
    SDNode *Node;                       // Representative node.
    SmallVector<SDNode*,4> FlaggedNodes;// All nodes flagged to Node.
    unsigned InstanceNo;                // Instance#. One SDNode can be multiple
                                        // SUnit due to cloning.
    
    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
    // is true if the edge is a token chain edge, false if it is a value edge. 
    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
    SmallVector<SDep, 4> Succs;  // All sunit successors.

    typedef SmallVector<SDep, 4>::iterator pred_iterator;
    typedef SmallVector<SDep, 4>::iterator succ_iterator;
    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
    
    unsigned NodeNum;                   // Entry # of node in the node vector.
    unsigned short Latency;             // Node latency.
    short NumPreds;                     // # of preds.
    short NumSuccs;                     // # of sucss.
    short NumPredsLeft;                 // # of preds not scheduled.
    short NumSuccsLeft;                 // # of succs not scheduled.
    bool isTwoAddress     : 1;          // Is a two-address instruction.
    bool isCommutable     : 1;          // Is a commutable instruction.
    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
    bool isPending        : 1;          // True once pending.
    bool isAvailable      : 1;          // True once available.
    bool isScheduled      : 1;          // True once scheduled.
    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
    unsigned Cycle;                     // Once scheduled, the cycle of the op.
    unsigned Depth;                     // Node depth;
    unsigned Height;                    // Node height;
    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
    const TargetRegisterClass *CopySrcRC;
    
    SUnit(SDNode *node, unsigned nodenum)
      : Node(node), InstanceNo(0), NodeNum(nodenum), Latency(0),
        NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
        isPending(false), isAvailable(false), isScheduled(false),
        CycleBound(0), Cycle(0), Depth(0), Height(0),
        CopyDstRC(NULL), CopySrcRC(NULL) {}

    /// addPred - This adds the specified node as a pred of the current node if
    /// not already.  This returns true if this is a new pred.
    bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
                 unsigned PhyReg = 0, int Cost = 1) {
      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
        if (Preds[i].Dep == N &&
            Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
          return false;
      Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
      N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
      if (!isCtrl) {
        ++NumPreds;
        ++N->NumSuccs;
      }
      if (!N->isScheduled)
        ++NumPredsLeft;
      if (!isScheduled)
        ++N->NumSuccsLeft;
      return true;
    }

    bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
      for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
           I != E; ++I)
        if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
          bool FoundSucc = false;
          for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
                 EE = N->Succs.end(); II != EE; ++II)
            if (II->Dep == this &&
                II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
              FoundSucc = true;
              N->Succs.erase(II);
              break;
            }
          assert(FoundSucc && "Mismatching preds / succs lists!");
          Preds.erase(I);
          if (!isCtrl) {
            --NumPreds;
            --N->NumSuccs;
          }
          if (!N->isScheduled)
            --NumPredsLeft;
          if (!isScheduled)
            --N->NumSuccsLeft;
          return true;
        }
      return false;
    }

    bool isPred(SUnit *N) {
      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
        if (Preds[i].Dep == N)
          return true;
      return false;
    }
    
    bool isSucc(SUnit *N) {
      for (unsigned i = 0, e = Succs.size(); i != e; ++i)
        if (Succs[i].Dep == N)
          return true;
      return false;
    }
    
    void dump(const SelectionDAG *G) const;
    void dumpAll(const SelectionDAG *G) const;
  };

  //===--------------------------------------------------------------------===//
  /// SchedulingPriorityQueue - This interface is used to plug different
  /// priorities computation algorithms into the list scheduler. It implements
  /// the interface of a standard priority queue, where nodes are inserted in 
  /// arbitrary order and returned in priority order.  The computation of the
  /// priority and the representation of the queue are totally up to the
  /// implementation to decide.
  /// 
  class SchedulingPriorityQueue {
  public:
    virtual ~SchedulingPriorityQueue() {}
  
    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &SUMap,
                           std::vector<SUnit> &SUnits) = 0;
    virtual void addNode(const SUnit *SU) = 0;
    virtual void updateNode(const SUnit *SU) = 0;
    virtual void releaseState() = 0;

    virtual unsigned size() const = 0;
    virtual bool empty() const = 0;
    virtual void push(SUnit *U) = 0;
  
    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
    virtual SUnit *pop() = 0;

    virtual void remove(SUnit *SU) = 0;

    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
    /// allows the priority function to adjust the priority of node that have
    /// already been emitted.
    virtual void ScheduledNode(SUnit *Node) {}

    virtual void UnscheduledNode(SUnit *Node) {}
  };

  class ScheduleDAG {
  public:
    SelectionDAG &DAG;                    // DAG of the current basic block
    MachineBasicBlock *BB;                // Current basic block
    const TargetMachine &TM;              // Target processor
    const TargetInstrInfo *TII;           // Target instruction information
    const MRegisterInfo *MRI;             // Target processor register info
    SSARegMap *RegMap;                    // Virtual/real register map
    MachineConstantPool *ConstPool;       // Target constant pool
    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
                                          // represent noop instructions.
    DenseMap<SDNode*, std::vector<SUnit*> > SUnitMap;
                                          // SDNode to SUnit mapping (n -> n).
    std::vector<SUnit> SUnits;            // The scheduling units.
    SmallSet<SDNode*, 16> CommuteSet;     // Nodes the should be commuted.

    ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
                const TargetMachine &tm)
      : DAG(dag), BB(bb), TM(tm) {}

    virtual ~ScheduleDAG() {}

    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
    /// using 'dot'.
    ///
    void viewGraph();
  
    /// Run - perform scheduling.
    ///
    MachineBasicBlock *Run();

    /// isPassiveNode - Return true if the node is a non-scheduled leaf.
    ///
    static bool isPassiveNode(SDNode *Node) {
      if (isa<ConstantSDNode>(Node))       return true;
      if (isa<RegisterSDNode>(Node))       return true;
      if (isa<GlobalAddressSDNode>(Node))  return true;
      if (isa<BasicBlockSDNode>(Node))     return true;
      if (isa<FrameIndexSDNode>(Node))     return true;
      if (isa<ConstantPoolSDNode>(Node))   return true;
      if (isa<JumpTableSDNode>(Node))      return true;
      if (isa<ExternalSymbolSDNode>(Node)) return true;
      return false;
    }

    /// NewSUnit - Creates a new SUnit and return a ptr to it.
    ///
    SUnit *NewSUnit(SDNode *N) {
      SUnits.push_back(SUnit(N, SUnits.size()));
      return &SUnits.back();
    }

    /// Clone - Creates a clone of the specified SUnit. It does not copy the
    /// predecessors / successors info nor the temporary scheduling states.
    SUnit *Clone(SUnit *N);
    
    /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
    /// This SUnit graph is similar to the SelectionDAG, but represents flagged
    /// together nodes with a single SUnit.
    void BuildSchedUnits();

    /// ComputeLatency - Compute node latency.
    ///
    void ComputeLatency(SUnit *SU);

    /// CalculateDepths, CalculateHeights - Calculate node depth / height.
    ///
    void CalculateDepths();
    void CalculateHeights();

    /// CountResults - The results of target nodes have register or immediate
    /// operands first, then an optional chain, and optional flag operands
    /// (which do not go into the machine instrs.)
    static unsigned CountResults(SDNode *Node);

    /// CountOperands  The inputs to target nodes have any actual inputs first,
    /// followed by an optional chain operand, then flag operands.  Compute the
    /// number of actual operands that  will go into the machine instr.
    static unsigned CountOperands(SDNode *Node);

    /// EmitNode - Generate machine code for an node and needed dependencies.
    /// VRBaseMap contains, for each already emitted node, the first virtual
    /// register number for the results of the node.
    ///
    void EmitNode(SDNode *Node, unsigned InstNo,
                  DenseMap<SDOperand, unsigned> &VRBaseMap);
    
    /// EmitNoop - Emit a noop instruction.
    ///
    void EmitNoop();

    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);

    /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
    /// implicit physical register output.
    void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned InstNo,
                         unsigned SrcReg,
                         DenseMap<SDOperand, unsigned> &VRBaseMap);
    
    void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
                                const TargetInstrDescriptor &II,
                                DenseMap<SDOperand, unsigned> &VRBaseMap);

    void EmitSchedule();

    void dumpSchedule() const;

    /// Schedule - Order nodes according to selected style.
    ///
    virtual void Schedule() {}

  private:
    /// EmitSubregNode - Generate machine code for subreg nodes.
    ///
    void EmitSubregNode(SDNode *Node, 
                        DenseMap<SDOperand, unsigned> &VRBaseMap);
  
    void AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum,
                    const TargetInstrDescriptor *II,
                    DenseMap<SDOperand, unsigned> &VRBaseMap);
  };

  /// createBURRListDAGScheduler - This creates a bottom up register usage
  /// reduction list scheduler.
  ScheduleDAG* createBURRListDAGScheduler(SelectionDAGISel *IS,
                                          SelectionDAG *DAG,
                                          MachineBasicBlock *BB);
  
  /// createTDRRListDAGScheduler - This creates a top down register usage
  /// reduction list scheduler.
  ScheduleDAG* createTDRRListDAGScheduler(SelectionDAGISel *IS,
                                          SelectionDAG *DAG,
                                          MachineBasicBlock *BB);
  
  /// createTDListDAGScheduler - This creates a top-down list scheduler with
  /// a hazard recognizer.
  ScheduleDAG* createTDListDAGScheduler(SelectionDAGISel *IS,
                                        SelectionDAG *DAG,
                                        MachineBasicBlock *BB);
                                        
  /// createDefaultScheduler - This creates an instruction scheduler appropriate
  /// for the target.
  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
                                      SelectionDAG *DAG,
                                      MachineBasicBlock *BB);

  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
    SUnit *Node;
    unsigned Operand;

    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
  public:
    bool operator==(const SUnitIterator& x) const {
      return Operand == x.Operand;
    }
    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }

    const SUnitIterator &operator=(const SUnitIterator &I) {
      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
      Operand = I.Operand;
      return *this;
    }

    pointer operator*() const {
      return Node->Preds[Operand].Dep;
    }
    pointer operator->() const { return operator*(); }

    SUnitIterator& operator++() {                // Preincrement
      ++Operand;
      return *this;
    }
    SUnitIterator operator++(int) { // Postincrement
      SUnitIterator tmp = *this; ++*this; return tmp;
    }

    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
    static SUnitIterator end  (SUnit *N) {
      return SUnitIterator(N, N->Preds.size());
    }

    unsigned getOperand() const { return Operand; }
    const SUnit *getNode() const { return Node; }
    bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
  };

  template <> struct GraphTraits<SUnit*> {
    typedef SUnit NodeType;
    typedef SUnitIterator ChildIteratorType;
    static inline NodeType *getEntryNode(SUnit *N) { return N; }
    static inline ChildIteratorType child_begin(NodeType *N) {
      return SUnitIterator::begin(N);
    }
    static inline ChildIteratorType child_end(NodeType *N) {
      return SUnitIterator::end(N);
    }
  };

  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
    typedef std::vector<SUnit>::iterator nodes_iterator;
    static nodes_iterator nodes_begin(ScheduleDAG *G) {
      return G->SUnits.begin();
    }
    static nodes_iterator nodes_end(ScheduleDAG *G) {
      return G->SUnits.end();
    }
  };
}

#endif