aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/SelectionDAGNodes.h
blob: 80eaf4b25f52496f1120841361f9cb987ef60ed4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG.  These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H

#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Value.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>

namespace llvm {

class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;

/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
  //===--------------------------------------------------------------------===//
  /// ISD::NodeType enum - This enum defines all of the operators valid in a
  /// SelectionDAG.
  ///
  enum NodeType {
    // EntryToken - This is the marker used to indicate the start of the region.
    EntryToken,

    // Token factor - This node takes multiple tokens as input and produces a
    // single token result.  This is used to represent the fact that the operand
    // operators are independent of each other.
    TokenFactor,
    
    // AssertSext, AssertZext - These nodes record if a register contains a 
    // value that has already been zero or sign extended from a narrower type.  
    // These nodes take two operands.  The first is the node that has already 
    // been extended, and the second is a value type node indicating the width
    // of the extension
    AssertSext, AssertZext,

    // Various leaf nodes.
    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
    Constant, ConstantFP,
    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,

    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
    // simplification of the constant.
    TargetConstant,
    TargetConstantFP,
    
    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
    // anything else with this node, and this is valid in the target-specific
    // dag, turning into a GlobalAddress operand.
    TargetGlobalAddress,
    TargetFrameIndex,
    TargetJumpTable,
    TargetConstantPool,
    TargetExternalSymbol,
    
    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
    /// This node represents a target intrinsic function with no side effects.
    /// The first operand is the ID number of the intrinsic from the
    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
    /// node has returns the result of the intrinsic.
    INTRINSIC_WO_CHAIN,
    
    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
    /// This node represents a target intrinsic function with side effects that
    /// returns a result.  The first operand is a chain pointer.  The second is
    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
    /// operands to the intrinsic follow.  The node has two results, the result
    /// of the intrinsic and an output chain.
    INTRINSIC_W_CHAIN,

    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
    /// This node represents a target intrinsic function with side effects that
    /// does not return a result.  The first operand is a chain pointer.  The
    /// second is the ID number of the intrinsic from the llvm::Intrinsic
    /// namespace.  The operands to the intrinsic follow.
    INTRINSIC_VOID,
    
    // CopyToReg - This node has three operands: a chain, a register number to
    // set to this value, and a value.  
    CopyToReg,

    // CopyFromReg - This node indicates that the input value is a virtual or
    // physical register that is defined outside of the scope of this
    // SelectionDAG.  The register is available from the RegSDNode object.
    CopyFromReg,

    // UNDEF - An undefined node
    UNDEF,
    
    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
    /// arguments for a function.  CC# is a Constant value indicating the
    /// calling convention of the function, and ISVARARG is a flag that
    /// indicates whether the function is varargs or not.  This node has one
    /// result value for each incoming argument, plus one for the output chain.
    /// It must be custom legalized.
    /// 
    FORMAL_ARGUMENTS,
    
    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
    ///                              ARG0, ARG1, ... ARGn)
    /// This node represents a fully general function call, before the legalizer
    /// runs.  This has one result value for each argument, plus a chain result.
    /// It must be custom legalized.
    CALL,

    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
    // a Constant, which is required to be operand #1), element of the aggregate
    // value specified as operand #0.  This is only for use before legalization,
    // for values that will be broken into multiple registers.
    EXTRACT_ELEMENT,

    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
    // two values of the same integer value type, this produces a value twice as
    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
    BUILD_PAIR,
    
    // MERGE_VALUES - This node takes multiple discrete operands and returns
    // them all as its individual results.  This nodes has exactly the same
    // number of inputs and outputs, and is only valid before legalization.
    // This node is useful for some pieces of the code generator that want to
    // think about a single node with multiple results, not multiple nodes.
    MERGE_VALUES,

    // Simple integer binary arithmetic operators.
    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
    
    // Carry-setting nodes for multiple precision addition and subtraction.
    // These nodes take two operands of the same value type, and produce two
    // results.  The first result is the normal add or sub result, the second
    // result is the carry flag result.
    ADDC, SUBC,
    
    // Carry-using nodes for multiple precision addition and subtraction.  These
    // nodes take three operands: The first two are the normal lhs and rhs to
    // the add or sub, and the third is the input carry flag.  These nodes
    // produce two results; the normal result of the add or sub, and the output
    // carry flag.  These nodes both read and write a carry flag to allow them
    // to them to be chained together for add and sub of arbitrarily large
    // values.
    ADDE, SUBE,
    
    // Simple binary floating point operators.
    FADD, FSUB, FMUL, FDIV, FREM,

    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
    // DAG node does not require that X and Y have the same type, just that they
    // are both floating point.  X and the result must have the same type.
    // FCOPYSIGN(f32, f64) is allowed.
    FCOPYSIGN,

    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
    /// with the specified, possibly variable, elements.  The number of elements
    /// is required to be a power of two.
    VBUILD_VECTOR,

    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
    /// with the specified, possibly variable, elements.  The number of elements
    /// is required to be a power of two.
    BUILD_VECTOR,
    
    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
    /// return an vector with the specified element of VECTOR replaced with VAL.
    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
    VINSERT_VECTOR_ELT,
    
    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
    /// type) with the element at IDX replaced with VAL.
    INSERT_VECTOR_ELT,

    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
    /// (an MVT::Vector value) identified by the (potentially variable) element
    /// number IDX.
    VEXTRACT_VECTOR_ELT,
    
    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
    /// (a legal packed type vector) identified by the (potentially variable)
    /// element number IDX.
    EXTRACT_VECTOR_ELT,
    
    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
    /// constant int values that indicate which value each result element will
    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
    /// similar to the Altivec 'vperm' instruction, except that the indices must
    /// be constants and are in terms of the element size of VEC1/VEC2, not in
    /// terms of bytes.
    VVECTOR_SHUFFLE,

    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
    /// (regardless of whether its datatype is legal or not) that indicate
    /// which value each result element will get.  The elements of VEC1/VEC2 are
    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
    /// instruction, except that the indices must be constants and are in terms
    /// of the element size of VEC1/VEC2, not in terms of bytes.
    VECTOR_SHUFFLE,
    
    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
    /// represents a conversion from or to an ISD::Vector type.
    ///
    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
    /// The input and output are required to have the same size and at least one
    /// is required to be a vector (if neither is a vector, just use
    /// BIT_CONVERT).
    ///
    /// If the result is a vector, this takes three operands (like any other
    /// vector producer) which indicate the size and type of the vector result.
    /// Otherwise it takes one input.
    VBIT_CONVERT,
    
    /// BINOP(LHS, RHS,  COUNT,TYPE)
    /// Simple abstract vector operators.  Unlike the integer and floating point
    /// binary operators, these nodes also take two additional operands:
    /// a constant element count, and a value type node indicating the type of
    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
    /// including VLOAD and VConstant must currently have count and type as
    /// their last two operands.
    VADD, VSUB, VMUL, VSDIV, VUDIV,
    VAND, VOR, VXOR,
    
    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
    /// COND is false.
    VSELECT,
    
    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
    /// scalar value into the low element of the resultant vector type.  The top
    /// elements of the vector are undefined.
    SCALAR_TO_VECTOR,
    
    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
    // an unsigned/signed value of type i[2*n], then return the top part.
    MULHU, MULHS,

    // Bitwise operators - logical and, logical or, logical xor, shift left,
    // shift right algebraic (shift in sign bits), shift right logical (shift in
    // zeroes), rotate left, rotate right, and byteswap.
    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,

    // Counting operators
    CTTZ, CTLZ, CTPOP,

    // Select(COND, TRUEVAL, FALSEVAL)
    SELECT, 
    
    // Select with condition operator - This selects between a true value and 
    // a false value (ops #2 and #3) based on the boolean result of comparing
    // the lhs and rhs (ops #0 and #1) of a conditional expression with the 
    // condition code in op #4, a CondCodeSDNode.
    SELECT_CC,

    // SetCC operator - This evaluates to a boolean (i1) true value if the
    // condition is true.  The operands to this are the left and right operands
    // to compare (ops #0, and #1) and the condition code to compare them with
    // (op #2) as a CondCodeSDNode.
    SETCC,

    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
    // integer shift operations, just like ADD/SUB_PARTS.  The operation
    // ordering is:
    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
    SHL_PARTS, SRA_PARTS, SRL_PARTS,

    // Conversion operators.  These are all single input single output
    // operations.  For all of these, the result type must be strictly
    // wider or narrower (depending on the operation) than the source
    // type.

    // SIGN_EXTEND - Used for integer types, replicating the sign bit
    // into new bits.
    SIGN_EXTEND,

    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
    ZERO_EXTEND,

    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
    ANY_EXTEND,
    
    // TRUNCATE - Completely drop the high bits.
    TRUNCATE,

    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
    // depends on the first letter) to floating point.
    SINT_TO_FP,
    UINT_TO_FP,

    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
    // sign extend a small value in a large integer register (e.g. sign
    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
    // with the 7th bit).  The size of the smaller type is indicated by the 1th
    // operand, a ValueType node.
    SIGN_EXTEND_INREG,

    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
    // integer.
    FP_TO_SINT,
    FP_TO_UINT,

    // FP_ROUND - Perform a rounding operation from the current
    // precision down to the specified precision (currently always 64->32).
    FP_ROUND,

    // FP_ROUND_INREG - This operator takes a floating point register, and
    // rounds it to a floating point value.  It then promotes it and returns it
    // in a register of the same size.  This operation effectively just discards
    // excess precision.  The type to round down to is specified by the 1th
    // operation, a VTSDNode (currently always 64->32->64).
    FP_ROUND_INREG,

    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
    FP_EXTEND,

    // BIT_CONVERT - Theis operator converts between integer and FP values, as
    // if one was stored to memory as integer and the other was loaded from the
    // same address (or equivalently for vector format conversions, etc).  The 
    // source and result are required to have the same bit size (e.g. 
    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp 
    // conversions, but that is a noop, deleted by getNode().
    BIT_CONVERT,
    
    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
    // absolute value, square root, sine and cosine operations.
    FNEG, FABS, FSQRT, FSIN, FCOS,
    
    // Other operators.  LOAD and STORE have token chains as their first
    // operand, then the same operands as an LLVM load/store instruction, then a
    // SRCVALUE node that provides alias analysis information.
    LOAD, STORE,
    
    // Abstract vector version of LOAD.  VLOAD has a constant element count as
    // the first operand, followed by a value type node indicating the type of
    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
    VLOAD,

    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
    // memory and extend them to a larger value (e.g. load a byte into a word
    // register).  All three of these have four operands, a token chain, a
    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
    // indicating the type to load.
    //
    // SEXTLOAD loads the integer operand and sign extends it to a larger
    //          integer result type.
    // ZEXTLOAD loads the integer operand and zero extends it to a larger
    //          integer result type.
    // EXTLOAD  is used for three things: floating point extending loads, 
    //          integer extending loads [the top bits are undefined], and vector
    //          extending loads [load into low elt].
    EXTLOAD, SEXTLOAD, ZEXTLOAD,

    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
    // value and stores it to memory in one operation.  This can be used for
    // either integer or floating point operands.  The first four operands of
    // this are the same as a standard store.  The fifth is the ValueType to
    // store it as (which will be smaller than the source value).
    TRUNCSTORE,

    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
    // to a specified boundary.  The first operand is the token chain, the
    // second is the number of bytes to allocate, and the third is the alignment
    // boundary.  The size is guaranteed to be a multiple of the stack 
    // alignment, and the alignment is guaranteed to be bigger than the stack 
    // alignment (if required) or 0 to get standard stack alignment.
    DYNAMIC_STACKALLOC,

    // Control flow instructions.  These all have token chains.

    // BR - Unconditional branch.  The first operand is the chain
    // operand, the second is the MBB to branch to.
    BR,

    // BRIND - Indirect branch.  The first operand is the chain, the second
    // is the value to branch to, which must be of the same type as the target's
    // pointer type.
    BRIND,
    
    // BRCOND - Conditional branch.  The first operand is the chain,
    // the second is the condition, the third is the block to branch
    // to if the condition is true.
    BRCOND,

    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
    // that the condition is represented as condition code, and two nodes to
    // compare, rather than as a combined SetCC node.  The operands in order are
    // chain, cc, lhs, rhs, block to branch to if condition is true.
    BR_CC,
    
    // RET - Return from function.  The first operand is the chain,
    // and any subsequent operands are the return values for the
    // function.  This operation can have variable number of operands.
    RET,

    // INLINEASM - Represents an inline asm block.  This node always has two
    // return values: a chain and a flag result.  The inputs are as follows:
    //   Operand #0   : Input chain.
    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
    //   Operand #2n+2: A RegisterNode.
    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
    //   Operand #last: Optional, an incoming flag.
    INLINEASM,

    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
    // value, the same type as the pointer type for the system, and an output
    // chain.
    STACKSAVE,
    
    // STACKRESTORE has two operands, an input chain and a pointer to restore to
    // it returns an output chain.
    STACKRESTORE,
    
    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
    // correspond to the operands of the LLVM intrinsic functions.  The only
    // result is a token chain.  The alignment argument is guaranteed to be a
    // Constant node.
    MEMSET,
    MEMMOVE,
    MEMCPY,

    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
    // a call sequence, and carry arbitrary information that target might want
    // to know.  The first operand is a chain, the rest are specified by the
    // target and not touched by the DAG optimizers.
    CALLSEQ_START,  // Beginning of a call sequence
    CALLSEQ_END,    // End of a call sequence
    
    // VAARG - VAARG has three operands: an input chain, a pointer, and a 
    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
    VAARG,
    
    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
    // source.
    VACOPY,
    
    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
    // pointer, and a SRCVALUE.
    VAEND, VASTART,

    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
    // locations with their value.  This allows one use alias analysis
    // information in the backend.
    SRCVALUE,

    // PCMARKER - This corresponds to the pcmarker intrinsic.
    PCMARKER,

    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
    // The only operand is a chain and a value and a chain are produced.  The
    // value is the contents of the architecture specific cycle counter like 
    // register (or other high accuracy low latency clock source)
    READCYCLECOUNTER,

    // HANDLENODE node - Used as a handle for various purposes.
    HANDLENODE,

    // LOCATION - This node is used to represent a source location for debug
    // info.  It takes token chain as input, then a line number, then a column
    // number, then a filename, then a working dir.  It produces a token chain
    // as output.
    LOCATION,
    
    // DEBUG_LOC - This node is used to represent source line information
    // embedded in the code.  It takes a token chain as input, then a line
    // number, then a column then a file id (provided by MachineDebugInfo.) It
    // produces a token chain as output.
    DEBUG_LOC,
    
    // DEBUG_LABEL - This node is used to mark a location in the code where a
    // label should be generated for use by the debug information.  It takes a
    // token chain as input and then a unique id (provided by MachineDebugInfo.)
    // It produces a token chain as output.
    DEBUG_LABEL,
    
    // BUILTIN_OP_END - This must be the last enum value in this list.
    BUILTIN_OP_END
  };

  /// Node predicates

  /// isBuildVectorAllOnes - Return true if the specified node is a
  /// BUILD_VECTOR where all of the elements are ~0 or undef.
  bool isBuildVectorAllOnes(const SDNode *N);

  /// isBuildVectorAllZeros - Return true if the specified node is a
  /// BUILD_VECTOR where all of the elements are 0 or undef.
  bool isBuildVectorAllZeros(const SDNode *N);
  
  //===--------------------------------------------------------------------===//
  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
  /// below work out, when considering SETFALSE (something that never exists
  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
  /// to.  If the "N" column is 1, the result of the comparison is undefined if
  /// the input is a NAN.
  ///
  /// All of these (except for the 'always folded ops') should be handled for
  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
  ///
  /// Note that these are laid out in a specific order to allow bit-twiddling
  /// to transform conditions.
  enum CondCode {
    // Opcode          N U L G E       Intuitive operation
    SETFALSE,      //    0 0 0 0       Always false (always folded)
    SETOEQ,        //    0 0 0 1       True if ordered and equal
    SETOGT,        //    0 0 1 0       True if ordered and greater than
    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
    SETOLT,        //    0 1 0 0       True if ordered and less than
    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
    SETO,          //    0 1 1 1       True if ordered (no nans)
    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
    SETUEQ,        //    1 0 0 1       True if unordered or equal
    SETUGT,        //    1 0 1 0       True if unordered or greater than
    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
    SETULT,        //    1 1 0 0       True if unordered or less than
    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
    SETUNE,        //    1 1 1 0       True if unordered or not equal
    SETTRUE,       //    1 1 1 1       Always true (always folded)
    // Don't care operations: undefined if the input is a nan.
    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
    SETEQ,         //  1 X 0 0 1       True if equal
    SETGT,         //  1 X 0 1 0       True if greater than
    SETGE,         //  1 X 0 1 1       True if greater than or equal
    SETLT,         //  1 X 1 0 0       True if less than
    SETLE,         //  1 X 1 0 1       True if less than or equal
    SETNE,         //  1 X 1 1 0       True if not equal
    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)

    SETCC_INVALID       // Marker value.
  };

  /// isSignedIntSetCC - Return true if this is a setcc instruction that
  /// performs a signed comparison when used with integer operands.
  inline bool isSignedIntSetCC(CondCode Code) {
    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
  }

  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
  /// performs an unsigned comparison when used with integer operands.
  inline bool isUnsignedIntSetCC(CondCode Code) {
    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
  }

  /// isTrueWhenEqual - Return true if the specified condition returns true if
  /// the two operands to the condition are equal.  Note that if one of the two
  /// operands is a NaN, this value is meaningless.
  inline bool isTrueWhenEqual(CondCode Cond) {
    return ((int)Cond & 1) != 0;
  }

  /// getUnorderedFlavor - This function returns 0 if the condition is always
  /// false if an operand is a NaN, 1 if the condition is always true if the
  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
  /// NaN.
  inline unsigned getUnorderedFlavor(CondCode Cond) {
    return ((int)Cond >> 3) & 3;
  }

  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
  /// 'op' is a valid SetCC operation.
  CondCode getSetCCInverse(CondCode Operation, bool isInteger);

  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
  /// when given the operation for (X op Y).
  CondCode getSetCCSwappedOperands(CondCode Operation);

  /// getSetCCOrOperation - Return the result of a logical OR between different
  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);

  /// getSetCCAndOperation - Return the result of a logical AND between
  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
}  // end llvm::ISD namespace


//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation.  Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node.  This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
  SDNode *Val;        // The node defining the value we are using.
  unsigned ResNo;     // Which return value of the node we are using.

  SDOperand() : Val(0), ResNo(0) {}
  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}

  bool operator==(const SDOperand &O) const {
    return Val == O.Val && ResNo == O.ResNo;
  }
  bool operator!=(const SDOperand &O) const {
    return !operator==(O);
  }
  bool operator<(const SDOperand &O) const {
    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
  }

  SDOperand getValue(unsigned R) const {
    return SDOperand(Val, R);
  }

  // isOperand - Return true if this node is an operand of N.
  bool isOperand(SDNode *N) const;

  /// getValueType - Return the ValueType of the referenced return value.
  ///
  inline MVT::ValueType getValueType() const;

  // Forwarding methods - These forward to the corresponding methods in SDNode.
  inline unsigned getOpcode() const;
  inline unsigned getNodeDepth() const;
  inline unsigned getNumOperands() const;
  inline const SDOperand &getOperand(unsigned i) const;
  inline bool isTargetOpcode() const;
  inline unsigned getTargetOpcode() const;

  /// hasOneUse - Return true if there is exactly one operation using this
  /// result value of the defining operator.
  inline bool hasOneUse() const;
};


/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};
template<> struct simplify_type<const SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};


/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
  /// NodeType - The operation that this node performs.
  ///
  unsigned short NodeType;

  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
  /// means that leaves have a depth of 1, things that use only leaves have a
  /// depth of 2, etc.
  unsigned short NodeDepth;

  /// OperandList - The values that are used by this operation.
  ///
  SDOperand *OperandList;
  
  /// ValueList - The types of the values this node defines.  SDNode's may
  /// define multiple values simultaneously.
  MVT::ValueType *ValueList;

  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
  unsigned short NumOperands, NumValues;
  
  /// Prev/Next pointers - These pointers form the linked list of of the
  /// AllNodes list in the current DAG.
  SDNode *Prev, *Next;
  friend struct ilist_traits<SDNode>;

  /// Uses - These are all of the SDNode's that use a value produced by this
  /// node.
  std::vector<SDNode*> Uses;
public:
  virtual ~SDNode() {
    assert(NumOperands == 0 && "Operand list not cleared before deletion");
  }
  
  //===--------------------------------------------------------------------===//
  //  Accessors
  //
  unsigned getOpcode()  const { return NodeType; }
  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
  unsigned getTargetOpcode() const {
    assert(isTargetOpcode() && "Not a target opcode!");
    return NodeType - ISD::BUILTIN_OP_END;
  }

  size_t use_size() const { return Uses.size(); }
  bool use_empty() const { return Uses.empty(); }
  bool hasOneUse() const { return Uses.size() == 1; }

  /// getNodeDepth - Return the distance from this node to the leaves in the
  /// graph.  The leaves have a depth of 1.
  unsigned getNodeDepth() const { return NodeDepth; }

  typedef std::vector<SDNode*>::const_iterator use_iterator;
  use_iterator use_begin() const { return Uses.begin(); }
  use_iterator use_end() const { return Uses.end(); }

  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
  /// indicated value.  This method ignores uses of other values defined by this
  /// operation.
  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;

  // isOnlyUse - Return true if this node is the only use of N.
  bool isOnlyUse(SDNode *N) const;

  // isOperand - Return true if this node is an operand of N.
  bool isOperand(SDNode *N) const;

  /// getNumOperands - Return the number of values used by this operation.
  ///
  unsigned getNumOperands() const { return NumOperands; }

  const SDOperand &getOperand(unsigned Num) const {
    assert(Num < NumOperands && "Invalid child # of SDNode!");
    return OperandList[Num];
  }
  typedef const SDOperand* op_iterator;
  op_iterator op_begin() const { return OperandList; }
  op_iterator op_end() const { return OperandList+NumOperands; }


  /// getNumValues - Return the number of values defined/returned by this
  /// operator.
  ///
  unsigned getNumValues() const { return NumValues; }

  /// getValueType - Return the type of a specified result.
  ///
  MVT::ValueType getValueType(unsigned ResNo) const {
    assert(ResNo < NumValues && "Illegal result number!");
    return ValueList[ResNo];
  }

  typedef const MVT::ValueType* value_iterator;
  value_iterator value_begin() const { return ValueList; }
  value_iterator value_end() const { return ValueList+NumValues; }

  /// getOperationName - Return the opcode of this operation for printing.
  ///
  const char* getOperationName(const SelectionDAG *G = 0) const;
  void dump() const;
  void dump(const SelectionDAG *G) const;

  static bool classof(const SDNode *) { return true; }

protected:
  friend class SelectionDAG;
  
  /// getValueTypeList - Return a pointer to the specified value type.
  ///
  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);

  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
    OperandList = 0; NumOperands = 0;
    ValueList = getValueTypeList(VT);
    NumValues = 1;
    Prev = 0; Next = 0;
  }
  SDNode(unsigned NT, SDOperand Op)
    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
    OperandList = new SDOperand[1];
    OperandList[0] = Op;
    NumOperands = 1;
    Op.Val->Uses.push_back(this);
    ValueList = 0;
    NumValues = 0;
    Prev = 0; Next = 0;
  }
  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
    : NodeType(NT) {
    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
      NodeDepth = N1.Val->getNodeDepth()+1;
    else
      NodeDepth = N2.Val->getNodeDepth()+1;
    OperandList = new SDOperand[2];
    OperandList[0] = N1;
    OperandList[1] = N2;
    NumOperands = 2;
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
    ValueList = 0;
    NumValues = 0;
    Prev = 0; Next = 0;
  }
  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
    : NodeType(NT) {
    unsigned ND = N1.Val->getNodeDepth();
    if (ND < N2.Val->getNodeDepth())
      ND = N2.Val->getNodeDepth();
    if (ND < N3.Val->getNodeDepth())
      ND = N3.Val->getNodeDepth();
    NodeDepth = ND+1;

    OperandList = new SDOperand[3];
    OperandList[0] = N1;
    OperandList[1] = N2;
    OperandList[2] = N3;
    NumOperands = 3;
    
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
    N3.Val->Uses.push_back(this);
    ValueList = 0;
    NumValues = 0;
    Prev = 0; Next = 0;
  }
  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
    : NodeType(NT) {
    unsigned ND = N1.Val->getNodeDepth();
    if (ND < N2.Val->getNodeDepth())
      ND = N2.Val->getNodeDepth();
    if (ND < N3.Val->getNodeDepth())
      ND = N3.Val->getNodeDepth();
    if (ND < N4.Val->getNodeDepth())
      ND = N4.Val->getNodeDepth();
    NodeDepth = ND+1;

    OperandList = new SDOperand[4];
    OperandList[0] = N1;
    OperandList[1] = N2;
    OperandList[2] = N3;
    OperandList[3] = N4;
    NumOperands = 4;
    
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
    ValueList = 0;
    NumValues = 0;
    Prev = 0; Next = 0;
  }
  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
    NumOperands = Nodes.size();
    OperandList = new SDOperand[NumOperands];
    
    unsigned ND = 0;
    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
      OperandList[i] = Nodes[i];
      SDNode *N = OperandList[i].Val;
      N->Uses.push_back(this);
      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
    }
    NodeDepth = ND+1;
    ValueList = 0;
    NumValues = 0;
    Prev = 0; Next = 0;
  }

  /// MorphNodeTo - This clears the return value and operands list, and sets the
  /// opcode of the node to the specified value.  This should only be used by
  /// the SelectionDAG class.
  void MorphNodeTo(unsigned Opc) {
    NodeType = Opc;
    ValueList = 0;
    NumValues = 0;
    
    // Clear the operands list, updating used nodes to remove this from their
    // use list.
    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
      I->Val->removeUser(this);
    delete [] OperandList;
    OperandList = 0;
    NumOperands = 0;
  }
  
  void setValueTypes(MVT::ValueType VT) {
    assert(NumValues == 0 && "Should not have values yet!");
    ValueList = getValueTypeList(VT);
    NumValues = 1;
  }
  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
    assert(NumValues == 0 && "Should not have values yet!");
    ValueList = List;
    NumValues = NumVal;
  }
  
  void setOperands(SDOperand Op0) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[1];
    OperandList[0] = Op0;
    NumOperands = 1;
    Op0.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[2];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    NumOperands = 2;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[3];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    NumOperands = 3;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[4];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    OperandList[3] = Op3;
    NumOperands = 4;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
                   SDOperand Op4) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[5];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    OperandList[3] = Op3;
    OperandList[4] = Op4;
    NumOperands = 5;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
    Op4.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
                   SDOperand Op4, SDOperand Op5) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[6];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    OperandList[3] = Op3;
    OperandList[4] = Op4;
    OperandList[5] = Op5;
    NumOperands = 6;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[7];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    OperandList[3] = Op3;
    OperandList[4] = Op4;
    OperandList[5] = Op5;
    OperandList[6] = Op6;
    NumOperands = 7;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
    Op6.Val->Uses.push_back(this);
  }
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
    assert(NumOperands == 0 && "Should not have operands yet!");
    OperandList = new SDOperand[8];
    OperandList[0] = Op0;
    OperandList[1] = Op1;
    OperandList[2] = Op2;
    OperandList[3] = Op3;
    OperandList[4] = Op4;
    OperandList[5] = Op5;
    OperandList[6] = Op6;
    OperandList[7] = Op7;
    NumOperands = 8;
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
  }

  void addUser(SDNode *User) {
    Uses.push_back(User);
  }
  void removeUser(SDNode *User) {
    // Remove this user from the operand's use list.
    for (unsigned i = Uses.size(); ; --i) {
      assert(i != 0 && "Didn't find user!");
      if (Uses[i-1] == User) {
        Uses[i-1] = Uses.back();
        Uses.pop_back();
        return;
      }
    }
  }
};


// Define inline functions from the SDOperand class.

inline unsigned SDOperand::getOpcode() const {
  return Val->getOpcode();
}
inline unsigned SDOperand::getNodeDepth() const {
  return Val->getNodeDepth();
}
inline MVT::ValueType SDOperand::getValueType() const {
  return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
  return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
  return Val->getOperand(i);
}
inline bool SDOperand::isTargetOpcode() const {
  return Val->isTargetOpcode();
}
inline unsigned SDOperand::getTargetOpcode() const {
  return Val->getTargetOpcode();
}
inline bool SDOperand::hasOneUse() const {
  return Val->hasNUsesOfValue(1, ResNo);
}

/// HandleSDNode - This class is used to form a handle around another node that
/// is persistant and is updated across invocations of replaceAllUsesWith on its
/// operand.  This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
public:
  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
  ~HandleSDNode() {
    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
  }
  
  SDOperand getValue() const { return getOperand(0); }
};

class StringSDNode : public SDNode {
  std::string Value;
protected:
  friend class SelectionDAG;
  StringSDNode(const std::string &val)
    : SDNode(ISD::STRING, MVT::Other), Value(val) {
  }
public:
  const std::string &getValue() const { return Value; }
  static bool classof(const StringSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::STRING;
  }
};  

class ConstantSDNode : public SDNode {
  uint64_t Value;
protected:
  friend class SelectionDAG;
  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
  }
public:

  uint64_t getValue() const { return Value; }

  int64_t getSignExtended() const {
    unsigned Bits = MVT::getSizeInBits(getValueType(0));
    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
  }

  bool isNullValue() const { return Value == 0; }
  bool isAllOnesValue() const {
    return Value == MVT::getIntVTBitMask(getValueType(0));
  }

  static bool classof(const ConstantSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Constant ||
           N->getOpcode() == ISD::TargetConstant;
  }
};

class ConstantFPSDNode : public SDNode {
  double Value;
protected:
  friend class SelectionDAG;
  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT), 
      Value(val) {
  }
public:

  double getValue() const { return Value; }

  /// isExactlyValue - We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.
  bool isExactlyValue(double V) const;

  static bool classof(const ConstantFPSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantFP || 
           N->getOpcode() == ISD::TargetConstantFP;
  }
};

class GlobalAddressSDNode : public SDNode {
  GlobalValue *TheGlobal;
  int Offset;
protected:
  friend class SelectionDAG;
  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
                      int o=0)
    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
      Offset(o) {
    TheGlobal = const_cast<GlobalValue*>(GA);
  }
public:

  GlobalValue *getGlobal() const { return TheGlobal; }
  int getOffset() const { return Offset; }

  static bool classof(const GlobalAddressSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::GlobalAddress ||
           N->getOpcode() == ISD::TargetGlobalAddress;
  }
};


class FrameIndexSDNode : public SDNode {
  int FI;
protected:
  friend class SelectionDAG;
  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
public:

  int getIndex() const { return FI; }

  static bool classof(const FrameIndexSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::FrameIndex ||
           N->getOpcode() == ISD::TargetFrameIndex;
  }
};

class JumpTableSDNode : public SDNode {
  int JTI;
protected:
  friend class SelectionDAG;
  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT), 
    JTI(jti) {}
public:
    
    int getIndex() const { return JTI; }
  
  static bool classof(const JumpTableSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::JumpTable ||
           N->getOpcode() == ISD::TargetJumpTable;
  }
};

class ConstantPoolSDNode : public SDNode {
  Constant *C;
  int Offset;
  unsigned Alignment;
protected:
  friend class SelectionDAG;
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
                     int o=0)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
      C(c), Offset(o), Alignment(0) {}
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
                     unsigned Align)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
      C(c), Offset(o), Alignment(Align) {}
public:

  Constant *get() const { return C; }
  int getOffset() const { return Offset; }
  
  // Return the alignment of this constant pool object, which is either 0 (for
  // default alignment) or log2 of the desired value.
  unsigned getAlignment() const { return Alignment; }

  static bool classof(const ConstantPoolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantPool ||
           N->getOpcode() == ISD::TargetConstantPool;
  }
};

class BasicBlockSDNode : public SDNode {
  MachineBasicBlock *MBB;
protected:
  friend class SelectionDAG;
  BasicBlockSDNode(MachineBasicBlock *mbb)
    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:

  MachineBasicBlock *getBasicBlock() const { return MBB; }

  static bool classof(const BasicBlockSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BasicBlock;
  }
};

class SrcValueSDNode : public SDNode {
  const Value *V;
  int offset;
protected:
  friend class SelectionDAG;
  SrcValueSDNode(const Value* v, int o)
    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}

public:
  const Value *getValue() const { return V; }
  int getOffset() const { return offset; }

  static bool classof(const SrcValueSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::SRCVALUE;
  }
};


class RegisterSDNode : public SDNode {
  unsigned Reg;
protected:
  friend class SelectionDAG;
  RegisterSDNode(unsigned reg, MVT::ValueType VT)
    : SDNode(ISD::Register, VT), Reg(reg) {}
public:

  unsigned getReg() const { return Reg; }

  static bool classof(const RegisterSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Register;
  }
};

class ExternalSymbolSDNode : public SDNode {
  const char *Symbol;
protected:
  friend class SelectionDAG;
  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
      Symbol(Sym) {
    }
public:

  const char *getSymbol() const { return Symbol; }

  static bool classof(const ExternalSymbolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ExternalSymbol ||
           N->getOpcode() == ISD::TargetExternalSymbol;
  }
};

class CondCodeSDNode : public SDNode {
  ISD::CondCode Condition;
protected:
  friend class SelectionDAG;
  CondCodeSDNode(ISD::CondCode Cond)
    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
  }
public:

  ISD::CondCode get() const { return Condition; }

  static bool classof(const CondCodeSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::CONDCODE;
  }
};

/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
  MVT::ValueType ValueType;
protected:
  friend class SelectionDAG;
  VTSDNode(MVT::ValueType VT)
    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
public:

  MVT::ValueType getVT() const { return ValueType; }

  static bool classof(const VTSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::VALUETYPE;
  }
};


class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
  SDNode *Node;
  unsigned Operand;

  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
  bool operator==(const SDNodeIterator& x) const {
    return Operand == x.Operand;
  }
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }

  const SDNodeIterator &operator=(const SDNodeIterator &I) {
    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
    Operand = I.Operand;
    return *this;
  }

  pointer operator*() const {
    return Node->getOperand(Operand).Val;
  }
  pointer operator->() const { return operator*(); }

  SDNodeIterator& operator++() {                // Preincrement
    ++Operand;
    return *this;
  }
  SDNodeIterator operator++(int) { // Postincrement
    SDNodeIterator tmp = *this; ++*this; return tmp;
  }

  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
  static SDNodeIterator end  (SDNode *N) {
    return SDNodeIterator(N, N->getNumOperands());
  }

  unsigned getOperand() const { return Operand; }
  const SDNode *getNode() const { return Node; }
};

template <> struct GraphTraits<SDNode*> {
  typedef SDNode NodeType;
  typedef SDNodeIterator ChildIteratorType;
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return SDNodeIterator::begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return SDNodeIterator::end(N);
  }
};

template<>
struct ilist_traits<SDNode> {
  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
  static SDNode *getNext(const SDNode *N) { return N->Next; }
  
  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
  
  static SDNode *createSentinel() {
    return new SDNode(ISD::EntryToken, MVT::Other);
  }
  static void destroySentinel(SDNode *N) { delete N; }
  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
  
  
  void addNodeToList(SDNode *NTy) {}
  void removeNodeFromList(SDNode *NTy) {}
  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
                             const ilist_iterator<SDNode> &X,
                             const ilist_iterator<SDNode> &Y) {}
};

} // end llvm namespace

#endif