aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/SlotIndexes.h
blob: 88044c7242c92e9e51126d4925dccaca93576f50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements SlotIndex and related classes. The purpuse of SlotIndex
// is to describe a position at which a register can become live, or cease to
// be live.
//
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
// is held is LiveIntervals and provides the real numbering. This allows
// LiveIntervals to perform largely transparent renumbering. The SlotIndex
// class does hold a PHI bit, which determines whether the index relates to a
// PHI use or def point, or an actual instruction. See the SlotIndex class
// description for futher information.
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SLOTINDEXES_H
#define LLVM_CODEGEN_SLOTINDEXES_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Allocator.h"

namespace llvm {

  /// This class represents an entry in the slot index list held in the
  /// SlotIndexes pass. It should not be used directly. See the
  /// SlotIndex & SlotIndexes classes for the public interface to this
  /// information.
  class IndexListEntry {
    static const unsigned EMPTY_KEY_INDEX = ~0U & ~3U,
                          TOMBSTONE_KEY_INDEX = ~0U & ~7U;

    IndexListEntry *next, *prev;
    MachineInstr *mi;
    unsigned index;

  protected:

    typedef enum { EMPTY_KEY, TOMBSTONE_KEY } ReservedEntryType;

    // This constructor is only to be used by getEmptyKeyEntry
    // & getTombstoneKeyEntry. It sets index to the given
    // value and mi to zero.
    IndexListEntry(ReservedEntryType r) : mi(0) {
      switch(r) {
        case EMPTY_KEY: index = EMPTY_KEY_INDEX; break;
        case TOMBSTONE_KEY: index = TOMBSTONE_KEY_INDEX; break;
        default: assert(false && "Invalid value for constructor."); 
      }
      next = this;
      prev = this;
    }

  public:

    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {
      assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
             "Attempt to create invalid index. "
             "Available indexes may have been exhausted?.");
    }

    bool isValid() const {
      return (index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX);
    }

    MachineInstr* getInstr() const { return mi; }
    void setInstr(MachineInstr *mi) {
      assert(isValid() && "Attempt to modify reserved index.");
      this->mi = mi;
    }

    unsigned getIndex() const { return index; }
    void setIndex(unsigned index) {
      assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
             "Attempt to set index to invalid value.");
      assert(isValid() && "Attempt to reset reserved index value.");
      this->index = index;
    }
    
    IndexListEntry* getNext() { return next; }
    const IndexListEntry* getNext() const { return next; }
    void setNext(IndexListEntry *next) {
      assert(isValid() && "Attempt to modify reserved index.");
      this->next = next;
    }

    IndexListEntry* getPrev() { return prev; }
    const IndexListEntry* getPrev() const { return prev; }
    void setPrev(IndexListEntry *prev) {
      assert(isValid() && "Attempt to modify reserved index.");
      this->prev = prev;
    }

    // This function returns the index list entry that is to be used for empty
    // SlotIndex keys.
    static IndexListEntry* getEmptyKeyEntry();

    // This function returns the index list entry that is to be used for
    // tombstone SlotIndex keys.
    static IndexListEntry* getTombstoneKeyEntry();
  };

  // Specialize PointerLikeTypeTraits for IndexListEntry.
  template <>
  class PointerLikeTypeTraits<IndexListEntry*> { 
  public:
    static inline void* getAsVoidPointer(IndexListEntry *p) {
      return p;
    }
    static inline IndexListEntry* getFromVoidPointer(void *p) {
      return static_cast<IndexListEntry*>(p);
    }
    enum { NumLowBitsAvailable = 3 };
  };

  /// SlotIndex - An opaque wrapper around machine indexes.
  class SlotIndex {
    friend class SlotIndexes;
    friend struct DenseMapInfo<SlotIndex>;

    enum Slot { LOAD, USE, DEF, STORE, NUM };

    static const unsigned PHI_BIT = 1 << 2;

    PointerIntPair<IndexListEntry*, 3, unsigned> lie;

    SlotIndex(IndexListEntry *entry, unsigned phiAndSlot)
      : lie(entry, phiAndSlot) {
      assert(entry != 0 && "Attempt to construct index with 0 pointer.");
    }

    IndexListEntry& entry() const {
      return *lie.getPointer();
    }

    int getIndex() const {
      return entry().getIndex() | getSlot();
    }

    /// Returns the slot for this SlotIndex.
    Slot getSlot() const {
      return static_cast<Slot>(lie.getInt()  & ~PHI_BIT);
    }

    static inline unsigned getHashValue(const SlotIndex &v) {
      IndexListEntry *ptrVal = &v.entry();
      return (unsigned((intptr_t)ptrVal) >> 4) ^
             (unsigned((intptr_t)ptrVal) >> 9);
    }

  public:
    static inline SlotIndex getEmptyKey() {
      return SlotIndex(IndexListEntry::getEmptyKeyEntry(), 0);
    }

    static inline SlotIndex getTombstoneKey() {
      return SlotIndex(IndexListEntry::getTombstoneKeyEntry(), 0);
    }
    
    /// Construct an invalid index.
    SlotIndex() : lie(IndexListEntry::getEmptyKeyEntry(), 0) {}

    // Construct a new slot index from the given one, set the phi flag on the
    // new index to the value of the phi parameter.
    SlotIndex(const SlotIndex &li, bool phi)
      : lie(&li.entry(), phi ? PHI_BIT | li.getSlot() : (unsigned)li.getSlot()){
      assert(lie.getPointer() != 0 &&
             "Attempt to construct index with 0 pointer.");
    }

    // Construct a new slot index from the given one, set the phi flag on the
    // new index to the value of the phi parameter, and the slot to the new slot.
    SlotIndex(const SlotIndex &li, bool phi, Slot s)
      : lie(&li.entry(), phi ? PHI_BIT | s : (unsigned)s) {
      assert(lie.getPointer() != 0 &&
             "Attempt to construct index with 0 pointer.");
    }

    /// Returns true if this is a valid index. Invalid indicies do
    /// not point into an index table, and cannot be compared.
    bool isValid() const {
      IndexListEntry *entry = lie.getPointer();
      return ((entry!= 0) && (entry->isValid()));
    }

    /// Print this index to the given raw_ostream.
    void print(raw_ostream &os) const;

    /// Dump this index to stderr.
    void dump() const;

    /// Compare two SlotIndex objects for equality.
    bool operator==(SlotIndex other) const {
      return getIndex() == other.getIndex();
    }
    /// Compare two SlotIndex objects for inequality.
    bool operator!=(SlotIndex other) const {
      return getIndex() != other.getIndex(); 
    }
   
    /// Compare two SlotIndex objects. Return true if the first index
    /// is strictly lower than the second.
    bool operator<(SlotIndex other) const {
      return getIndex() < other.getIndex();
    }
    /// Compare two SlotIndex objects. Return true if the first index
    /// is lower than, or equal to, the second.
    bool operator<=(SlotIndex other) const {
      return getIndex() <= other.getIndex();
    }

    /// Compare two SlotIndex objects. Return true if the first index
    /// is greater than the second.
    bool operator>(SlotIndex other) const {
      return getIndex() > other.getIndex();
    }

    /// Compare two SlotIndex objects. Return true if the first index
    /// is greater than, or equal to, the second.
    bool operator>=(SlotIndex other) const {
      return getIndex() >= other.getIndex();
    }

    /// Return the distance from this index to the given one.
    int distance(SlotIndex other) const {
      return other.getIndex() - getIndex();
    }

    /// Returns the state of the PHI bit.
    bool isPHI() const {
      return lie.getInt() & PHI_BIT;
    }

    /// isLoad - Return true if this is a LOAD slot.
    bool isLoad() const {
      return getSlot() == LOAD;
    }

    /// isDef - Return true if this is a DEF slot.
    bool isDef() const {
      return getSlot() == DEF;
    }

    /// isUse - Return true if this is a USE slot.
    bool isUse() const {
      return getSlot() == USE;
    }

    /// isStore - Return true if this is a STORE slot.
    bool isStore() const {
      return getSlot() == STORE;
    }

    /// Returns the base index for associated with this index. The base index
    /// is the one associated with the LOAD slot for the instruction pointed to
    /// by this index.
    SlotIndex getBaseIndex() const {
      return getLoadIndex();
    }

    /// Returns the boundary index for associated with this index. The boundary
    /// index is the one associated with the LOAD slot for the instruction
    /// pointed to by this index.
    SlotIndex getBoundaryIndex() const {
      return getStoreIndex();
    }

    /// Returns the index of the LOAD slot for the instruction pointed to by
    /// this index.
    SlotIndex getLoadIndex() const {
      return SlotIndex(&entry(), SlotIndex::LOAD);
    }    

    /// Returns the index of the USE slot for the instruction pointed to by
    /// this index.
    SlotIndex getUseIndex() const {
      return SlotIndex(&entry(), SlotIndex::USE);
    }

    /// Returns the index of the DEF slot for the instruction pointed to by
    /// this index.
    SlotIndex getDefIndex() const {
      return SlotIndex(&entry(), SlotIndex::DEF);
    }

    /// Returns the index of the STORE slot for the instruction pointed to by
    /// this index.
    SlotIndex getStoreIndex() const {
      return SlotIndex(&entry(), SlotIndex::STORE);
    }    

    /// Returns the next slot in the index list. This could be either the
    /// next slot for the instruction pointed to by this index or, if this
    /// index is a STORE, the first slot for the next instruction.
    /// WARNING: This method is considerably more expensive than the methods
    /// that return specific slots (getUseIndex(), etc). If you can - please
    /// use one of those methods.
    SlotIndex getNextSlot() const {
      Slot s = getSlot();
      if (s == SlotIndex::STORE) {
        return SlotIndex(entry().getNext(), SlotIndex::LOAD);
      }
      return SlotIndex(&entry(), s + 1);
    }

    /// Returns the next index. This is the index corresponding to the this
    /// index's slot, but for the next instruction.
    SlotIndex getNextIndex() const {
      return SlotIndex(entry().getNext(), getSlot());
    }

    /// Returns the previous slot in the index list. This could be either the
    /// previous slot for the instruction pointed to by this index or, if this
    /// index is a LOAD, the last slot for the previous instruction.
    /// WARNING: This method is considerably more expensive than the methods
    /// that return specific slots (getUseIndex(), etc). If you can - please
    /// use one of those methods.
    SlotIndex getPrevSlot() const {
      Slot s = getSlot();
      if (s == SlotIndex::LOAD) {
        return SlotIndex(entry().getPrev(), SlotIndex::STORE);
      }
      return SlotIndex(&entry(), s - 1);
    }

    /// Returns the previous index. This is the index corresponding to this
    /// index's slot, but for the previous instruction.
    SlotIndex getPrevIndex() const {
      return SlotIndex(entry().getPrev(), getSlot());
    }

  };

  /// DenseMapInfo specialization for SlotIndex.
  template <>
  struct DenseMapInfo<SlotIndex> {
    static inline SlotIndex getEmptyKey() {
      return SlotIndex::getEmptyKey();
    }
    static inline SlotIndex getTombstoneKey() {
      return SlotIndex::getTombstoneKey();
    }
    static inline unsigned getHashValue(const SlotIndex &v) {
      return SlotIndex::getHashValue(v);
    }
    static inline bool isEqual(const SlotIndex &LHS, const SlotIndex &RHS) {
      return (LHS == RHS);
    }
  };
  
  template <> struct isPodLike<SlotIndex> { static const bool value = true; };


  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
    li.print(os);
    return os;
  }

  typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;

  inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
    return V < IM.first;
  }

  inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
    return IM.first < V;
  }

  struct Idx2MBBCompare {
    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
      return LHS.first < RHS.first;
    }
  };

  /// SlotIndexes pass.
  ///
  /// This pass assigns indexes to each instruction.
  class SlotIndexes : public MachineFunctionPass {
  private:

    MachineFunction *mf;
    IndexListEntry *indexListHead;
    unsigned functionSize;

    typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
    Mi2IndexMap mi2iMap;

    /// MBB2IdxMap - The indexes of the first and last instructions in the
    /// specified basic block.
    typedef DenseMap<const MachineBasicBlock*,
                     std::pair<SlotIndex, SlotIndex> > MBB2IdxMap;
    MBB2IdxMap mbb2IdxMap;

    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
    /// and MBB id.
    std::vector<IdxMBBPair> idx2MBBMap;

    typedef DenseMap<const MachineBasicBlock*, SlotIndex> TerminatorGapsMap;
    TerminatorGapsMap terminatorGaps;

    // IndexListEntry allocator.
    BumpPtrAllocator ileAllocator;

    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
      IndexListEntry *entry =
        static_cast<IndexListEntry*>(
          ileAllocator.Allocate(sizeof(IndexListEntry),
          alignof<IndexListEntry>()));

      new (entry) IndexListEntry(mi, index);

      return entry;
    }

    void initList() {
      assert(indexListHead == 0 && "Zero entry non-null at initialisation.");
      indexListHead = createEntry(0, ~0U);
      indexListHead->setNext(0);
      indexListHead->setPrev(indexListHead);
    }

    void clearList() {
      indexListHead = 0;
      ileAllocator.Reset();
    }

    IndexListEntry* getTail() {
      assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
      return indexListHead->getPrev();
    }

    const IndexListEntry* getTail() const {
      assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
      return indexListHead->getPrev();
    }

    // Returns true if the index list is empty.
    bool empty() const { return (indexListHead == getTail()); }

    IndexListEntry* front() {
      assert(!empty() && "front() called on empty index list.");
      return indexListHead;
    }

    const IndexListEntry* front() const {
      assert(!empty() && "front() called on empty index list.");
      return indexListHead;
    }

    IndexListEntry* back() {
      assert(!empty() && "back() called on empty index list.");
      return getTail()->getPrev();
    }

    const IndexListEntry* back() const {
      assert(!empty() && "back() called on empty index list.");
      return getTail()->getPrev();
    }

    /// Insert a new entry before itr.
    void insert(IndexListEntry *itr, IndexListEntry *val) {
      assert(itr != 0 && "itr should not be null.");
      IndexListEntry *prev = itr->getPrev();
      val->setNext(itr);
      val->setPrev(prev);
      
      if (itr != indexListHead) {
        prev->setNext(val);
      }
      else {
        indexListHead = val;
      }
      itr->setPrev(val);
    }

    /// Push a new entry on to the end of the list.
    void push_back(IndexListEntry *val) {
      insert(getTail(), val);
    }

  public:
    static char ID;

    SlotIndexes() : MachineFunctionPass(ID), indexListHead(0) {}

    virtual void getAnalysisUsage(AnalysisUsage &au) const;
    virtual void releaseMemory(); 

    virtual bool runOnMachineFunction(MachineFunction &fn);

    /// Dump the indexes.
    void dump() const;

    /// Renumber the index list, providing space for new instructions.
    void renumberIndexes();

    /// Returns the zero index for this analysis.
    SlotIndex getZeroIndex() {
      assert(front()->getIndex() == 0 && "First index is not 0?");
      return SlotIndex(front(), 0);
    }

    /// Returns the base index of the last slot in this analysis.
    SlotIndex getLastIndex() {
      return SlotIndex(back(), 0);
    }

    /// Returns the invalid index marker for this analysis.
    SlotIndex getInvalidIndex() {
      return getZeroIndex();
    }

    /// Returns the distance between the highest and lowest indexes allocated
    /// so far.
    unsigned getIndexesLength() const {
      assert(front()->getIndex() == 0 &&
             "Initial index isn't zero?");

      return back()->getIndex();
    }

    /// Returns the number of instructions in the function.
    unsigned getFunctionSize() const {
      return functionSize;
    }

    /// Returns true if the given machine instr is mapped to an index,
    /// otherwise returns false.
    bool hasIndex(const MachineInstr *instr) const {
      return (mi2iMap.find(instr) != mi2iMap.end());
    }

    /// Returns the base index for the given instruction.
    SlotIndex getInstructionIndex(const MachineInstr *instr) const {
      Mi2IndexMap::const_iterator itr = mi2iMap.find(instr);
      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
      return itr->second;
    }

    /// Returns the instruction for the given index, or null if the given
    /// index has no instruction associated with it.
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
      return index.entry().getInstr();
    }

    /// Returns the next non-null index.
    SlotIndex getNextNonNullIndex(SlotIndex index) {
      SlotIndex nextNonNull = index.getNextIndex();

      while (&nextNonNull.entry() != getTail() &&
             getInstructionFromIndex(nextNonNull) == 0) {
        nextNonNull = nextNonNull.getNextIndex();
      }

      return nextNonNull;
    }

    /// Returns the first index in the given basic block.
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
      MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
      assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
      return itr->second.first;
    }

    /// Returns the last index in the given basic block.
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
      MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
      assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
      return itr->second.second;
    }

    /// Returns the terminator gap for the given index.
    SlotIndex getTerminatorGap(const MachineBasicBlock *mbb) {
      TerminatorGapsMap::iterator itr = terminatorGaps.find(mbb);
      assert(itr != terminatorGaps.end() &&
             "All MBBs should have terminator gaps in their indexes.");
      return itr->second;
    }

    /// Returns the basic block which the given index falls in.
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
      std::vector<IdxMBBPair>::const_iterator I =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
      // Take the pair containing the index
      std::vector<IdxMBBPair>::const_iterator J =
        ((I != idx2MBBMap.end() && I->first > index) ||
         (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;

      assert(J != idx2MBBMap.end() && J->first <= index &&
             index < getMBBEndIdx(J->second) &&
             "index does not correspond to an MBB");
      return J->second;
    }

    bool findLiveInMBBs(SlotIndex start, SlotIndex end,
                        SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
      std::vector<IdxMBBPair>::const_iterator itr =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
      bool resVal = false;

      while (itr != idx2MBBMap.end()) {
        if (itr->first >= end)
          break;
        mbbs.push_back(itr->second);
        resVal = true;
        ++itr;
      }
      return resVal;
    }

    /// Return a list of MBBs that can be reach via any branches or
    /// fall-throughs.
    bool findReachableMBBs(SlotIndex start, SlotIndex end,
                           SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
      std::vector<IdxMBBPair>::const_iterator itr =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);

      bool resVal = false;
      while (itr != idx2MBBMap.end()) {
        if (itr->first > end)
          break;
        MachineBasicBlock *mbb = itr->second;
        if (getMBBEndIdx(mbb) > end)
          break;
        for (MachineBasicBlock::succ_iterator si = mbb->succ_begin(),
             se = mbb->succ_end(); si != se; ++si)
          mbbs.push_back(*si);
        resVal = true;
        ++itr;
      }
      return resVal;
    }

    /// Returns the MBB covering the given range, or null if the range covers
    /// more than one basic block.
    MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {

      assert(start < end && "Backwards ranges not allowed.");

      std::vector<IdxMBBPair>::const_iterator itr =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);

      if (itr == idx2MBBMap.end()) {
        itr = prior(itr);
        return itr->second;
      }

      // Check that we don't cross the boundary into this block.
      if (itr->first < end)
        return 0;

      itr = prior(itr);

      if (itr->first <= start)
        return itr->second;

      return 0;
    }

    /// Insert the given machine instruction into the mapping. Returns the
    /// assigned index.
    SlotIndex insertMachineInstrInMaps(MachineInstr *mi,
                                        bool *deferredRenumber = 0) {
      assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");

      MachineBasicBlock *mbb = mi->getParent();

      assert(mbb != 0 && "Instr must be added to function.");

      MBB2IdxMap::iterator mbbRangeItr = mbb2IdxMap.find(mbb);

      assert(mbbRangeItr != mbb2IdxMap.end() &&
             "Instruction's parent MBB has not been added to SlotIndexes.");

      MachineBasicBlock::iterator miItr(mi);
      bool needRenumber = false;
      IndexListEntry *newEntry;
      // Get previous index, considering that not all instructions are indexed.
      IndexListEntry *prevEntry;
      for (;;) {
        // If mi is at the mbb beginning, get the prev index from the mbb.
        if (miItr == mbb->begin()) {
          prevEntry = &mbbRangeItr->second.first.entry();
          break;
        }
        // Otherwise rewind until we find a mapped instruction.
        Mi2IndexMap::const_iterator itr = mi2iMap.find(--miItr);
        if (itr != mi2iMap.end()) {
          prevEntry = &itr->second.entry();
          break;
        }
      }

      // Get next entry from previous entry.
      IndexListEntry *nextEntry = prevEntry->getNext();

      // Get a number for the new instr, or 0 if there's no room currently.
      // In the latter case we'll force a renumber later.
      unsigned dist = nextEntry->getIndex() - prevEntry->getIndex();
      unsigned newNumber = dist > SlotIndex::NUM ?
        prevEntry->getIndex() + ((dist >> 1) & ~3U) : 0;

      if (newNumber == 0) {
        needRenumber = true;
      }

      // Insert a new list entry for mi.
      newEntry = createEntry(mi, newNumber);
      insert(nextEntry, newEntry);
  
      SlotIndex newIndex(newEntry, SlotIndex::LOAD);
      mi2iMap.insert(std::make_pair(mi, newIndex));

      if (miItr == mbb->end()) {
        // If this is the last instr in the MBB then we need to fix up the bb
        // range:
        mbbRangeItr->second.second = SlotIndex(newEntry, SlotIndex::STORE);
      }

      // Renumber if we need to.
      if (needRenumber) {
        if (deferredRenumber == 0)
          renumberIndexes();
        else
          *deferredRenumber = true;
      }

      return newIndex;
    }

    /// Add all instructions in the vector to the index list. This method will
    /// defer renumbering until all instrs have been added, and should be 
    /// preferred when adding multiple instrs.
    void insertMachineInstrsInMaps(SmallVectorImpl<MachineInstr*> &mis) {
      bool renumber = false;

      for (SmallVectorImpl<MachineInstr*>::iterator
           miItr = mis.begin(), miEnd = mis.end();
           miItr != miEnd; ++miItr) {
        insertMachineInstrInMaps(*miItr, &renumber);
      }

      if (renumber)
        renumberIndexes();
    }


    /// Remove the given machine instruction from the mapping.
    void removeMachineInstrFromMaps(MachineInstr *mi) {
      // remove index -> MachineInstr and
      // MachineInstr -> index mappings
      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
      if (mi2iItr != mi2iMap.end()) {
        IndexListEntry *miEntry(&mi2iItr->second.entry());        
        assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
        // FIXME: Eventually we want to actually delete these indexes.
        miEntry->setInstr(0);
        mi2iMap.erase(mi2iItr);
      }
    }

    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
    /// maps used by register allocator.
    void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
      if (mi2iItr == mi2iMap.end())
        return;
      SlotIndex replaceBaseIndex = mi2iItr->second;
      IndexListEntry *miEntry(&replaceBaseIndex.entry());
      assert(miEntry->getInstr() == mi &&
             "Mismatched instruction in index tables.");
      miEntry->setInstr(newMI);
      mi2iMap.erase(mi2iItr);
      mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
    }

    /// Add the given MachineBasicBlock into the maps.
    void insertMBBInMaps(MachineBasicBlock *mbb) {
      MachineFunction::iterator nextMBB =
        llvm::next(MachineFunction::iterator(mbb));
      IndexListEntry *startEntry = createEntry(0, 0);
      IndexListEntry *terminatorEntry = createEntry(0, 0); 
      IndexListEntry *nextEntry = 0;

      if (nextMBB == mbb->getParent()->end()) {
        nextEntry = getTail();
      } else {
        nextEntry = &getMBBStartIdx(nextMBB).entry();
      }

      insert(nextEntry, startEntry);
      insert(nextEntry, terminatorEntry);

      SlotIndex startIdx(startEntry, SlotIndex::LOAD);
      SlotIndex terminatorIdx(terminatorEntry, SlotIndex::PHI_BIT);
      SlotIndex endIdx(nextEntry, SlotIndex::LOAD);

      terminatorGaps.insert(
        std::make_pair(mbb, terminatorIdx));

      mbb2IdxMap.insert(
        std::make_pair(mbb, std::make_pair(startIdx, endIdx)));

      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));

      if (MachineFunction::iterator(mbb) != mbb->getParent()->begin()) {
        // Have to update the end index of the previous block.
        MachineBasicBlock *priorMBB =
          llvm::prior(MachineFunction::iterator(mbb));
        mbb2IdxMap[priorMBB].second = startIdx;
      }

      renumberIndexes();
      std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());

    }

  };


}

#endif // LLVM_CODEGEN_LIVEINDEX_H